The impact of single sex Schools on Female wages at age 33

. regress Ihw_5 ssex 3 payrsed mayrsed if male==0 & touse_2==1;

Source | SS df MS Number of obs = 1324
------------- o F( 3, 1320)= 27.29
Model | 18.5473889 3 6.18246296 Prob >F = 0.0000
Residual | 299.030192 1320 .226538024 R-squared = 0.0584
------------- oo Adj R-squared = 0.0563
Total | 317.57758 1323 .240043523 Root MSE = .47596
lhw_5 | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ A e
Single Sex School ssex 3| .2480322 .0290271 8.54 0.000 .1910879 .3049765

Father’'s Years of Education payrsed| .002115 .0054614 0.39 0.699 -.008599 .012829
Mother’s Years of Education mayrsed| .0061507 .0057607 1.07 0.286 -.0051505 .0174518
Constant _cons| 1.548435 .0314873 49.18 0.000 1.486664 1.610206



The impact of single sex Schools on Female wages at age 33.

Including an ability indicator

. regress Ihw_5 ssex 3 lowabil payrsed mayrsed if male==0 & touse 2==1;

Source | SS df MS Number of obs = 1324

------------- S — F( 4, 1319) = 37.50

Model | 32.4283351 4 8.10708377 Prob>F = 0.0000

Residual | 285.149245 1319 .216185933 R-squared = 0.1021
------------- i Adj R-squared = 0.0994

Total | 317.57758 1323 .240043523 Root MSE = .46496

lhw_5 | Coef. Std. Err. t P>|t] [95% Conf.

_____________ A e
Single Sex School ssex_3 | .2126029 .0286988 7.41 0.000 .1563027
Low Ability lowabil | -.2159654 .0269518 -8.01 0.000 -.2688385
.0013796 .005336 0.26 0.796 -.0090883

Father’s Years of Education payrsed |
.0053448 .0056284 0.95 0.342 -.0056969

Mother’s Years of Education mayrsed |
Constant _cons | 1.649788 .0332586 49.60 0.000 1.584543

Interval]

.2689032
-.1630922
0118475
0163865
1.715034



The impact of single sex Schools on Female wages at age 33.
Including an ability indicator and School type

Source |
_____________ A
Model | 38.4255269 5 7.68510537

Residual | 279.152054 1318 .211799737
_____________ S

Prob > F

Number of obs =
F( 5, 1318) = 36.28

R-squared
Adj R-squared = 0.1177

1324

= 0.0000
= 0.1210

Total | 317.57758 1323 .240043523 Root MSE = .46022

lhw_5 | Coef Std. Err. t P>t [95% Conf. Interval]
_____________ A o e
Single Sex School ssex_3| .1288113 .0324787 3.97 0.000 .0650957 .192527
Low Ability lowabil | -.1793011 .0275525 -6.51 0.000 -.2333525 -.1252496
Selective School selecsch| .1979693 .0372037 5.32 0.000 .1249843 .2709543
Father’s Years of Education payrsed| .0003462 .0052851 0.07 0.948 -.010022 .0107143

Mother’s Years of Education mayrsed |
Constant

.0050315 .0055714 0.90 0.367
_cons| 1.629437 .0331409 49.17 0.000

-.0058982 .0159612
1.564422 1.694451



Correlations Between the Various Variables

ssex_3 lowabil selecsch

ssex_ 3 1.0000
lowabil | -0.1618 1.0000
selecsch | 0.5007 -0.2927 1.0000



Stepwise Regression

*Consider again the regression of a dependent variable (YY) on two
regressors (X, and X,).

Y, =b, +b X, +b, X, +u

*The OLS estimator of one of the coefficients b, can be written as a
function of sample variances and covariances as

cov(Y, X, )Var (X,) - cov( X, X,)cov(Y, X,)

b =
' Var (X, )Var (X,) - cov(X,X,)?




 Wecandivideall terms by Var(X,). This gives

cov( X, X,)
Var (X,)

cov(Y, X,) - cov(Y, X,)

61 =
Var(X,) - C(\)/\;(r?;(x)z)

cov( X, X,)



cov( X, X,)
Var (X,)

IS the regression coefficient one would obtain if one were to regress
X, on X, i.e. the OLS estimator of by, in

 Now noticethat

X, =a, th,X, +V

We call this an “auxiliary regression”



e So we substitute this notation in the formula for the OLS
estimator of b, to obtain

cov(Y, X,) - b, cov(Y, X,)

b, =
1
Var (Xl) ) b12 COV( X1X 2)
* Notethat if the coefficient b, in the “auxiliary regression” is
zero we are back to the results from the ssimple two variable
regression mode



Letslook at this formula again by going back to the summation
notation. Canceling out the Ns we get that:

N _ _ A~ N _ _
a (Xiy- X)) -Y)-bya (X, - X,)(Y, - Y)
bl — =1 i=1 —

_ ~ & _ _
i1 Xl)z_ blza (Xil' Xl)(Xiz' Xz)

i=1 i=1

Qo
X

éN [(Xil_ >T1)' blZ(XiZ - >T2):|(Yi - Y_)

>

g. [(Xil' X1)' blZ(XiZ ) )?2)]2



To derive this result you need to note the following

o

A B R a (Xiz B XZ)(Xil_ Xl) B
b122a. (Xi2 - X2)2 = b12 o B a (Xi2 B X2)2 =
a (Xiz' X2)2

l312é. (Xiz - >T2)(Xi1 - >?1)

Thisimplies that

A% - X~ Bz~ Xo)| =8 (X X0 - Bl (- X)X - Xo)

i=1



* Now the point of all these derivations can be seen if we note that

Vo =(Xip- X)) - bu(X, - Xy)
Isthe residual from the regression of X; on X, .

e Thisimpliesthat the OLS estimator for b, can be obtained in the
following two steps:

— Regress X; on X, and obtain the residuals from this
regression
— Regress Y on on these residuals

* Thusthe second step regression is
Y, =bv, +u



e Thisprocedure will giveidentical estimates for b, asthe
original formula we derived.

e The usefulness of this stepwise procedure liesin the insights it
can give us rather than in the computational procedure it
suggests.



What can we learn form this?

Our ability to measure the impact of X, on Y depends on
the extent to which X, varies over and above the part of
X, that can be “explained” by X, .

Suppose we include X, in the regression in a case where
X, does not belong in the regression, i.e. in the case
where b, is zero. This approach shows the extent to
which thiswill lead to efficiency loss in the estimation
of b,

~

Efficiency L oss means that the estimation precision of b,
declines as aresult of including X, when X, does not
belong in the regression.




The efficiency loss of including irrelevant
regressors

We now show this result explicitly.
Suppose that b, IS zero.

Then we know by applying the Gauss Markov theorem
that the efficient estimator of isb, is

~ _ cov(X,Y)
b = Var (X,)

Instead, by including X, in the regression we estimate b, as

~ _éN. [(Xn ) Xl) ) 612(Xi2 ) Xz)](r ) ?)
b, = i=1

é:[(xu B Xl)_ 612(Xi2 B >?2)]2



~

The Gauss Markov theorem directly impliesthat b, cannot be
less efficient that b,

However we can show this directly.
We know that the varianceof P1 is

2

~. S
var(h) = NVar (X, )

By applying the same logic to the 2nd step regression we get
that

SZ

NVar (V)

Var (El) =



Since V istheresidual from the regression of X; on X, it must
be the case that the variance of V isno larger than the variance
of X, itself.

Hence  Var(X,)3 Var(V)
Thisimplies  Var(b,) £Var(b)
Thus we can state the following result:

Including an unnecessary regressor, which is correlated with the
others, reduces the efficiency of estimation of the the
coefficients on the other included regressors.




Summary of results

Omitting a regressor which has an impact on the dependent
variable and is correlated with the included regressors leads to
“omitted variable bias’

Including a regressor which has no impact on the dependent
variable and is correlated with the included regressors leads to a
reduction in the efficiency of estimation of the variables
Included in the regression.




