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Abstract
The complex analytic structure of solutions of difference equations considered to
be of Painlevé type is explored. Solutions of a large class of difference equations
are meromorphic, modulo singularities due to arbitrary periodic functions. Most
of these equations, e.g. the logistic equation, are not integrable and would not be
considered to be of Painlevé type. Two tests for difference equations are described.
The first checks necessary conditions that non-rational meromorphic solutions are
of finite order in the sense of Nevanlinna. The second is a perturbative method
similar to Painlevé’s α-Test in which di-gamma functions play the role of loga-
rithms.

1 Introduction

Ordinary differential equations (ODEs) of Painlevé type play an important
role in the theory of integrable systems. An ODE is said to be of Painlevé
type (or to possess the Painlevé property) if all solutions are single-valued
about all movable singularities. In particular, ODEs of Painlevé type arise
as symmetry reductions of soliton equations [4, 2, 3].

The Painlevé property has been used as a powerful detector of integrabil-
ity since the work of Kowalevskaya in 1889 [11, 12]. Subsequently Painlevé
and his colleagues classified all equations of Painlevé type of the form

d2y

dz2
= F

(
z; y,

dy

dz

)
,

where F is rational in y and dy/dz and (locally) analytic in z. All of these
equations were solved in terms of known functions except for those that are
equivalent (under transformations of the form z 7→ Φ(z) and y 7→ [a(z)y +
b(z)]/[c(z)y + d(z)]) to one of six ODEs, now called the Painlevé equations
(PI –PVI). The first two Painlevé equations are

PI
d2y

dz2
= 6y2 + z, (1)

PII
d2y

dz2
= 2y3 + zy + α, (2)

where α is a constant.
Here we describe a number of issues that arise in extending to differ-

ence equations the philosophy of using the complex analytic structure of
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solutions as an indication of integrability. We begin by describing the an-
alytic structure of solutions to a class difference equations. We note that,
up to arbitrary functions of period one (which play a role akin to that of
constants for ODEs and characteristic data for PDEs), general solutions of
these difference equations are meromorphic. Hence, for difference equations
we encounter the problem of distinguishing well-behaved meromorphic solu-
tions, whereas for differential equations, a meromorphic general solution is
sufficient to indicate that the equation is of Painlevé type. We discuss the
special class of meromorphic functions that are of finite order of growth in
the sense of Nevanlinna.

We also consider a perturbative series expansion method in which the role
of the logarithm in standard Painlevé analysis is played by the di-gamma
function ψ(z) = d log Γ(z)/dz, see also [1].

2 Complex Difference Equations

From the dynamical systems standpoint, a discrete equation such as

yn+1 = nyn (3)

is viewed as an iterative scheme in which say y1 = k is specified and the
general solution to equation (3) is yn = k(n− 1)!, for all positive integers n.
In order to extend the Painlevé property to equations such as (3), we wish
to understand the analytic structure of solutions in the complex domain, not
just at a discrete set of values of the independent variable. To this end we
replace equation (3) with the difference (i.e. delay) equation

y(z + 1) = zy(z) (4)

which must hold for all z on some Riemann surface. It is straightforward to
verify that the general solution of equation (4) is

y(z) = π(z)Γ(z), (5)

where Γ is the gamma function and π is an arbitrary function of period
one (hereafter we will refer to arbitrary period one functions as “periodic
functions”). Periodic functions play an analogous role in the solutions of
difference equations to that played by constants in the solutions of differential
equations. Since these periodic functions can have any kind of singularity in
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the complex domain, we need to somehow factor them out of our analysis
of the complex analytic structure of solutions of difference equations. Apart
from possible singularities due to the periodic function π, the general solution
(5) of equation (4) is meromorphic.

On taking the logarithmic derivative of equation (4) it can be seen that
the general solution of

4y(z) := y(z + 1)− y(z) =
1

z
(6)

is
y(z) = ψ(z) + π(z), (7)

where ψ(z) = d log Γ(z)/dz is the di-gamma function and π is an arbitrary
periodic function. Equation (6) is important in the theory of difference equa-
tions because it is the natural discretization of the equation dy/dz = 1/z,
which defines the logarithm. The logarithm plays a very special role in
Painlevé analysis in that its appearance indicates branching of solutions (log-
arithms must be introduced in series solutions in which a certain resonance
condition is not satisfied). However, note that up to the periodic function π
the general solution (7) of equation (6) is meromorphic. This indicates that
the absence of branching alone does not characterize difference equations of
Painlevé type.

In fact, it is known that every equation of the form

y(z + 1) = R(y(z)), (8)

where R is a rational function of z, possesses a non-constant meromorphic
solution y(z) = Y (z) (Yanagihara [19]). If R is a polynomial then equation
(8) possesses a non-constant entire solution (Shimomura [17], Kimura [10]).
Furthermore, a general solution of equation (8) is given by

y(z) = Y (z − π(z)),

where π is an arbitrary periodic function. This implies that the logistic
equation

y(z + 1) = µy(z)(1− y(z)),

which has very complicated dynamics for certain values of the parameter µ,
has an entire solution.
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In the following we will outline two properties that appear to be neces-
sary for difference equations that one would consider to be of Painlevé type.
The first demands that equations of Painlevé type have solutions that satisfy
certain growth conditions at infinity. The second approach requires generat-
ing series solutions of perturbed equations and demanding that no di-gamma
functions appear.

3 Nevanlinna Theory

In this section we describe the basic ingredients of Nevanlinna Theory. In
particular, we describe the Nevanlinna characteristic function T (r, f), the
order of growth of a meromorphic function, and Hadamard’s factorization
theorem. There are many good references on this subject, such as [15, 8, 20,
13].

3.1 The Nevanlinna Characteristic

The Nevanlinna characteristic T (r, f), which encodes information about the
distribution of values of f on the disk |z| ≤ r, plays a central role in the
theory of meromorphic functions. It is a sum of two parts:

T (r, f) = m(r, f) +N(r, f). (9)

The proximity function m(r, f) is given by

m(r, f) = m(r,∞, f) =
1

2π

∫ 2π

0
log+

∣∣∣f (reiθ
)∣∣∣ dθ,

where log+ x = max{0, log x}. The proximity function is an averaged mea-
sure of how large f becomes on the circle |z| = r. Define the counting function
n(r, f) to be the number of poles of f (counted according to multiplicities)
in the disk |z| < r. The integrated counting function, N(r, f), is then defined
to be

N(r, f) = N(r,∞, f) =
∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r.

The Nevanlinna characteristic function given by (9) is therefore the sum of
a measure of how large f becomes on |z| = r and a measure of the number
of poles of f in |z| < r.
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Nevanlinna’s First Fundamental Theorem says that for each meromorphic
function f and each complex number a,∣∣∣∣∣T

(
r,

1

f − a

)
− T (r, f)

∣∣∣∣∣
is bounded as r approaches infinity. The Nevanlinna characteristic T

(
r, 1

f−a

)
measures the affinity of f for the value a in that it is the sum of the prox-
imity function m(r, a, f) := m

(
r, 1

f−a

)
, which measures how close f stays

to the value a on the circle |z| = r, and the integrated counting function

N(r, a, f) := N
(
r, 1

f−a

)
, which is a measure of the number of times f = a in

the disk |z| < r.
Nevanlinna’s First Fundamental Theorem says that the affinity of f for

any value is essentially invariant in that the difference between the affinities
for any two values is bounded. Let us consider the content of this theorem for
the function f(z) = ez. A straightforward calculation gives T (r, ez) = r/π.
Since ez is never zero or infinity, N(r, 0, ez) = N(r,∞, ez) = 0. For all other
values of a, N(r, a, ez) → ∞ as r → ∞, so m(r, 0, ez) and m(r,∞, ez) must
be larger than m(r, a, ez) for a 6= 0,∞.

Recall that m(r, a, f) is a measure of how close f(z) = ez stays to the
value a on the circle |z| = r. So Nevanlinna’s First Fundamental Theorem
says that since ez does not take the values 0 and ∞, it must take values near
0 or ∞ on large parts of the circle |z| = r for large r. This is reflected in the
fact that ez → 0 as <(ez) → −∞ and ez →∞ as <(ez) → +∞.

3.2 The Order of a Meromorphic Function

The Nevanlinna characteristic leads to a natural measure of the rate of growth
of a meromorphic function. Specifically, the order of growth of a meromorphic
function f is defined to be

σ(f) = lim sup
r→∞

log T (r, f)

log r
.

If f is entire then this reduces to the usual definition of growth, namely,

σ(f) = lim sup
r→∞

log logM(r, f)

log r
,

5



where
M(r, f) = max

|z|=r
|f(z)| .

In particular

σ(exp(a0 + a1z + · · ·+ anz
n)) = n, (an 6= 0).

Most meromorphic functions have infinite order. The class of finite-order
meromorphic functions possess some remarkable properties. In particular,
such functions possess the following factorization:

Hadamard’s Factorization Theorem
Let f be a meromorphic function such that

lim
r→∞

r−k−1T (r, f) = 0,

where k is a non-negative integer. Let a1, a2, . . ., and b1, b2, . . ., be the zeros
and poles of f respectively (other than at z = 0) repeated according to
multiplicity. Let h be the multiplicity of any zero (or pole for h < 0) at
z = 0. Then there is a polynomial of degree no greater than k such that

f(z) = zheP (z) lim
R→∞

∏
|ai|<RE

(
z
ai
, k
)

∏
|bi|<RE

(
z
bi
, k
) ,

where

E(ζ, k) =

{
(1− ζ) exp

(
ζ + ζ2

2
+ · · · ζk

k

)
, k 6= 0,

1− ζ, k = 0

is the Weierstrass primary factor of order k.

Hadamard’s Factorization Theorem shows that any finite-order meromor-
phic function is defined up to a polynomial by its poles and zeros.

3.3 Finite-Order Solutions of Differential and Differ-
ence Equations

Let

Rp,q(z; y) =
a0(z) + a1(z)y + · · ·+ ap(z)y

p

b0(z) + b1(z)y + · · ·+ bq(z)yq
, (10)
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where the aj and bj are meromorphic and ap, bq are both non-zero. Any
differential equation of the form

dy

dz
= Rp,q(z; y(z)) (11)

with a meromorphic general solution must possess the Painlevé property
and therefore must be a Riccati equation, i.e. p ≤ 2 and q = 0. In fact,
Malmquist [14] showed that any equation of the form (11), where the aj’s and
bj’s are rational, that admits a non-rational meromorphic solution must be
a Riccati equation. Subsequently Wittich [18] showed that all meromorphic
solutions of Riccati equations with rational coefficients aj are of finite order.
Furthermore, the Jacobi and Weierstrass elliptic functions, which satisfy first-
order equations of the form (

dy

dz

)2

= P (y),

where P is a polynomial of degree three or four, are of order two [8].
Moving on to second-order differential equations, we note that of the

Painlevé equations PI –PVI , only PI , PII , and PIV have meromorphic general
solutions. The order of the non-rational solutions of these equations are 5/2,
3, and 4 respectively [5, 8]. These results suggest that meromorphic solutions
to equations of Painlevé type are of finite order.

We consider conditions on the form of certain rational difference equations
that are necessary if the equation is to admit a meromorphic solution of finite
order. Yanagihara [19] considered the first-order difference equation

y(z + 1) = Rp,q(z; y(z)),

where Rp,q is given by (10) in which the aj’s and bj’s are taken to be rational.
He showed that if this equation admits a non-rational meromorphic solution
of finite-order then max(p, q) = 1. That is, the equation is the (linearizable)
difference Riccati equation. In Ablowitz, Halburd, and Herbst [1] the tech-
niques of Yanagihara were used to show that the only second-order difference
equations of the form

y(z + 1) + y(z − 1) = Rp,q(z; y(z)) or y(z + 1)y(z − 1) = Rp,q(z; y(z)),

that admit finite-order non-rational meromorphic solutions, satisfy max(p, q) ≤
2. We remark that this class of difference equations includes

y(z + 1) + y(z − 1) =
(αz + β)y(z) + γ

1− y2(z)
, (12)
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where α, β, and γ are constants. Equation (12) is a known discretization of
the second Painlevé equation which is considered to be integrable (see, e.g.,
[16]).

From the above it follows that any meromorphic solution of the difference
equation

y(z + 1) + y(z − 1) = y(z) +
a

y2(z)
, (13)

where a is a non-zero constant, necessarily has infinite order and so we would
not consider it to be of Painlevé type. Hietarinta and Viallet [7] pointed out
that despite the fact that equation (13) possesses the singularity confinement
property, a property of discrete (i.e. lattice) equations considered to be re-
lated to the Painlevé property [6], numerical calculations suggest that it is
chaotic.

4 Series Methods

The second method that we describe here is related to Painlevé’s α-test (see
Ince [9] for a description of Painlevé’s α-Test). It involves adding a perturba-
tion, whose size is determined by a small parameter ε, to a known integrable
difference equation and expanding the solution as a series in ε. In this test,
the di-gamma function ψ(z) = d log Γ(z)/dz plays a role analogous to that of
the logarithm in Painlevé analysis. That is, the expansions generated from
an equation of Painlevé type should not contain di-gamma functions.

In [1] the equation

y(z + 1) + y(z − 1) =
(2 + εf(z))y(z)

1− y2(z)
(14)

was considered, where f is an analytic function. Substituting the expansion

y(z) = y0(z) + εy1(z) +O(ε2)

into equation (14) and equating the coefficients of different powers of ε to
zero constrains y0 and y1. In particular, y0 satisfies

y0(z + 1) + y0(z − 1) =
2y0(z)

1− y2
0(z)

,
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whose general solution is given in terms of elliptic functions, and y1 satisfies
the linear difference equation

y1(z + 1)− 2
(1 + y2

0(z))

(1− y2
0(z))

2
y1(z) + y1(z − 1) =

y0(z)f(z)

1− y2
0(z)

.

It can be shown [1] that y1 necessarily contains a factor proportional to a
di-gamma function (i.e. ψ(z − π(z))) unless f satisfies

f(z + 1)− 2f(z) + f(z − 1) = 0.

That is, unless f(z) = αz+ β, where α and β are periodic functions. Taking
α and β to be constants, we recover the standard (integrable?) difference
version of PII , equation (12) with γ = 0.

5 Discussion

Two approaches to the extension of the Painlevé property to difference equa-
tions have been considered. In the first, we demand that non-rational mero-
morphic solutions be of finite order in the sense of Nevanlinna. In the second,
we consider series expansions of solutions and demand that they be free of
di-gamma functions.
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d’un point fixè. Acta Math., 12:177–232, 1889.

[12] S. Kowalevski. Sur une propriété d’un système d’équations différent-
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