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Censored Data Models

I Censored and truncated data
Examples:

earnings
hours of work (mroz.dta is a �typical�data set to play with)
top coding of wealth
expenditure on cars (this was James Tobin�s original example which

became know as Tobin�s Probit model or the Tobit model.)

I Typical de�nitions:
Censored data includes the censoring points
Truncated data excludes the censoring points
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I A mixture of discrete and continuous processes. In general we should
model the process of censoring or truncation as a separate discrete
mechanism, i.e. the �selectivity�model.
I To begin with we have a model in which the two processes are
generated from the same underlying continuous latent variable model e.g.
corner solution models in economics.

y �i = x
0
i β+ ui

with

yi =
�
y �i if y �i > 0
0 otherwise

or

yi =
�
y �i if ui > �xi β
0 otherwise

I Sometimes also de�ne Di

Di =
�
1 if y �i > 0
0 otherwise
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The general speci�cation for the censored regression model is

y �i = xi β+ ui
yi = maxf0, y �i g

where y � is the unobservable underlying process (similar to what was used
with discrete choice models) and y is the data observation.

� When u are normally distributed - ujx s N (0, σ2) - the model is the
Tobit model.

� Note that

P(y > 0jx) = P(u > �x 0βjx) = Φ
�
x 0β
σ

�
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� Consider the moments of the truncated normal.

I Assume w v N (0, σ). Then w jw > c where c is an arbitrary constant,
is a truncated normal.
I The density function for the truncated normal is:

f (w jw > c) =
f (w)

1� F (c)

=
σφ
�w

σ

�
1�Φ

� c
σ

�
where f is the density function of w and F is the cumulative density
function of w .

Blundell (University College London) MECT Lecture 2 February-March 2015 5 / 29



I We can now write

E (w jw > c) =
Z ∞

c
wf (w jw > c)dw

= σ
φ
� c

σ

�
1�Φ

� c
σ

�
Applying this result to the regression model yields

E (y jx , y > 0) = x 0β+ E (uju > �x 0β) = x 0β+ σ
φ
�
x 0β
σ

�
Φ
�
x 0β
σ

�
I Note that φ(w)/Φ(w) is the Inverse Mills Ratio, usually written λ(w).
I Also note that, contrary to the discrete choice models, the variance of
the residual plays a central role here: it determines the size of the partial
e¤ects.
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OLS Bias I Truncated Data:

I Suppose one uses only the positive observations to estimate the model
and the unobservables are normally distributed. Then, we have seen that,

E (y jx , y > 0) = x 0β+ σλ

�
x 0β
σ

�
where the last term is E (ujx , u > �x 0β), which is generally non-zero.
I A model of the form:

y = x 0β+ σλ+ v

would have E (v jx , y > 0) = 0.
I This implies the inconsistency of OLS: omitted variable problem. Thus,
the resulting error term will be correlated with x .
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Censored Data:

I Now suppose we use all observations, both positive and zero.
I Under normality of the residual, we obtain,

E (y jx) = Φ
�
x 0β
σ

�
x 0β+ σφ

�
x 0β
σ

�
I Thus, once again the OLS estimates will be biased and inconsistent.
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The Maximum Likelihood Estimator
I Let f(yi , xi ), i = 1, ...,Ng be a random sample of data on the model.
The contribution to the likelihood of a zero observation is determined by,

P(yi = 0jxi ) = 1�Φ
�
x 0i β
σ

�
The contribution to the likelihood of a non-zero observation is determined
by,

f (yi jxi ) =
1
σ

φ

�
yi � x 0i β

σ

�
which is not invariant to σ.
Thus, the overall contribution of observation i to the loglikelihood function
is,

ln li (xi ; β, σ) = 1(yi = 0) ln
�
1�Φ

�
x 0i β
σ

��
+1(yi = 1) ln

�
1
σ

φ

�
yi � x 0i β

σ

��
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and the sample loglikelihood is,

lnLN (β, σ) =
N

∑
i=1

8<: (1�Di ) ln
h
1�Φ

�
x 0i β
σ

�i
+Di

h
ln φ

�
yi�x 0i β

σ

�
� ln σ

i 9=;
where D equals one when y � > 0 and equals zero otherwise.
I Notice that both β and σ are separately identi�ed. Moreover, if D = 1
for all i , the ML and the OLS estimators will be the same.
I FOC

∂ lnL
∂β

=
N

∑
i=1

1
σ2

8<:Di (yi � x 0i β)xi � (1�Di ) σφ
�
x 0i β
σ

�
1�Φ

�
x 0i β
σ

�xi
9=;

∂ lnL
∂σ2

=
N

∑
i=1

8<:(1�Di ) xi βφ
�
x 0i β
σ

�
2σ2

h
1�Φ

�
x 0i β
σ

�i +Di � (yi � x 0i β)22σ4
� 1
2σ2

�9=;
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Or write as:

(1)
∂ lnL

∂β
= �∑

i20

1
σ2

σφi
1�Φi

xi +
1

σ2 ∑
i2+
(yi � x 0i β)xi

(2)
∂ lnL
∂σ2

=
1
2σ2 ∑

i20

xi βφi
1�Φi

+
1
2σ4 ∑

i2+
(yi � x 0i β)2 �

N+
2σ2

note that β0

2σ2
x (1) + (2) !

bσ2 = 1
N+

∑
i2+
(yi � x 0i β)2

that is the positive observations only contribute to the estimation of σ.
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I Also if we de�ne mi � E (y �i jyi ) then we can write (1) as

∂ lnL
∂β

= c
N

∑
i=1
xi (mi � x 0i β)

or
N

∑
i=1
ximi =

N

∑
i=1
xix 0i β

which de�nes an EM algorithm for the Tobit model. Note also that

mi =

(
y � if y �i > 0
x 0i β� σ

φi
1�Φi

otherwise

again replacing y � with its best guess, given y , when it is unobserved.

I Using the Theorems 1 and 2 from Lecture 6, MLE of β and σ2 is
consistent and asymptotically normally distributed.
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I Exercise: Derive the asymptotic covariance matrix from the expected
values of the 2nd partial derivatives of lnL.

I Note is has the general form

�
"
E ∂2 lnL

∂β2
E ∂2 lnL

∂β∂σ2

. E ∂2 lnL
∂σ2

#
=

�
∑N
i=1 aixix

0
i ∑N

i bixi
. ∑N

i=1 ci

�
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LM or Score Test
I Let the log likelihood be written

lnL(θ1, θ2)

where θ1 is the set of parameters that are unrestricted under the null
hypothesis and θ2 are k2 restricted parameters under H0.

H0 : θ2 = 0

H1 : θ2 6= 0

I e.g.
y �i = x

0
1i β1 + x

0
2i β2 + ui with ui � N(0, σ2).

where θ1 = (β
0
1, σ

2)0 and θ2 = β2.
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∂ lnL(θ1, θ2)
∂θ

= ∑
∂ ln li (θ1, θ2)

∂θ
or

S (θ) = ∑ Si (θ)

I Let bθ be the MLE under H0. Then
1p
N
S(bθ) �a N(0,H)

therefore
1
N
S(bθ)0H�1S(bθ) �a χ2(k2)
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In the Tobit model consider the case of H0 : β2 = 0

∂ lnL
∂β2

=
1

σ2 ∑
i
Di (yi � x 0i β)x2i �

1
σ2 ∑

i
(1�Di )

σiφi
1�Φi

x2i

∂ lnL
∂β2

=
1

σ2 ∑
i
e(1)i x2i

where

e(1)i = Di (yi � x 0i β) + (1�Di )(�
σiφi
1�Φi

)

is known as the �rst order �generalised�residual, which reduces to
ui = yi � x 0i β in the general linear model case.
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This kind of Score or LM test can be extended to speci�cation tests for
heteroskedasticity and for non-normality. Notice that is estimation under
the alternative is avoided, at least in terms of the test statistic. If H0 is
rejected then estimation under Ha is unavoidable.
I Consider the normal distribution

f (ui ) =
1

σ
p
2π

exp
�
�1
2
u2i
σ2

�
can be written in terms of log scores

∂ ln f (ui )
∂ui

= � ui
σ2
.

I A popular generalisation (Pearson family of distributions) is
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∂ ln f (ui )
∂ui

=
�ui + c1

σ2i � c1ui + c2u2i
where skedastsic function σ2i = h(γ0 + γ01zi ), zi observable determinants
of heteroskedasticity.

c1 6= 0 ! skewness
c2 6= 0 ! kurtosis
c1 = c2 = 0 ! Normal
γ1 = 0 ! homoskedastic
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I Can write out the loglikelihood with the Pearson family and take
derivatives with respect to the c and γ parameters to �nd the LM or Score
test. e.g.

∂ lnL
∂γ1

= α ∑
i
e(2)i zi

where e(2)i is the second order generalised residual.
I Also

∂ lnL
∂c2

=
1
4σ2 ∑

i
Di (u4i �

Z ∞

�x 0i β
t4fdt)

which is the 4th order generalised residual.
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Semiparametric Estimators:

What if normality is rejected or not a credible prior assumption anyway?

Suppose we just assume symmetry:
We can write the model as

y �i = x 0i β+ ui , or

yi = x 0i β+ u
�
i , where

u�i = max
�
ui ,�x 0i β

	
We can de�ne the new residuals

u��i = min
�
u�i , x

0
i β
	

where the x 0i β re�ects �upper�trimming. Drop observations where x
0
i β 6 0

as no symmetric trimming is possible here.

Blundell (University College London) MECT Lecture 2 February-March 2015 20 / 29



Adapt EM algorithm for least squares by replacing y by

y �i = min
�
yi , 2x 0i β

	
! symmetrically censored least squares: Applying OLS for all
i : xi β > 0 yields consistent and asymptotically normal estimates: the
error term now satis�es E (u��jx) = 0.
Requires a symmetric distribution of the error term, u�, but no
normality or homoskedasticity.

Estimation requires an iterative procedure (EM algorithm)

bβ = �∑ xix 0i
��1 ∑ ximi

with
mi = minfyi , 2x 0i βg

Monte-Carlo results.
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Censored Least Absolute Deviations

Assume: conditional median of ui is zero ! median of yi is

x 0i β.1(x
0
i β > 0)

CLAD minimises the absolute distance of yi from its median

bβCLAD = argmin
β

∑
��yi � x 0i β.1(x 0i β > 0)��

I Powell (1984) shows that bβCLAD is pN� consistent and asymptotically
normal.

I Blundell and Powell (2007) develop this idea further for the case of
endogenous variables in x . So let�s turn to the case of the censored
regression model with endogenous regressors.
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Endogenous Variables

As in the previous lecture we can consider the following (triangular) model

y �1i = x 01i β+ γy2i + u1i (1)

y2i = z 0iπ2 + v2i (2)

where in the censored regression case y1i = y �1i1(y
�
1i > 0). z

0
i = (x

0
1i , x

0
2i ).

The x 02i are the excluded �instruments�from the equation for y1. The �rst
equation is a the �structural�equation of interest and the second equation
is the �reduced form�for y2.
I y2 is endogenous if u1 and v2 are correlated. If y1 was fully observed we
could use IV.
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Using the othogonal decomposition for u1

u1i = ρv2i + ε1i

where E (ε1i jv2i ) = 0.

I where y2 is uncorrelated with u1i conditional on the control function v2.

I As before, under the assumption that u1 and v2 are jointly normally
distributed, u2 and ε are uncorrelated by de�nition and ε also follows a
normal distribution.
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Use this to de�ne the augmented model

y �1i = x 01i β+ γy2i + ρv2i + ε1i

y2i = z 0iπ2 + v2i

2-step Estimator:
I Step 1: Estimate α by OLS and predict v2,

bv2i = y2i � bπ02zi
I Step 2: use bv2i as a �control function�in the model for y �1 above and
estimate by Tobit or other consistent method.
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An Exogeneity test

The null of exogeneity in this model is analogous to

H0 : ρ = 0

A test of this null can be performed using a t-test.

I Blundell-Smith (1986, Econometrica).
I Speci�cally for the censored regression model (Tobit model).
I This test follows for the binary choice (try this as an exercise) and
other related models.
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Semiparametric Estimation of the Censored Regression model with
Endogenous Variables

We write the structural equation of interest as

y1i = max[0, x 0i β0 + u1i ] (3)

where x 0i = (x
0
1i , y2i ).

Now invoke the usual control function conditional independence
assumption

u1 ? x j v2
This distributional restriction is equivalent to a restriction that all of the
conditional quantiles of u1i given xi and zi are functions only of the
control variable v2i .
I Such a quantile restriction is useful for models in which the dependent
variable is monotonically related to the error term as in the censored
model here.

Blundell (University College London) MECT Lecture 2 February-March 2015 27 / 29



Semiparametric Estimation of the Censored Regression model with
Endogenous Variables

Notice, the conditional quantile of the censored dependent variable y1i can
be written:

qi = Qα[yi j xi , zi ] � qi (α)
= Qα[maxf0, x 0i β0 + u1ig j xi , zi ]
= maxf0, x 0i β0 +Qα[u1i j xi , zi ]g
= maxf0, x 0i β0 + λα(v2i )g

where λα(v2i ) � Qα[u1i j v2i ].

I Useful to point out under the exogeneity assumption the control
function is constant for all α. The background to some semiparametric
estimation methods for the censored regression model under exogeneity
(see Powell (1984) and many subsequent papers).
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Semiparametric Estimation of the Censored Regression model with
Endogenous Variables

I Under the assumption of v2i is known this estimator is a semilinear
censored regression model.

I Take the case of two observations with the conditional quantiles of y1
are positive. The di¤erence in the quantile regression functions is the
di¤erence in the regression function plus the di¤erence in the control
functions. By restriction attention to pairs of observations with identical
control variables v2i , di¤erences in the quantiles only involve di¤erences in
the regression function, which then identi�es β0.

I Blundell and Powell (JoE, 2007) develop this idea to form a consistent
semiparametric estimator for the censored regression estimator under
endogeneity.
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