
Lecture 4 
Hypothesis Testing

• We may wish to test prior hypotheses about the 
coefficients we estimate.

• We can use the estimates to test whether the data rejects 
our hypothesis.

• An example might be that we wish to test whether an 
elasticity is equal to one.

• We may wish to test the hypothesis that X has no impact 
on the dependent variable Y.

• We may wish to construct a confidence interval for our 
coefficients.



• A hypothesis takes the form of a statement of the true 
value for a coefficient or for an expression involving the 
coefficient. 

• The hypothesis to be tested is called the null hypothesis.

• The hypothesis which it is tested again is called the 
alternative hypothesis.

• Rejecting the null hypothesis does not imply accepting the 
alternative

• We will now consider testing the simple hypothesis that 
the slope coefficient is equal to some fixed value.



Setting up the hypothesis

• Consider the simple regression model:

• We wish to test the hypothesis that b=d where d is some known 
value (for example zero) against the hypothesis that b is not 
equal to zero. We write this as follows

• We write
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• To test the hypothesis we need to know the way that our 
estimator is distributed.

• We start with the simple case where we assume that the 
error term in the regression model is a normal random 
variable with mean zero and variance          . This is written 
as

• Now recall that the OLS estimator can be written as

• Thus the OLS estimator is equal to a constant (b) plus a 
weighted sum of normal random variables

• Weighted sums of normal random variables are also 
normal
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The distribution of the OLS slope coefficient

• It follows from the above that the OLS coefficient is a Normal 
random variable.

• What is the mean and what is the variance of this random 
variable?

• Since OLS is unbiased the mean is b

• We have derived the variance and shown it to be

• Since the OLS estimator is Normally distributed this means that 
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• The difficulty with using this result is that we do not know 
the variance of the OLS estimator because we do not know

• This needs to be estimated

• An unbiased estimator of the variance of the residuals is 
the residual sum of squares divided by the number of 
observations minus the number of estimated parameters. 
This quantity (N-2) in our case is called the degrees of 
freedom. Thus
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• Return now to hypothesis testing. Under the null hypothesis 
b=d. Hence it must be the case that

• We now replace the variance by its estimated value to obtain a 
test statistic:

• This test statistic is no longer Normally distributed, but follows 
the t-distribution with N-2 degrees of freedom.
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Testing the Hypothesis

• Thus we have that under the null hypothesis

• The next step is to choose the size of the test (significance 
level). This is the probability that we reject a correct hypothesis.

• The conventional size is 5%. We say that the size 

• We now find the critical values and
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• We accept the null hypothesis if the test statistic is between the 
critical values corresponding to our chosen size. 

• Otherwise we reject.

• The logic of hypothesis testing is that if the null hypothesis is 
true then the estimate will lie within the critical values

of the time.

• The ability of a test to reject a hypothesis is called the power of 
the test.
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Confidence Interval

• We have argued that 

• This implies that we can construct an interval such that the 
chance that the true b lies within that interval is some fixed 
value chosen by us. Call this value 

• For a 95% confidence interval say this would be 0.95.
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• From statistical tables we can find critical values such that any 
random variable which follows a t-distribution falls between 
these two values with a probability of                 . Denote these 
critical values by                  and 

• For a t random variable with 10 degrees of freedom and a 95% 
confidence these values are (2.228,-2.228).

• Thus

• With some manipulation we then get that

• The term in the brackets is the confidence interval.
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Example 

• Consider the regression of log quantity of butter on the log price 
again

• regr lbp lpbr

Number of obs =      51

------------------------------------------------------------------------------

lbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

log price |  -.8421586   .1195669    -7.04   0.000    -1.082437   -.6018798

_cons       |    4.52206   .1600375    28.26   0.000     4.200453    4.843668

• ------------------------------------------------------------------------------

• The statistic for the hypothesis that the elasticity is equal to one is
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• Critical values for the t distribution with 51-2 = 49 degrees of 
freedom (51 observations, 2 coefficients estimated) and 
significance level of 0.05 is approximately (2,-2)(from stat 
tables)

• Since -1.33 lies within this range we accept the null hypothesis

• The 95% confidence interval is

• Thus the true elasticity lies within this range with 95% 
probability.

• Everything we have done is of course applicable to the constant 
as well. The variance formula is different however.
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• Do we need the assumption of normality of the error term to 
carry out inference (hypothesis testing)?

• Under normality our test is exact. This means that the test 
statistic has exactly a t distribution.

• We can carry out tests based on asymptotic approximations
when we have large enough samples.

• To do this we will use Central limit theorem results that state 
that in large samples weighted averages are distributed as 
normal variables.



A Central limit theorem

• Suppose we have a set of independent random numbers    
all with constant variance and mean      . Then

• Where the symbol             reads “distributed asymptotically”,
i.e. as the sample size N tends to infinity.
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• This extends to weighted sums. Let =0. So we also have that

where                                             

is the probability limit of the sum of squares of the weights. It is a 
limit for sums of random variables. This limit can be estimated 
in practice by the sum itself:

We require the limit to be finite: 
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Applying the CLT to the slope coefficient for 
OLS

• Recall that the OLS estimator can be written as

• This is a weighted sum of random variables as in the previous 
case.
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The Central limit theorem applied to the OLS 
estimator

• We can apply the central limit theorem to the OLS estimator.

• Thus according to the central limit theorem we have that

• Comparing with the previous slide the weights are 
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• The implication is that the statistic we had before has a normal 
distribution in large samples irrespective of how the error term 
is distributed if it has a constant variance Assumption 2 -
homoskedasticity.

• Note how the Ns cancel from the top and bottom. In fact the test 
statistic is identical to the one we used under normality. The 
only difference is that now we will use the critical values of the 
Normal distribution. For a size of 5% these are +1.96 and –
1.96.
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• The expression on the denominator is nothing 
but the standard error of the estimator.

• The test statistic for the special case when we 
are testing that the coefficient is in fact zero 
(no impact on Y) is often called the t-
statistic.

• For a large sample test we can accept the 
hypothesis that a coefficient is zero with a 
5% level of significance if the t-statistic is 
between (-1.96,1.96)



Example
------------------------------------------------------------------------------

lmap |      Coef.       Std. Err.    t   P>|t|       [95% Conf. Interval]
-------------+----------------------------------------------------------------

lpsmr |  -.6856449   .2841636    -2.41 0.020   -1.256693   -.1145967
_cons |   4.183766    .534038     7.83   0.000     3.110577    5.256956

------------------------------------------------------------------------------

• Regression of log margarine purchases on the log price.
• Test that the price effect is zero. Assume large enough sample 

and use the critical values from the Normal distribution.
• T-statistic = -0.69/0.28=-2.41
• 95% Normal critical values are –1.96,1.96
• The hypothesis is rejected
• The 95% confidence interval is (–1.26,-0.115) Quite wide which 

implies that the coefficient is not very precisely estimated.



Summary
• When the error term is normally distributed we can carry out 

exact tests by comparing the test statistic to critical values from 
the t-distribution

• If the assumption of normality is not believed to hold we can 
still carry out inference when our sample is large enough.

• In this case we simply use the normal distribution.


