
Lecture 2
Costas Meghir

• We return to the classical linear regression 
model to learn formally how best to 
estimate the unknown parameters. The 
model is

• where a and b are the coefficients to be 
estimated
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Assumptions of the Classical Linear Regression 
Model

• Assumption 1: The expected value 
of the error term has mean zero given any value of the 
explanatory variable. Thus observing a high or a low value 
of X does not imply a high or a low value of u. 

X and u are uncorrelated.

• This implies changes in X are not associated with changes 
in u in any particular direction - Hence the associated 
changes in Y can be attributed to the impact of X.

• This assumption allows us to interpret the estimated 
coefficients as reflecting causal impacts of X on Y.

• Note that we condition on the whole set of data for X in the 
sample not on just one .
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• Assumption 2: HOMOSKEDASTICITY (Ancient Greek 
for Equal variance)

where           is a positive and finite constant that does not 
depend on X

• This assumption is not of central importance, at least as far 
as the interpretation of our estimates as causal is 
concerned.

• The assumption will be important when considering 
hypothesis testing

• This assumption can easily be relaxed. We keep it initially 
because it makes derivations simpler 
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• Assumption 3: The error terms are uncorrelated with each 
other.

• When the observations are drawn sequentially over time 
(time series data) we say that there is no serial correlation
or no autocorrelation.

• When the observations are cross sectional (survey data) we 
say that we have no spatial correlation.

• This assumption will be discussed and relaxed later in the 

course. 
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• Assumption 4: The variance of X must be non-zero.

• This is a crucial requirement. It states the obvious: To 
identify an impact of X on Y it must be that we observe 
situations with different values of X. In the absence of such 
variability there is no information about the impact of X on 
Y.

• Assumption 5: The number of observations N is larger 
than the number of parameters to be estimated.

0)( >iXVar



Fitting a regression model to the Data

• Consider having a sample of N observations drawn 
randomly from a population. The object of the exercise is 
to estimate the unknown coefficients a and b from this 
data.

• To fit a model to the data we need a method that satisfies 
some basic criteria. The method is referred to as an 
estimator. The numbers produced by the method are 
referred to as estimates; i.e. we need our estimates to have 
some desirable properties.

• We will focus on two properties for our estimator:
– Unbiasedness
– Efficiency [We will leave this for the next lecture]



Unbiasedness
• We want our estimator to be unbiased. 
• To understand  the concept first note that there actually 

exist true values of the coefficients which of course we do 
not know. These reflect the true underlying relationship 
between Y and X.  We want to use a technique to estimate 
these true coefficients. Our results will only be 
approximations to reality.

• An unbiased estimator is such that the average of the 
estimates, across an infinite set of different samples of the 
same sizeN, is equal to the true value.

• Mathematically this means that 

where the ^ denotes an estimated quantity.
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An Example

Sample 1  1.5841877  1.2185099
Sample 2  2.5563998  .82502003
Sample 3  1.3256603  1.3752522
Sample 4 2.1068873  .92163564
Sample 5 2.1198698  1.0566855
Sample 6 1.8185249   1.048275
Sample 7 1.6573014  .91407965
Sample 8 2.9571939  .78850225
Sample 9 2.2935987  .65818798
Sample 10 2.3455551  1.0852489
Average across samples 2.0765179   .9891397
Average across 500 samples   2.0049863  .98993739
Each sample has 14 observations in all cases (N=14)
True Model:                                Thus a=1 and b=2
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Ordinary Least Squares (OLS)

• The Main method we will focus on is OLS, also referred to 
as Least squares.

• This method chooses the line so that sum of squared 
residuals (squared vertical distances of the data points from 
the fitted line) are minimised

• We will show that this method yields an estimator that has 
very desirable properties. In particular the estimator is 
unbiased and efficient (see next lecture)

• Mathematically this is a very well defined problem:
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First Order Conditions
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This is a set of two simultaneous equations for a and b. The 
estimator is obtained by solving for a and b in terms of means 
and cross products of the data.



The Estimator

• Solving for a we get

where the bar denotes sample average

• Solving for b we get that
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• Thus the estimator of the slope coefficient can be seen to 
be the the ratio of the covariance of X and Y to the variance 
of X

• We also observe from the first expression that the 
regression line will always pass through the mean of the 
data  

• Define the fitted values as

• These are also referred to as predicted values
• The residual is defined as 
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The Fitted Regression Line
A
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â b̂



Deriving Properties

• First note that within a sample

• Hence

• Substitute this in the expression for b to obtain
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Properties continued

Hence this leads to

The second part of this expression is called the 
sample or estimation error. If the estimator is 
unbiased then this error will have expected value 
zero. 
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Unbiasedness - We will use Assumption 1 only for this proof
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Goodness of Fit
• We measure how well the model fits the data using the      .
• This is the ratio of the explained sum of squares to the total 

sum of squares
• Define the Total sum of Squares as
• Define the explained sum of Squares as

• Define the residual sum of Squares as

• Then we define 
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• The           is a measure of how much of the variance of Y is 
explained by the regressor X.

• The computed following an OLS regression is 
always between 0 and 1.

• A low         is not necessarily an indication that the model 
is wrong - jus that the included X has low explanatory 
power.

• The key to whether the results are interpretable as causal 
impacts is whether the explanatory variable is uncorrelated 
with the error term. 
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An Example - The price elasticity of Butter Purchases
Regression of log butter purchases on log price

. regr lbp lpbr

Source |       SS df MS              Number of obs =      51
-------------+------------------------------ F(  1,    49) =   49.61

Model |  .317655914     1  .317655914 Prob > F      =  0.0000
Residual |  .313752725    49  .006403117           R-squared     =  0.5031

-------------+------------------------------ Adj R-squared =  0.4929
Total |  .631408639    50  .012628173             Root MSE      =  .08002

------------------------------------------------------------------------------
lbp | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
log price |  -.8421586   .1195669    -7.04   0.000    -1.082437   -.6018798
_cons       |    4.52206   .1600375    28.26   0.000     4.200453    4.843668

• ------------------------------------------------------------------------------


