Costas Meghir

- Econometrics The analysis of data using specialised Statistical techniques for
 - Testing Economic Hypotheses
 - Measuring objects of interest such as demand and Supply curves
 - Assessing the effectiveness of Business Strategy such as advertising
 - Evaluating the impact of Public Policy (New Deal, Education Maintenance Allowance)
 - Providing expert advice to court cases on issues such as monopoly power
 - Constructing simulation models for assessing the impact of future public policy – such as the introduction of the Working Families Tax Credit

Example 1

- Measuring the returns to education
 - Public Policy towards education is predicated on the assumption that education has economic value. Education is supposed to promote earnings growth and as a result overall economic growth.
 - A simple cost benefit calculation may compare funds advanced for an extra year of education C to the stream of earnings. This requires measuring the **causal** effect of extra education on earnings.

Causality

- We often observe that two variables are correlated.
 - Examples:
 - Parental Income is correlated with child's education.
 - Pupil performance is correlated with the performance of peers.
 - Advertising is correlated with firm cash flow.
 - Health and Income are correlated.
- However this does not establish causal relationships.

- If a variable Y is causally related to X, then changing X will **LEAD** to a change in **Y**.
 - For example: Increasing VAT may cause a reduction of demand.
 - Correlation my not be due to causal relationship:
 - Part or the whole correlation may be induced by both variables depending on some common factor and does not imply causality.
 - For example: Brighter people have more education AND earn more. The question is how much of the increased in earnings is **caused** by the increased education.

 For example successful companies may carry out a lot of advertising – This does not imply that the advertising caused the success; it may well be that success allows them greater flexibility in advertising. This in turn my cause more success. • The course in its more advanced phase will deal with the issue of causality and ways that we have of establishing and measuring causal relationships

The Regression Model

- The basic tool in Econometrics is the Regression Model
- Its simplest form is the two Variable regression Model

$$Y_i = a + bX_i + u_i$$

Explanation of Terms

There are *N* observations

- The *Dependent variable Y* is the variable we are modeling
- The *Explanatory Variable X* is the variable of interest whose impact on *Y* we wish to measure
- The error term (*u*) reflects *all other factors* determining the dependent variable

- During most of the first term we will assume that *u* and *X* are NOT correlated
- This assumption will allow us to interpret the coefficient *b* as the effect of *X* on *Y*
- Note that $b = \frac{\partial Y_i}{\partial X_i}$
- This coefficient will be interpreted as the ceteris paribus *impact of a change in X on Y*
- Aim: To use data to *estimate the coefficients a* and *b*

Scatter Diagram

- Each point represents an observation on a pair of sales and advertising.
- The Key issue issues are:
 - Estimating the Coefficients of the regression line that fits this data best in the most efficient way possible.
 - Making inferences about the model based on these estimates
 - Using the model

The fitted Line

Intercept 2.9, Estimated Slope (estimated b) = 1.03Estimated elasticity at the means of the data=0.037

- The distance between any point and the fitted line is the estimated residual.
- This summarises the impact of *other factors* on sales.
- As we will see the chosen best line is fitted using the assumption that these other factors are not correlated with advertising.
- Thus the fitted line is constructed using this basic assumption of the approach.

More Advanced models

- In many occasions we will consider more elaborate models where a number of explanatory variables will be included.
- The regression models in this case will take the more general form:

$$Y_{i} = a + b_{1} X_{1i} + b_{2} X_{2i} + \dots + b_{k} X_{ki} + u_{i}$$

- There are *k* explanatory variables and a total of *k*+1 coefficients to estimate (including the intercept)
- Each coefficient represents the *ceteris paribus* effect of changing one variable.

Data Sources

- Time Series Data
 - Data on variables observed over time. Typically Macroeconomic measures such as GDP, Inflation, Prices, Exchange Rates, Interest Rates, etc.
 - Used to study and simulate macroeconomic relationships and to test macro hypotheses
- Financial Data
 - Data on share prices, bonds and other financial instruments at frequencies that range from minute to minute up to annual.
 - Used to study the working of financial markets and asset pricing

- Cross Section Survey Data
 - Data on Individuals, households or firms. Examples are data on expenditures, income, hours of work, household composition, assets, investments, employment etc.
 - Used to study household and firm behaviour when variation over time is not required
- Panel Data
 - Data on individual units followed over time
 - Used to study dynamic aspects of household and firm behaviour and to measure the impact of variables that vary predominantly over time.

An Example : Returns to Education and ability

$$\log wage_i = a + b(years of education_i) + u_i$$

Estimate this on a sample of individuals below median ability and then again for a sample of above median ability

. regress lnw ed if high==0

Inwp	Coef. S	td. Err. t	P> t	[95% (Conf. Interva]	
ed _cons	.0511588 1.89473	.002188 .0058756	23.38 322.47	0.000 0.000	.0468702 1.883213	.0554473 1.906246	
. regress lnw ed if high==1							
lnwp	Coef. S	td. Err. t	P> t	[95% (Conf. Interva]]	
ed _cons	.0766281 1.967045	.0014497 .0049728	52.86 395.56	0.000 0.000	.0737867 1.957298	.0794694 1.976792	

Schooling level | Proportion High Ability by Schooling Level

0.32
0.46
0.40
0.63
0.63
0.87
0.96
