Lecture 6
The Multiple regression Model

Costas Meghir



The Model and its interpretation

* The Multiple regression model takes the form

Y =0, + b Xj; +0, X, +.. 4B X +u,

 There arek regressors (explanatory Variables) and a
constant

* Hencetherewill be k+ 1 parameters to estimate



Assumption M.1

 Wewill keep the basic least squares assumption - We
will assume that the error_term is mean independent of
all regressors (loosely speaking - all Xs are uncorrelated
with the error term, i.e.

E(U, [ X,y X,y X ) = E(U [ X) =0



Interpretation of the coefficients

e Sincethe error term is mean independent of the Xs (M.1)
varrying the X's does not have an impact on the error term.

e Thusunder Assumption M.1 the coefficients in the
regression model have the following simple interpretation:

_ 1
(=
X
* Thus each coefficient measures the impact of the

corresponding X on Y keeping all other factors (Xs and
u) constant. A ceteris paribus effect.




Example:

Male wages a 33 and the Student Teacher ratio in Secondary School
National Child Development Survey

Data on all people born in the second week of March 1958

.regresslhw_5strat_3 lowabil payrsed mayrsed

Number of obs= 1523
F( 4, 1518) = 32.59
Prob>F = 0.0000

R-squared = 0.0761
Root MSE = .40571

Log Wagerateat 33 (Men) lhw 5| Coef. Std. Err.

_____________ o e
Student Teacher Ratio (sec sch) strat_3 | -.0231986 .005419
Below median ability lowabil | -.1870087 .0216397

Father’s Years of education payrsed| .012372 .0047924
Mother’s Years of education mayrsed| -.0058386 .0050984

_cons|2.476687 .0952986

t

-4.28
-8.64

2.58
-1.15
25.99

P>lt] [95% Cont. Intervd]

0.000 -.0338281 -.012569

0.000 -.2294554 -.1445619
0.010 .0029716 .0217723
0.252 -.0158393 .0041621
0.000 2.289756 2.663618



Least Squares in the Multiple
Regression Model

We maintain the same set of assumptions as in the two
variable regression model.

We modify assumption 1 to assumption M1 to take into
account the existence of many regressors.

The OLS estimator Is chosen to minimise the ressdual sum
of squares exactly as before.

Thus b),b,b,,....b, arechosento minimise

N N
o

S:é u’ =a (Y- by-b X, - b,X, - ...- B X,)°

=1 =1



he Normal Equations

« Differentiating Swith respect to each coefficient in turn we
obtain a set of k+1 equations constituting the first order
conditions for minimising the residual sum of squares S
These equations are called the Normal Equations.




he Normal Equations

1S _ 2 _
2 =28 (Y- b,- bX,-..-bX,)=0
ﬂbo =1

1S _
2 - 2 X (Y -b,-bX, -..-bX,)=0
ﬂb |:1 ‘ ‘

1S

N
—= =22 Xy (Y- by- b X - - B X)) =0



Solving the normal equationsfor b,,b,,b,,...,b, provides the
OLS estimator.

We have dealt with the special case of k=1.
From the first equation corresponding to the constant we get that

b, =Y - bX, - ..- b X,
In the above the bar denotes sample mean and the hat denotes

the solution to the normal equations.

Thisisadirect generalisation of the result for the constant term
that we had in the two variable regression model.

We substitute this expression in the remaining equations and
obtain



N
o —_—

a X ((Y - Y)- b (X, - Xl)- v B (X - X)) =0

=1

é. Xi((Y - Y)- b(X,- X)) - o B(X, - X)) =0



A solution for two regressors

* With two regressors this represents a two equation system with
two unknowns, i.e. by, b,

 We have already solved for the constant term
« Thesolutionfor b, is

é. (xiz - XZ)Xizé (Y| - V)Xli - é (Xi2 - Xz)xilé (Y| - Y_)XZi
b1: i=1 i=1 i=1 i=1
g. (Xiz' Xz)xizg (Xil' Xl)xli - g (Xi2 B X2)Xi1g (Xil' X1)X2i

i=1 =1 =1 i=1




This formula can also be written as

_oov(Y, X Var (X,) - cov( X, X,)cov(Y, X,)
B Var (X Var (X,) - cov( X,X,)?

o,

Similarly we can derive the formulafor the other coefficient (b,

Note that the formulafor b, is now different from the formula
we had in the two variable regression model. This now takes
Into account the presence of the other regressor(s)

The extent to which the two formulae differ depends on the
covariance of X; and X,.

When this covariance is zero we are back to the formulafor the
one variable regression model.

Thisresult is of significance and will be discussed in the context
of ommitted variable bias in alater lecture



Assumption M.4

e The Gauss Markov Theorem isvalid for the multiple regression
model. We need however to modify assumption A.4.

* Define the covariance matrix of the regressors X to be

é var(X;)  cov(X;, X,) ... cov(X;, X,)u
S u
cov(x):gcov(xl’xz) var(Xz) .. cov(Xz,Xk)8
é ' ' ' - ;
&ov(X,, X,)  cov(X,, X,) var(X,) §

 We assume that cov(X) positive definite and hence can be
Inverted.




The Gauss Markov Theorem

e Theorem: Under AssumptionsM.1 A.2 and A3 and M .4 the
Ordinary Least Squares Estimator (OLS) is Best in the class of
Linear Unbiased estimators (BLUE).

o Asbefore this meansthat OL S provides estimates that are |east
sensitive to changes in the data - given the stated assumptions.



The Coefficient of Determination R?

« The R?isdefinedin exactly the same way asin the two
variable regression model and measures the goodness of fit of
the model.

« By goodness of fit we mean the proportion of the variance of the
dependent variable that is explained by the model.



Omitted Variable Bias

Suppose the true regression relationship has the form
Y, =h, +b X;; +b, X, +u
Instead we decide to estimate

Y, =b, +b X, +V,

We will show that in general this omission will lead to a biased
estimate of X;



Suppose we use OL S on the second equation. As we know we
will obtain:

N N
N a (X4 - XV,
b, =b, + 5}

é. (Xli ) X1)2

]
=

The question is: What is the expected value of the |ast
expression on the right hand side. For an unbiased estimator this
will be zero. Here we will show that it is not zero.

First note that according to thetrue model (i.e. the model on
the top of the previous slide) we have that

v, =b, X, +u



* We can substitute this into the expression for the OL S estimator

to obtain
~ 1 a0 __ N __ o)
b, = by + ——ca (Xy - X)Xy + @ (Xy - X)), =
a (Xli _ X1)2 ei=1 i=1 (%]

=1

« Now we can take expectations of this expression.

E(b, [ X) = b, + 1

N éeéN. E[(Xli_ >T1)b2X2i|X]"‘él\l. E[(Xli' Y1)Ui|x]9
é (Xli _ )Tl)z €i=1 i=1 1]
e Thelast expression is zero under the assumption that u is mean

Independent of X [Assumption M.1]



he omitted variable bias expression

Thus we are left with an expression for the OLS. The last term
on the right hand side is now a bias term due to the omission of

aregressor.

E(b, | X)=b, + 1

25 ) — 0
N — szEa E[(Xli ) Xl)XZi |X]+
é. (Xli - X1)2 = o

i=1

This expression can be written more compactly as

cov( Xy, X5)
Var (X,)

E(b | X)=b, +b,



e Thebiaswill be zero in two cases:

— When the coefficient b, is zero. In this case the regressor X,
obviously does not belong to the regression.

— When the covariance between the two regressors X, and X, is zero

e Thusin general omitting regressors which have an impact
on Y (b, non-zero) will biasthe OL S estimator of the
coefficients on the included regressorsunless the omitted
regressorsare uncorrelated with theincluded ones.




