
. regress lhw_5 ssex_3 payrsed mayrsed if male==0 & touse_2==1;

Source |       SS df       MS              Number of obs =    1324
-------------+------------------------------ F(  3,  1320) =   27.29

Model |  18.5473889     3  6.18246296 Prob > F      =  0.0000
Residual |  299.030192  1320  .226538024           R-squared     =  0.0584

-------------+------------------------------ Adj R-squared =  0.0563
Total |   317.57758  1323  .240043523           Root MSE      =  .47596

------------------------------------------------------------------------------
lhw_5 | Coef. Std. Err.  t P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
Single Sex School ssex_3 |    .2480322   .0290271     8.54   0.000     .1910879   .3049765

Father’s Years of Education payrsed |   .002115     .0054614     0.39   0.699    -.008599     .012829
Mother’s Years of Education mayrsed |   .0061507   .0057607     1.07   0.286    -.0051505   .0174518
Constant _cons |  1.548435     .0314873    49.18  0.000   1.486664   1.610206
------------------------------------------------------------------------------

The impact of single sex Schools on Female wages at age 33



.  regress lhw_5 ssex_3 lowabil  payrsed mayrsed if male==0 & touse_2==1;

Source |       SS df       MS              Number of obs =    1324
-------------+------------------------------ F(  4,  1319) =   37.50

Model |  32.4283351     4  8.10708377 Prob > F      =  0.0000
Residual |  285.149245  1319  .216185933           R-squared     =  0.1021

-------------+------------------------------ Adj R-squared =  0.0994
Total |   317.57758  1323  .240043523           Root MSE =  .46496

------------------------------------------------------------------------------
lhw_5 | Coef.  Std. Err.      t P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
Single Sex School ssex_3   |   .2126029 .0286988     7.41   0.000     .1563027    .2689032
Low Ability lowabil   |  -.2159654    .0269518    -8.01   0.000    -.2688385   -.1630922
Father’s Years of Education payrsed   |   .0013796    .005336       0.26   0.796    -.0090883    .0118475
Mother’s Years of Education mayrsed |   .0053448    .0056284     0.95   0.342    -.0056969    .0163865
Constant       _cons | 1.649788     .0332586    49.60  0.000    1.584543    1.715034
------------------------------------------------------------------------------

The impact of single sex Schools on Female wages at age 33.
Including an ability indicator



Source |       SS df       MS              Number of obs =    1324
-------------+------------------------------ F(  5,  1318) =   36.28

Model |  38.4255269     5  7.68510537 Prob > F      =  0.0000
Residual |  279.152054  1318  .211799737           R-squared     =  0.1210

-------------+------------------------------ Adj R-squared =  0.1177
Total |   317.57758  1323  .240043523           Root MSE =  .46022

------------------------------------------------------------------------------
lhw_5 | Coef. Std. Err. t P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
Single Sex School ssex_3 |   .1288113 .0324787     3.97   0.000     .0650957     .192527
Low Ability lowabil |  -.1793011   .0275525    -6.51   0.000    -.2333525   -.1252496
Selective School selecsch |   .1979693   .0372037     5.32   0.000     .1249843    .2709543
Father’s Years of Education payrsed |   .0003462   .0052851     0.07   0.948     -.010022    .0107143
Mother’s Years of Education mayrsed |   .0050315   .0055714     0.90   0.367    -.0058982    .0159612
Constant             _cons |   1.629437   .0331409    49.17   0.000  1.564422    1.694451
------------------------------------------------------------------------------

The impact of single sex Schools on Female wages at age 33. 
Including an ability indicator and School type



Correlations Between the Various Variables

| ssex_3 lowabil selecsch
-------------+---------------------------

ssex_3  |   1.0000
lowabil   |  -0.1618   1.0000
selecsch |   0.5007  -0.2927   1.0000



Stepwise Regression

•Consider again the regression of a dependent variable (Y) on two 
regressors (X1 and X2). 

•The OLS estimator of one of the coefficients b1 can be written as a 
function of sample variances and covariances as
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• We can divide all terms by Var(X2). This gives
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• Now notice that                            

is the regression coefficient one would obtain if one were to regress 
X1 on X2 i.e. the OLS estimator of b12 in 

We call this an “auxiliary regression”
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• So we substitute this notation in the formula for the OLS 
estimator of b1 to obtain 

• Note that if the coefficient       in the “auxiliary regression” is 
zero we are back to the results from the simple two variable 
regression model
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• Lets look at this formula again by going back to the summation 
notation. Canceling out the Ns we get that:
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• To derive this result you need to note the following

• This implies that 
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• Now the point of all these derivations can be seen if we note that

Is the residual from the regression of X1 on X2 .

• This implies that the OLS estimator for b1 can be obtained in the 
following two steps:
– Regress X1 on X2 and obtain the residuals from this 

regression
– Regress Y on  on these residuals

• Thus the second step regression is
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• This procedure will give identical estimates for      as the 
original formula we derived.

• The usefulness of this stepwise procedure lies in the insights it 
can give us rather than in the computational procedure it 
suggests.
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What can we learn form this?

• Our ability to measure the impact of X1 on Y depends on 
the extent to which X1 varies over and above the part of 
X1 that can be “explained” by X2 .

• Suppose we include X2 in the regression in a case where 
X2 does not belong in the regression, i.e. in the case 
where b2 is zero. This approach shows the extent to 
which this will lead to efficiency loss in the estimation 
of b1.

• Efficiency Loss means that the estimation precision of       
declines as a result of including X2 when X2 does not 
belong in the regression.
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The efficiency loss of including irrelevant 
regressors

• We now show this result explicitly.

• Suppose that b2 is zero. 
• Then we know by applying the Gauss Markov theorem 

that the efficient estimator of is b1 is 

• Instead, by including X2 in the regression we estimate b1 as
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• The Gauss Markov theorem directly implies that         cannot be
less efficient that 

• However we can show this directly.
• We know that the variance of            is

• By applying the same logic to the 2nd step regression we get 
that
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• Since       is the residual from the regression of X1 on X2 it must 
be the case that the variance of        is no larger than the variance 
of X1 itself.

• Hence

• This implies

• Thus we can state the following result:

• Including an unnecessary regressor, which is correlated with the
others, reduces the efficiency of estimation of the the 
coefficients on the other included regressors.
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Summary of results

• Omitting a regressor which has an impact on the dependent 
variable and is correlated with the included regressors leads to
“omitted variable bias”

• Including a regressor which has no impact on the dependent 
variable and is correlated with the included regressors leads to a 
reduction in the efficiency of estimation of the variables 
included in the regression.


