Coherence of Semifilters

Taras Banakh and Lubomyr Zdomskyy

Theory of semifilters resembles an iceberg whose visible part is Theory of filters and ultrafilters

Motivation: Filters

A *filter* is a family \mathcal{F} of subsets of ω such that:

 $(\mathrm{i}) \ \emptyset \notin \mathcal{F}; \ (\mathrm{ii}) \ \mathcal{F} \ni A \subset B \subset \omega \Rightarrow B \in \mathcal{F}; \ (\mathrm{iii}) \ A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}.$

A filter \mathcal{F} on ω is free if $\cap \mathcal{F} = \emptyset$.

Example: The *Fréchet filter* $\mathfrak{F}r$ of cofinite subsets of ω .

 $\mathfrak{F}r$ is the smallest element of the set FF of free filters, ordered by inclusion relation.

This set has no largest element, but has 2^c maximal elements called *ultrafilters*.

Motivation: Near Coherence of Filters

The Blass' principle NCF, the Near Coherence of Filters, asserts that any two free filters \mathcal{F}, \mathcal{U} on ω are *near* coherent in the sense that for some finite-to-one function $\varphi : \omega \to \omega$ the images $\varphi(\mathcal{F})$ and $\varphi(\mathcal{U})$ are linked which means that $\varphi(F) \cap \varphi(U) \neq \emptyset$ for all $F \in \mathcal{F}$ and $U \in \mathcal{U}$.

NCF has many applications beyond Set Theory...

The consistency of NCF was proved by A.Blass and S.Shelah in 1987 who constructed a model of ZFC satisfying three formally stronger principles than NCF:

(Ultrafilter Monotomy) For any ultrafilters \mathcal{U}_0 and \mathcal{F} on ω there is a monotone surjection $\varphi : \omega \to \omega$ such that $\varphi(\mathcal{F}) = \varphi(\mathcal{U}_0)$.

(Filter Dichotomy) For any ultrafilter \mathcal{U}_0 and any filter \mathcal{F} on ω there is a monotone surjection $\varphi : \omega \to \omega$ such that either $\varphi(\mathcal{F}_0) = \varphi(\mathcal{U}_0)$ or $\varphi(\mathcal{F}) = \mathfrak{F}r$.

(Semifilter Trichotomy) For any ultrafilter \mathcal{U}_0 and any semifilter \mathcal{F} on ω (= a family of infinite subsets of ω closed under taking almost supersets) there is a monotone surjection $\varphi : \omega \to \omega$ such that $\varphi(\mathcal{F})$ coincides with $\varphi(\mathcal{U}_0)$, $\mathfrak{F}r$, or $\mathfrak{F}r^{\perp} = [\omega]^{\omega}$.

It is known that $(\mathfrak{u} < \mathfrak{g}) \Rightarrow (S3) \Rightarrow (F2) \Rightarrow (U1) \Leftrightarrow (NCF) \Rightarrow (\mathfrak{u} < \mathfrak{d})$

Introducing Semifilters

By a *semifilter* we understand any family \mathcal{F} of infinite subsets of ω closed under taking almost supersets. So, \mathcal{F} is a *semifilter* if: (i) $\emptyset \notin \mathcal{F}$ and (ii) $\mathcal{F} \ni A \subset^* B \implies B \in \mathcal{F}$.

Adding to those 2 conditions the third: (iii) $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$, we get the definition of a free filter. Semifilters have some advantages comparing to filters. In particular, for any semifilters \mathcal{F}, \mathcal{U} the intersection $\mathcal{F} \cap \mathcal{U}$ and the union $\mathcal{F} \cup \mathcal{U}$ are semifilters. Besides these two operations there is an important operation of *transversal*: $\mathcal{F}^{\perp} = \{E \subset \omega : \forall F \in \mathcal{F} \ F \cap E \neq \emptyset\}.$

In particular, the transversal semifilter $\mathfrak{F}r^{\perp}$ to the Fréchet filter is the semifilter consisting of all infinite subsets of ω . Also $\mathcal{F}^{\perp} = \mathcal{F}$ for any ultrafilter.

The operation of transversal has algeraic properties: (i) $(\mathcal{F}^{\perp})^{\perp} = \mathcal{F}$, (ii) $(\mathcal{F} \cup \mathcal{U})^{\perp} = \mathcal{F}^{\perp} \cap \mathcal{U}^{\perp}$, (iii) $(\mathcal{F} \cap \mathcal{U})^{\perp} = \mathcal{F}^{\perp} \cup \mathcal{U}^{\perp}$.

The support of a semifilter \mathcal{F} is the filter: $\operatorname{supp}(\mathcal{F}) = \{S \subset \omega : \forall F \in \mathcal{F} F \cap S \in \mathcal{F}\}.$

Fact: supp $(\mathcal{F}) = \mathcal{F}$ iff \mathcal{F} is a filter.

The lattice SF of semifilters

By SF we denote the family of all semifilters on ω . This family is a sublattice of the double power-set $\mathcal{P}(\mathcal{P}(\omega))$, considered as a complete lattice with respect to the operations of union and intersection.

The semifilters $\mathfrak{F}r$ and $\mathfrak{F}r^{\perp}$ are the smallest and the largest elements of this lattice and the operation $\perp: \mathsf{SF} \to \mathsf{SF}$ is an involutive anti-isomorphism of SF .

Desribing self-dual semifilters. Let \mathcal{F} be a semifilter.

• $\mathcal{F} \subset \mathcal{F}^{\perp}$ iff \mathcal{F} is linked $(\forall A, B \in \mathcal{F} \ A \cap B \neq \emptyset)$;

• $\mathcal{F}^{\perp} = \mathcal{F}$ iff \mathcal{F} is maximal linked.

For any semifilter \mathcal{F} there is a maximal linked semifilter \mathcal{L} with $\mathcal{F} \cap \mathcal{F}^{\perp} \subset \mathcal{L} \subset \mathcal{F} \cup \mathcal{F}^{\perp}$.

Finite-to-Finite Multifunctions

Recall that two ultrafilters \mathcal{F}, \mathcal{U} are near coherent if $\varphi(\mathcal{F}) \subset \varphi(\mathcal{U})$ for some finite-to-one function $\varphi : \omega \to \omega$. This is equivalent to saying that $\varphi^{-1} \circ \varphi(\mathcal{F}) \subset \mathcal{U}$, where $\varphi^{-1} \circ \varphi : x \mapsto \varphi^{-1} \circ \varphi(x)$ is an example of a finite-to-finite multifunction.

By a multifunction from a set X to a set Y we shall understand a subset $\Phi \subset X \times Y$ that can be thought as a multivalued function $\Phi: X \Rightarrow Y$ assigning to each point $x \in X$ the set $\Phi(x) = \{y \in \Phi: (x, y) \in \Phi\}$. Such a multifunction Φ is *finite-to-finite* if for any $x \in X$ and $y \in Y$ the sets $\Phi(x)$ and $\Phi^{-1}(y)$ are finite and

Multifunctions have some advantages comparing to usual functions because the family of multifunctions on ω is closed with respect to taking inverses and unions!

Subcoherence relation \Subset on SF

A semifilter \mathcal{F} is *subcoherent* to a semifilter \mathcal{U} (denoted by $\mathcal{F} \in \mathcal{U}$) if $\Phi(\mathcal{F}) \subset \mathcal{U}$ for some finite-to-finite multifunction $\Phi: \omega \Rightarrow \omega$. If $\mathcal{F} \in \mathcal{U}$ and $\mathcal{U} \in \mathcal{F}$, then we say that \mathcal{F} is *coherent* to \mathcal{U} and write $\mathcal{F} \asymp \mathcal{U}$.

Theorem (Talagrand). For a semifilter \mathcal{F} TFAE: (i) $\mathcal{F} \asymp \mathfrak{F}r$; (ii) $\varphi(\mathcal{F}) = \mathfrak{F}r$ for some monotone surjection $\varphi: \omega \to \omega$; (iii) \mathcal{F} is a meager subset in the power-set $\mathcal{P}(\omega)$.

Dual Theorem. For a semifilter \mathcal{F} TFAE: (i) $\mathcal{F} \simeq \mathfrak{F}r^{\perp}$, (ii) $\varphi(\mathcal{F}) = \mathfrak{F}r^{\perp}$ for some monotone surjection $\varphi: \omega \to \omega$, (iii) \mathcal{F} is a comeager subset in $\mathcal{P}(\omega)$.

A semifilter \mathcal{F} is *bi-Baire* if both \mathcal{F} and \mathcal{F}^{\perp} are Baire; equivalently, if $\mathfrak{F} \not\simeq \mathcal{F} \not\simeq \mathfrak{F} \not\simeq \mathfrak{F}^{\perp}$. Each semifilter $\mathcal{F} \simeq \mathcal{F}^{\perp}$ is bi-Baire.

The coherence lattice [SF]

The subcoherence relation \in on the semifilter lattice SF is reflexive and transitive, so the coherence relation \asymp is an equivalence relation on SF. This equivalence relation is a congruence on SF because \in nicely agrees with the algebraic operations on SF: If $\mathcal{F} \in \mathcal{F}', \mathcal{U} \in \mathcal{U}'$, then $(\mathcal{F}')^{\perp} \in \mathcal{F}, \mathcal{F} \cup \mathcal{U} \in \mathcal{F}' \cup \mathcal{U}'$ and $\mathcal{F} \cap \mathcal{U} \in \mathcal{F} \cap \mathcal{U}$. This allows us to consider the quotient lattice $[SF] = SF/_{\asymp}$ whose elements are coherence classes $[\mathcal{F}] = \{\mathcal{U} \in SF : \mathcal{U} \asymp \mathcal{F}\}$ of semifilters $\mathcal{F} \in SF$. Besides two lattice operations $[\mathcal{F}] \cup [\mathcal{U}] = [\mathcal{F} \cup \mathcal{U}]$ and $[\mathcal{F}] \cap [\mathcal{U}] = [\mathcal{F} \cap \mathcal{U}]$ the lattice [SF] carries the operation of transversal $[\mathcal{F}]^{\perp} = [\mathcal{F}^{\perp}]$.

The lattice [SF] called the *coherence lattice* is an extremely interesting set-theoretic object: like a chameleon it changes its properties depending on additional set-theoretic axiom. For example, [SF] has only 3 elements under $(\mathfrak{u} < \mathfrak{g})$ and contains a copy of SF under $(\mathfrak{u} \ge \mathfrak{d})$.

Cardinal Functions on [SF]: General Theory

A cardinal function $\xi(-)$ on SF is called

non-empty.

• \cup -homomorphism if $\xi(\mathcal{F} \cup \mathcal{U}) = \max\{\xi(\mathcal{F}), \xi(\mathcal{U})\}$ for all semifilters \mathcal{F}, \mathcal{U} ;

• \cap -homomorphism if $\xi(\mathcal{F} \cap \mathcal{U}) = \min\{\xi(\mathcal{F}), \xi(\mathcal{U})\}$ for all semifilters \mathcal{F}, \mathcal{U} ;

- \subset -monotone if $\xi(\mathcal{F}) \leq \xi(\mathcal{U})$ for any semifilters $\mathcal{F} \subset \mathcal{U}$;
- \Subset -monotone if $\xi(\mathcal{F}) \leq \xi(\mathcal{U})$ for any semifilters $\mathcal{F} \Subset \mathcal{U}$;
- \asymp -invariant if $\xi(\mathcal{F}) = \xi(\mathcal{U})$ for any semifilters $\mathcal{F} \asymp \mathcal{U}$.

For a cardinal function $\xi(-)$ on SF there are (at least) 3 ways to produce an \asymp -invariant cardinal function: • $\xi_{[\mathcal{F}]} = \min\{\xi(\mathcal{U}) : \mathcal{U} \in [\mathcal{F}]\}$, the *minimization*,

• $\xi^{[\mathcal{F}]} = \sup\{\xi(\mathcal{U}) : \mathcal{U} \in [\mathcal{F}]\}, \text{ the supremization,}$

• $\hat{\xi}[\mathcal{F}] = \min\{\xi^{\mathsf{SF}}, \xi(\mathcal{U}) : \mathcal{U} \notin \mathcal{F}\}, \text{ the nonification of } \xi(-).$

The minimization $\xi_{[-]}$ and supremization $\xi^{[-]}$ are \cup -homomorphisms on SF if so is $\xi(-)$.

The nonification $\hat{\xi}[-]$ of any cardinal function $\xi(-)$ is a \in -monotone \cap -homomorphism on SF.

Trivial but Important Fact: $\mathcal{F} \in \mathcal{U}$ if $\xi_{[\mathcal{F}]} < \hat{\xi}[\mathcal{U}]$.

Critical values of cardinal functions

For a class of semifilters $\mathsf{F} \subset \mathsf{SF}$ let $\xi_{\mathsf{F}} = \min\{\xi(\mathcal{F}) : \mathcal{F} \in \mathsf{F}\}$ and $\xi^{\mathsf{F}} = \sup\{\xi(\mathcal{F}) : \mathcal{F} \in \mathsf{F}\}$ be the critical values of $\xi(-)$ on F .

Among such classes F the most important is the class ML of all maximal linked semifilters. The critial values ξ_{ML} and $\hat{\xi}^{ML}$ play a special role because of **Polarization Formulas**:

- If $\xi(-)$ is \subset -monotone, then $\min\{\xi_{[\mathcal{F}]}, \hat{\xi}[\mathcal{F}^{\perp}]\} \leq \xi_{\mathsf{ML}}$ and $\max\{\xi_{[\mathcal{F}]}, \hat{\xi}[\mathcal{F}^{\perp}]\} \geq \hat{\xi}^{\mathsf{ML}}$.
- If $\xi(-)$ is a \cup -homomorphism, then $\max\{\xi_{[\mathcal{F}]},\xi_{[\mathcal{F}^{\perp}]}\} \ge \xi_{\mathsf{ML}}$ and $\min\{\hat{\xi}[\mathcal{F}],\hat{\xi}[\mathcal{F}^{\perp}]\} \le \hat{\xi}^{\mathsf{ML}}$.

Def. A semifilter \mathcal{F} is called ξ -minimal ($\hat{\xi}$ -maximal) if $\max\{\xi_{[\mathcal{F}]}, \xi_{[\mathcal{F}^{\perp}]}\} \leq \xi_{\mathsf{ML}} (\min\{\hat{\xi}[\mathcal{F}], \hat{\xi}[\mathcal{F}^{\perp}]\} \geq \hat{\xi}^{\mathsf{ML}}).$

Two Fundamental Theorems

Th. I. If $\xi_{\mathsf{ML}} < \hat{\xi}^{\mathsf{ML}}$, then for a semifilter \mathcal{F} the following conditions are equivalent: (1) \mathcal{F} is ξ -minimal; (2) $\mathcal{F} \text{ is } \hat{\xi}\text{-maximal; (3)} \max\{\xi_{[\mathcal{F}]}, \xi_{[\mathcal{F}^{\perp}]}\} < \hat{\xi}^{\mathsf{ML}}; (4) \min\{\hat{\xi}[\mathcal{F}], \hat{\xi}[\mathcal{F}^{\perp}]\} > \xi_{\mathsf{ML}}.$ Moreover, all semifilters \mathcal{F} with properties (1)–(4) are coherent.

Th. II. If $\xi_{\mathsf{ML}} < \hat{\xi}^{\mathsf{ML}}$, then SF contains at most two non-coherent maximal linked semifilters. More precisely, a semifilter \mathcal{L} with $\hat{\xi}[\mathcal{L}] = \hat{\xi}[\mathcal{L}^{\perp}]$ is coherent to a unique ξ -minimal (resp. $\hat{\xi}$ -maximal) maximal linked semifilter if $\hat{\xi}[\mathcal{L}] > \xi_{\mathsf{ML}}$ (resp. $\hat{\xi}[\mathcal{L}] < \hat{\xi}^{\mathsf{ML}}$

Cardinal characteristics of semifilters: four levels of complexity

The cardinal characteristics of semifilters appearing in practice fall into four complexity categories:

(1) Cardinal characteristics of semifilters determined by their inner structure (as a rule they are not \approx invariant);

 $(2) \approx$ -Invariant cardinal characteristics obtained after minimizations or supremizations of cardinal characteristics of the first level;

(3) Cardinal characteristics obtained by nonifications of cardinal characteristics at 2d complexity level;

(3) Cardinal characteristics of some external objects determined by a semifilter, close by their properties to the cardinal characteristics of the third level;

(4) Cardinal characteristics obtained after nonification of the cardinal characteristics at 3d complexity level.

The π -character of a semifilter

For a semifilter \mathcal{F} let $\pi_{\chi}(\mathcal{F}) = \min\{|\mathcal{B}| : \mathcal{B} \subset \mathfrak{F}^{\perp} \forall F \in \mathcal{F} \exists B \in \mathcal{B} B \subset F\}$ be the π -character of \mathcal{F} .

The π -character $\pi \chi(-)$ is a \cup -homomorphism on SF and so is its minimization $\pi \chi_{[-]}$.

Critical values: $\pi \chi_{\mathsf{ML}} = \mathfrak{r}$ (Balcar-Simon); If $(\mathfrak{r} < \mathfrak{d})$, then $\widehat{\pi \chi}^{\mathsf{ML}} = \mathfrak{d}$.

Polarization Formulas for $\pi\chi(-)$: $\max\{\pi\chi_{[\mathcal{F}]}, \pi\chi_{[\mathcal{F}^{\perp}]}\} \ge \mathfrak{r}$ and $\min\{\pi\chi_{[\mathcal{F}]}, \widehat{\pi\chi}[\mathcal{F}^{\perp}]\} \le \mathfrak{r}$,

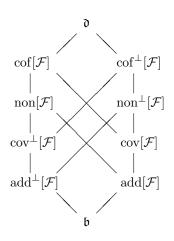
If $(\mathfrak{r} < \mathfrak{d})$, then • min $\{\widehat{\pi\chi}[\mathcal{F}], \widehat{\pi\chi}[\mathcal{F}^{\perp}]\} \leq \mathfrak{d}$ and max $\{\pi\chi_{[\mathcal{F}]}, \widehat{\pi\chi}[\mathcal{F}^{\perp}]\} \geq \mathfrak{d}$.

"Ideal" cardinal characteristics

For a semifilter $\mathcal{F} \not\preccurlyeq \mathfrak{F} r^{\perp}$ let

- $\bullet \; \mathrm{add}[\mathcal{F}] = \min\{|\mathsf{C}|:\mathsf{C} \subset [\mathcal{F}], \;\; \cup \mathsf{C} \notin [\mathcal{F}]\};$
- $\operatorname{cov}[\mathcal{F}] = \min\{|\mathsf{C}| : \mathsf{C} \subset [\mathcal{F}], \ \cup\mathsf{C} = \mathfrak{F}r^{\perp}\};$ $\operatorname{cor}[\mathcal{F}] = \min\{|\mathsf{C}| : \mathsf{C} \subset [\mathcal{F}], \ \forall\mathcal{F}' \in [\mathcal{F}] \ \exists\mathcal{C} \in \mathsf{C} \ \mathcal{F}' \subset \mathcal{C}\};$
- non $[\mathcal{F}] = \min\{|\mathcal{C}| : \mathcal{C} \subset \mathfrak{F}r^{\perp}, \ \mathcal{C} \notin \mathcal{F}\}.$

These cardinal characteristics relate as follows:



Here $\xi^{\perp}[\mathcal{F}] = \xi[\mathcal{F}^{\perp}]$ for $\xi \in \{\text{add}, \text{cov}, \text{cof}, \text{non}\}$. Looking at this diagram we may complete the definition of $\operatorname{add}[\mathcal{F}], \operatorname{cov}[\mathcal{F}], \operatorname{non}[\mathcal{F}], \operatorname{cof}[\mathcal{F}] \text{ letting } \operatorname{add}[\mathfrak{F}^{\perp}] = \operatorname{cov}[\mathfrak{F}^{\perp}] = \mathfrak{b} \text{ and } \operatorname{non}[\mathfrak{F}^{\perp}] = \operatorname{cof}[\mathfrak{F}^{\perp}] = \mathfrak{d}.$

The nature of $\widehat{\pi \chi}[-]$

A crucial observation: non $[\mathcal{F}] = \widehat{\pi \chi}[\mathcal{F}]$ for any semifilter $\mathcal{F} \neq \mathfrak{F}r^{\perp}$. The Polarization Formulas for $\pi\chi_{[-]}$ improve to: $\min\{\pi\chi_{[\mathcal{F}]}, \operatorname{non}^{\perp}[\mathcal{F}]\} \leq \mathfrak{r} \text{ and } \max\{\pi\chi_{[\mathcal{F}]}, \operatorname{cov}[\mathcal{F}]\} \geq \mathfrak{d}.$

The relation $\leq_{\mathcal{F}}$

By $\omega^{\uparrow \omega}$ we denote the set of all non-decreasing unbounded functions from ω to ω .

For two functions $x, y \in \omega^{\uparrow \omega}$ and a semifilter \mathcal{F} we write $x \leq_{\mathcal{F}} y$ if $\{n \in \omega : x(n) \leq y(n)\} \in \mathcal{F}$. Let

• $\mathfrak{d}(\mathcal{F}) = \min\{|D| : D \subset \omega^{\uparrow \omega} \ \forall x \in \omega^{\uparrow \omega} \ \exists y \in D \ x \leq_{\mathcal{F}} y\};$

• $\mathfrak{b}(\mathcal{F}) = \min\{|D| : D \subset \omega^{\uparrow \omega} \ \forall x \in \omega^{\uparrow \omega} \ \exists y \in D \ y \not\leq_{\mathcal{F}} x\};$

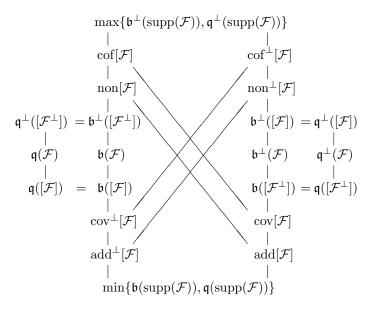
• $\mathfrak{q}(\mathcal{F}) = \min\{|D| : D \subset \omega^{\uparrow \omega} \ \forall x \in \omega^{\uparrow \omega} \ \exists y \in D \ x \not\leq_{\mathcal{F}} y\}.$

Important observation: $\mathfrak{d}(\mathcal{F}) = \mathfrak{b}(\mathcal{F}^{\perp})$, so we can exclude $\mathfrak{d}(\mathcal{F})$ from consideration.

Proposition. The cardinal characteristics $\mathfrak{b}(-)$ and $\mathfrak{q}(-)$ are \in -monotone lattice homomorphisms on SF. These cardinal characteristics are particular cases of cardinal functions $\mathfrak{b}(F)$, $\mathfrak{q}(F)$ defined for a class $F \subset \mathsf{SF}$ of semifilters as follows:

- $\mathfrak{b}^{\perp}(\mathsf{F}) = \min\{|D|: D \subset \omega^{\uparrow \omega} \quad \forall (\mathcal{F}, f) \in \mathsf{F} \times \omega^{\uparrow \omega} \exists g \in D \text{ with } f \leq_{\mathcal{F}} g\};$
- $\mathfrak{q}^{\perp}(\mathsf{F}) = \min\{|D| : D \subset \omega^{\uparrow \omega} \quad \forall (\mathcal{F}, f) \in \mathsf{F} \times \omega^{\uparrow \omega} \; \exists g \in D \text{ with } g \leq_{\mathcal{F}} f\};$ $\mathfrak{b}(\mathsf{F}) = \min\{|\mathsf{P}| : \mathsf{P} \subset \mathsf{F} \times \omega^{\uparrow \omega} \quad \forall g \in \omega^{\uparrow \omega} \; \exists (\mathcal{F}, f) \in \mathsf{P} \text{ with } f \leq_{\mathcal{F}} g\};$
- $\mathfrak{q}(\mathsf{F}) = \min\{|\mathsf{P}| : \mathsf{P} \subset \mathsf{F} \times \omega^{\uparrow \omega} \quad \forall g \in \omega^{\uparrow \omega} \; \exists (\mathcal{F}, f) \in \mathsf{P} \text{ with } g \not\leq_{\mathcal{F}} f\}.$

Interplay between cardinal caharacteristics of a semifilter \mathcal{F} are described by the diagram:



Corollary:

1) If \mathcal{F} is a filter, then $\operatorname{add}^{\perp}[\mathcal{F}] = \operatorname{cov}^{\perp}[\mathcal{F}] = \min\{\mathfrak{b}[\mathcal{F}], \mathfrak{q}[\mathcal{F}]\}.$

2) If \mathcal{F}^{\perp} is a filter, then $\operatorname{cof}[\mathcal{F}] = \operatorname{non}[\mathcal{F}] = \max\{\mathfrak{b}[\mathcal{F}], \mathfrak{q}[\mathcal{F}]\}.$

3) If \mathcal{F} is an ultrafilter, then $\operatorname{add}[\mathcal{F}] = \operatorname{cov}[\mathcal{F}] = \min\{\mathfrak{b}[\mathcal{F}], \mathfrak{q}[\mathcal{F}]\}$ and $\operatorname{cof}[\mathcal{F}] = \operatorname{non}[\mathcal{F}] = \max\{\mathfrak{b}[\mathcal{F}], \mathfrak{q}[\mathcal{F}]\}$. 4) If \mathcal{F} is an ultrafilter, coherent to no Q-point, then all the cardinals from the diagram are equal.

References

1. T.Banakh, L.Zdomskyy. Coherence of Semifilters, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html