Lecture 2 Costas Meghir

• We return to the classical linear regression model to learn formally how best to *estimate* the unknown parameters. The model is

$$Y_i = a + bX_i + u_i$$

• where *a* and *b* are the coefficients to be estimated

Assumptions of the Classical Linear Regression Model

• Assumption 1: $E(u_i | X) = 0$ The expected value of the error term has mean zero <u>given any value of the</u> <u>explanatory variable</u>. Thus observing a high or a low value of X does not imply a high or a low value of u.

X and u are uncorrelated.

- This implies changes in X are not associated with changes in u in any particular direction Hence the associated changes in *Y* can be attributed to the impact of *X*.
- This assumption allows us to interpret the estimated coefficients as reflecting causal impacts of *X* on *Y*.
- Note that we condition on the *whole* set of data for X in the sample not on just one X_i .

• Assumption 2: HOMOSKEDASTICITY (Ancient Greek for Equal variance)

$$Var(u_i \mid X) \equiv E(u_i - E(u_i \mid X) \mid X)^2 = E(u_i^2 \mid X) = s^2$$

where S^2 is a positive and finite constant that <u>does not</u> <u>depend on X</u>

- This assumption is not of central importance, at least as far as the interpretation of our estimates as causal is concerned.
- The assumption will be important when considering hypothesis testing
- This assumption can easily be relaxed. We keep it initially because it makes derivations simpler

• Assumption 3: The error terms are uncorrelated with each other.

$$\operatorname{cov}(u_i, u_j \mid X) = 0 \quad \forall i, j, \quad i \neq j$$

- When the observations are drawn sequentially over time (time series data) we say that there is *no serial correlation* or *no autocorrelation*.
- When the observations are cross sectional (survey data) we say that we have *no spatial correlation*.
- This assumption will be discussed and relaxed later in the course.

• Assumption 4: The variance of *X* must be non-zero.

$Var(X_{i}) > 0$

- This is a crucial requirement. It states the obvious: To identify an impact of *X* on *Y* it must be that we observe situations with different values of *X*. In the absence of such variability there is no information about the impact of *X* on *Y*.
- Assumption 5: The number of observations *N* is larger than the number of parameters to be estimated.

Fitting a regression model to the Data

- Consider having a sample of *N* observations drawn randomly from a population. The object of the exercise is to *estimate* the unknown coefficients *a* and *b* from this data.
- To fit a model to the data we need a method that satisfies some basic criteria. The method is referred to as an <u>estimator</u>. The numbers produced by the method are referred to as <u>estimates</u>; i.e. we need our estimates to have some desirable properties.
- We will focus on two properties for our estimator:
 - Unbiasedness
 - Efficiency [We will leave this for the next lecture]

Unbiasedness

- We want our estimator to be unbiased.
- To understand the concept first note that there actually exist *true* values of the coefficients which of course we do not know. These reflect the true underlying relationship between *Y* and *X*. We want to use a technique to estimate these true coefficients. Our results will only be *approximations* to reality.
- An unbiased estimator is such that <u>the average of the</u> <u>estimates, across an infinite set of different samples of the</u> <u>same sizeN, is equal to the true value</u>.
- Mathematically this means that

$$E(\hat{a}) = a$$
 and $E(\hat{b}) = b$

where the ^ denotes an estimated quantity.

An I	An Example								
	\hat{h}	â							
Sample 1	1.5841877	1.2185099							
Sample 2	2.5563998	.82502003							
Sample 3	1.3256603	1.3752522							
Sample 4	2.1068873	.92163564							
Sample 5	2.1198698	1.0566855							
Sample 6	1.8185249	1.048275							
Sample 7	1.6573014	.91407965							
Sample 8	2.9571939	.78850225							
Sample 9	2.2935987	.65818798							
Sample 10	2.3455551	1.0852489							
Average across samples	2.0765179	.9891397							
Average across 500 samples	2.0049863	.98993739							
Each sample has 14 observations in all cases (N=14)									
True Model: $Y_i = 1 + 2X_i + u_i$	Thus $a=$	1 and $b=2$							

Ordinary Least Squares (OLS)

- The Main method we will focus on is OLS, also referred to as Least squares.
- This method chooses the line so that sum of squared residuals (squared vertical distances of the data points from the fitted line) are **minimised**
- We will show that this method yields an estimator that has very desirable properties. In particular the estimator is **unbiased** and **efficient** (see next lecture)
- Mathematically this is a very well defined problem:

$$\min_{a,b} \{S = \frac{1}{N} \sum_{i=1}^{N} u_i^2\} = \min_{a,b} \frac{1}{N} \sum_{i=1}^{N} (Y_i - a - bX_i)^2$$

First Order Conditions

$$\frac{\partial S}{\partial a} = -\frac{2}{N} \sum_{i=1}^{N} (Y_i - a - bX_i) = 0$$

$$\frac{\partial S}{\partial b} = -\frac{2}{N} \sum_{i=1}^{N} \left[(Y_i - a - bX_i) X_i \right] = 0$$

This is a set of two simultaneous equations for *a* and *b*. The estimator is obtained by solving for *a* and *b* in terms of means and cross products of the data.

The Estimator

• Solving for *a* we get

$$\hat{a} = \overline{Y} - \hat{b}\hat{X}$$

where the *bar* denotes sample average

• Solving for *b* we get that

$$\hat{b} = \frac{\sum_{i=1}^{N} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{N} (X_{i} - \overline{X})^{2}}$$

- Thus the estimator of the slope coefficient can be seen to be the the ratio of the covariance of *X* and *Y* to the variance of *X*
- We also observe from the first expression that the regression line will always pass through the mean of the data
- Define the *fitted values* as

$$\hat{Y}_i = \hat{a} + \hat{b}X_i$$

- These are also referred to as *predicted values*
- *<u>The residual</u>* is defined as

$$\hat{u}_i = Y_i - \hat{Y}_i$$

Deriving Properties

- First note that within a sample $Y = a + bX + \overline{u}$
- Hence

$$Y_i - \overline{Y} = b(X_i - \overline{X}) + (u_i - \overline{u})$$

• Substitute this in the expression for *b* to obtain

$$\hat{b} = \frac{\sum_{i=1}^{N} \left[b(X_i - \overline{X})^2 + (X_i - \overline{X})(u_i - \overline{u}) \right]}{\sum_{i=1}^{N} (X_i - \overline{X})^2}$$

Properties continued

Hence this leads to

$$\hat{b} = b + \frac{\sum_{i=1}^{N} (X_i - \overline{X})(u_i - \overline{u})}{\sum_{i=1}^{N} (X_i - \overline{X})^2}$$

The second part of this expression is called the sample or estimation error. If the estimator is unbiased then this error will have expected value zero.

Unbiasedness - We will use Assumption 1 only for this proof

$$E(\hat{b} \mid X) = b + E \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X})(u_i - \overline{u})}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \mid X \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X})E\{(u_i - \overline{u}) \mid X\}}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right] = b + \left[\frac{\sum_{i=1}^{N} (X_i - \overline{X}) \times 0}{\sum_{i=1}^{N} (X_i - \overline{X})^2} \right]$$

b

Finally note that since $E(\hat{b} | X) = b$ for any X it must be that $E(\hat{b}) = b$

Goodness of Fit

- We measure how well the model fits the data using the R^{2} .
- This is the ratio of the *explained sum of squares* to the *total sum of squares*

i = 1

- Define the Total sum of Squares as $TSS = \sum_{i=1}^{N} (Y_i \overline{Y})^2$
- Define the explained sum of Squares as

$$ESS = \sum_{i=1}^{N} \left[\hat{b} \left(X_{i} - \overline{X} \right) \right]^{2}$$

• Define the residual sum of Squares as

$$RSS = \sum_{i=1}^{N} \left[Y_{i} - \hat{a} - \hat{b} X_{i} \right]^{2} = \sum_{i=1}^{N} \hat{u}_{i}^{2}$$

• Then we define $R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$

- The R^2 is a measure of how much of the variance of *Y* is explained by the regressor *X*.
- The R^2 computed following an OLS regression is always between 0 and 1.
- A low R^2 is not necessarily an indication that the model is wrong jus that the included X has low explanatory power.
- The key to whether the results are interpretable as causal impacts is whether the explanatory variable is uncorrelated with the error term.

An Example - The price elasticity of Butter Purchases Regression of log butter purchases on log price

. regr lbp lpbr

	Source	SS	df	MS	Number of obs =			51	
	+				F(1, 49	9) = 49	9.61	
	Model	.317655	914	1 .31765	5914	Prob) > F	= 0.	0000
I	Residual	.313752	2725	49 .00640	03117	R-s	quared	=	0.5031
	+					Adj	R-squa	ared =	= 0.4929
	Total .6	5314086	39 5	0 .012628	8173	Roc	ot MSE	=	.08002
lbp Coef. Std. Err. t $P > t $ [95% Conf. Interval]									
	+								
	log price	842	1586	.1195669	-7.04	0.000	-1.082	2437	6018798
	_cons	4.52	2206	.1600375	28.26	0.000	4.200	453	4.843668
•									