Modelling spreading phenomena in real-world networks

Changwang ZHANG and Shi ZHOU Computer Science, UCL

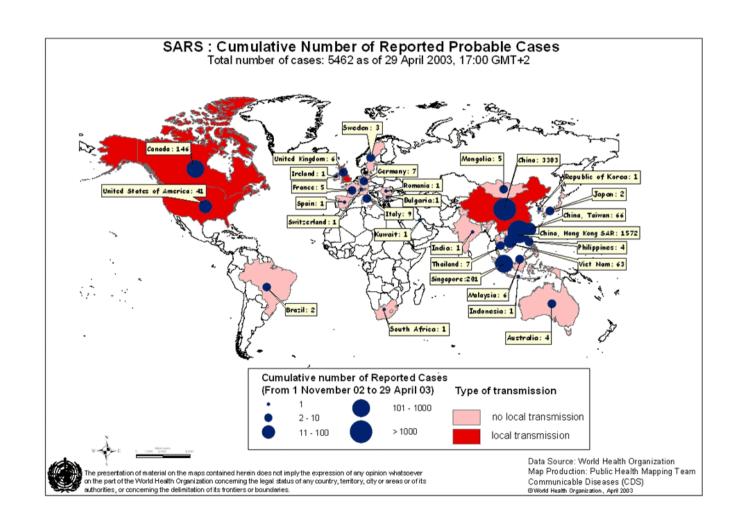
Spreading phenomena

- Widely exist in the real world
 - Computer virus in the Internet
 - Epidemics in human population
 - Information dissemination in society
 - Advertisement campaign
 - Riot incitement via tweeter, facebook etc.

Existing models

- A popular example: SIR model
 - Susceptible, Infectious, Recovered
 - Sound mathematical theories
 - Convenient for simulation experiments
- Purpose: to predict and control spreading

Problems of existing models

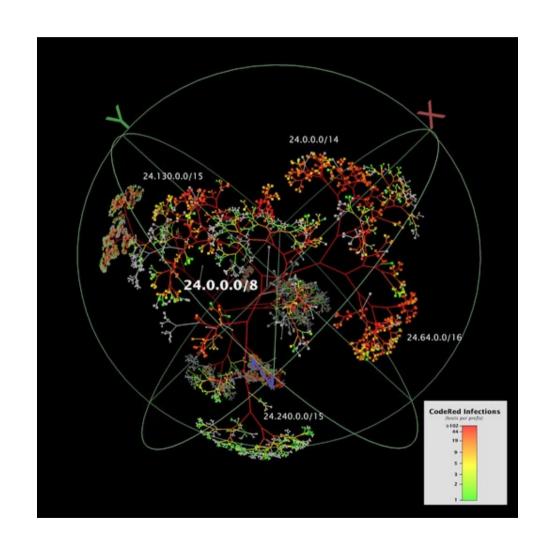

- Too simplistic
- Consider only one spreading process on one network

Spreading phenomena in real-world networks

- Much more complex
- Often involve multiple spreading processes on multiple networks
 - Happen simultaneously
 - Interact with each other

Example 1 - Epidemics

SARS


Example 1 - Epidemics

SARS

- Local spreading
 - following human mobility patterns within communities and cities
 - Lots of accidental contacts
 - Shall we immunise the whole population?
- Global spreading
 - via the global aviation network
 - long-haul flights, well-defined structure
 - Shall we cancel all flights?

Example 2 – Computer Virus

CodeRed

Example 2 – Computer Virus

CodeRed

- Global spreading
 - ¹/₈ of the time it probes a completely random IP address
- Local spreading
 - The rest of the time it probes local IP addresses (with the same 24-bit or 16-bit prefixes)
- Both processes are needed for an successful attack

Example 3 - Advertisement

- Local spreading
 - Word of mouth: gossip, Tweeter and Facebook
 - Infect friends/followers via social networks
- Global spreading
 - Broadcasting and publishing: TV, Radio, the Web
 - Accidental, anyone can be informed
- The two processes feed into each other.

Real-world scenarios

- Multiple spreading processes
 - Targeted spreading following network structures
 - Accidental spreading via universal access
- On multiple networks
 - Overlapped or partially overlapped networks
 - Networks at different granularity
- Interactions
 - Between spreading processes
 - Between networks

A new spreading model

- Starting with a typical scenario
 - Two processes on two overlapped networks
 - Local spreading following a network structure
 - Power-law network topology
 - Global spreading with random, universal access
 - Similar to the advertisement campaign
 - Independent, simultaneous and interactive

Theoretical analysis

 If the parameters of the spreading processes satisfy the critical threshold

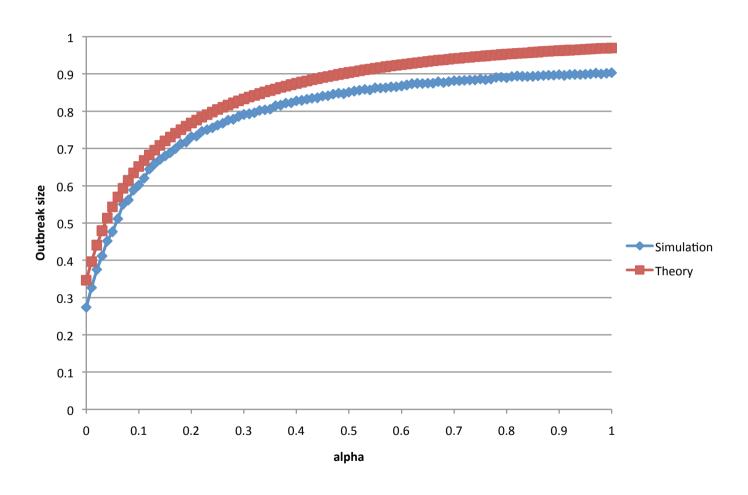

$$\frac{\beta_1}{\gamma} > \frac{1}{\alpha(\langle k \rangle - \delta n) + \delta n}$$

 then the final size of an outbreak (in an infinite network) can be predicted as

$$\langle r(\infty) \rangle = \frac{[\beta_1 \alpha \langle k \rangle + \beta_2 (1 - \alpha)(n - 1)]/\gamma - 1}{[\beta_1^2 \alpha^2 \langle k^2 \rangle + 2\beta_1 \alpha \beta_2 (1 - \alpha)(n - 1) \langle k \rangle + \beta_2^2 (1 - \alpha)^2 (n - 1)^2]/(2\gamma^2)}$$

• otherwise the outbreak size approaches to zero, meaning the epidemic is ephemeral.

The critical threshold



The percentage of local spreading, i.e. the percentage of global spreading is 1 – alpha.

Previous models are equivalent to special cases of our model (when alpha is zero or 1).

The node average degree, i.e. the average number of connections a node has in the local spreading network.

Simulation results

Challenges and future work

- To study other measures and other parameters.
- To extend the model to more general scenarios.
- To improve the accuracy of predictions.
- To explore real applications.

Collaboration

- We call for collaboration
 - Real-world case study
 - Theoretical analysis
- In particular we need real datasets
 - Can you help?

Thanks

Changwang ZHANG <u>c.zhang@cs.ucl.ac.uk</u>

Shi ZHOU <u>s.zhou@ucl.ac.uk</u>