#### The impact of single sex Schools on Female wages at age 33

. regress lhw\_5 ssex\_3 payrsed mayrsed if male==0 & touse\_2==1;

| Source   SS df MS                                                        | Number of obs = $1324$<br>F( 3, $1320$ ) = $27.29$ |
|--------------------------------------------------------------------------|----------------------------------------------------|
| Model   18.5473889 3 6.18246296<br>Residual   299.030192 1320 .226538024 | Prob > F = 0.0000<br>R-squared = 0.0584            |
|                                                                          | Adj R-squared = $0.0563$<br>Root MSE = $.47596$    |
|                                                                          |                                                    |

| Coef. Std. Err. t P>|t| [95% Conf. Interval] | Single Sex School | ssex\_3 | .2480322 | .0290271 | 8.54 | 0.000 | .1910879 | .3049765 | Std. Err. t P>|t| | Std. Err.

\_\_\_\_\_

# The impact of single sex Schools on Female wages at age 33. Including an ability indicator

. regress lhw\_5 ssex\_3 lowabil\_payrsed mayrsed if male==0 & touse\_2==1; Source | SS df MS Number of obs = 1324 F(4, 1319) = 37.50Residual | 285.149245 1319 .216185933 R-squared = 0.1021 Adj R-squared = 0.0994 Total | 317.57758 1323 .240043523 Root MSE = .46496 Coef. Std. Err. t P>|t| [95% Conf. Interval] lhw\_5 | **Single Sex School ssex\_3** | **.2126029** .0286988 7.41 0.000 .1563027 .2689032 Low Ability lowabil | -.2159654 .0269518 -8.01 0.000 -.2688385 -.1630922 Father's Years of Education payrsed | .0013796 .005336 0.26 0.796 -.0090883 .0118475 Mother's Years of Education mayrsed | .0053448 .0056284 0.95 0.342 -.0056969 .0163865

.0332586 49.60 0.000 1.584543 1.715034

\_cons | 1.649788

Constant

# The impact of single sex Schools on Female wages at age 33. Including an ability indicator and School type

```
Source | SS df MS Number of obs = 1324
                             F(5, 1318) = 36.28
   Model | 38.4255269 	 5 	 7.68510537 	 Prob > F = 0.0000
 Residual | 279.152054 1318 .211799737 R-squared = 0.1210
-----
                             Adj R-squared = 0.1177
   Total | 317.57758 1323 .240043523 Root MSE
                                              = .46022
                     Coef. Std. Err. t
  lhw_5 |
                                                    P>|t| [95% Conf. Interval]
Single Sex School ssex_3 | .1288113 .0324787
                                               3.97 0.000 .0650957 .192527
         lowabil | -.1793011 .0275525 -6.51 0.000 -.2333525 -.1252496
Low Ability
Selective School selecsch | .1979693 .0372037 5.32 0.000 .1249843 .2709543
Father's Years of Education payrsed | .0003462 .0052851 0.07 0.948 -.010022 .0107143
Mother's Years of Education mayrsed | .0050315 .0055714 0.90 0.367 -.0058982 .0159612
Constant
                       cons | 1.629437 .0331409 49.17 0.000 1.564422 1.694451
```

#### Correlations Between the Various Variables

## Stepwise Regression

•Consider again the regression of a dependent variable (Y) on two regressors ( $X_1$  and  $X_2$ ).

$$Y_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + u_i$$

•The OLS estimator of one of the coefficients  $b_1$  can be written as a function of sample variances and covariances as

$$\hat{b}_{1} = \frac{\text{cov}(Y, X_{1}) Var(X_{2}) - \text{cov}(X_{1}X_{2}) \text{cov}(Y, X_{2})}{Var(X_{1}) Var(X_{2}) - \text{cov}(X_{1}X_{2})^{2}}$$

• We can divide all terms by  $Var(X_2)$ . This gives

$$\hat{b_1} = \frac{\text{cov}(Y, X_1) - \frac{\text{cov}(X_1 X_2)}{Var(X_2)} \text{cov}(Y, X_2)}{Var(X_1) - \frac{\text{cov}(X_1 X_2)}{Var(X_2)} \text{cov}(X_1 X_2)}$$

• Now notice that 
$$\frac{\text{cov}(X_1 X_2)}{Var(X_2)}$$

is the regression coefficient one would obtain if one were to regress  $X_1$  on  $X_2$  i.e. the OLS estimator of  $b_{12}$  in

$$X_{i1} = a_{12} + b_{12}X_{i2} + v_i$$

We call this an "auxiliary regression"

• So we substitute this notation in the formula for the OLS estimator of  $b_1$  to obtain

$$\hat{b}_{1} = \frac{\text{cov}(Y, X_{1}) - \hat{b}_{12} \text{ cov}(Y, X_{2})}{Var(X_{1}) - \hat{b}_{12} \text{ cov}(X_{1}X_{2})}$$

• Note that if the coefficient  $\hat{b}_{12}$  in the "auxiliary regression" is zero we are back to the results from the simple two variable regression model

• Lets look at this formula again by going back to the summation notation. Canceling out the Ns we get that:

$$\hat{b}_{1} = \frac{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})(Y_{i} - \overline{Y}) - \hat{b}_{12} \sum_{i=1}^{N} (X_{i2} - \overline{X}_{2})(Y_{i} - \overline{Y})}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2} - \hat{b}_{12} \sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})(X_{i2} - \overline{X}_{2})} =$$

$$\frac{\sum_{i=1}^{N} \left[ (X_{i1} - \overline{X}_{1}) - \hat{b}_{12} (X_{i2} - \overline{X}_{2}) \right] (Y_{i} - \overline{Y})}{\sum_{i=1}^{N} \left[ (X_{i1} - \overline{X}_{1}) - \hat{b}_{12} (X_{i2} - \overline{X}_{2}) \right]^{2}}$$

To derive this result you need to note the following

$$\hat{b}_{12}^{2} \sum (X_{i2} - \overline{X}_{2})^{2} = \hat{b}_{12} \frac{\sum (X_{i2} - \overline{X}_{2})(X_{i1} - \overline{X}_{1})}{\sum (X_{i2} - \overline{X}_{2})^{2}} \sum (X_{i2} - \overline{X}_{2})^{2} = \frac{\sum (X_{i2} - \overline{X}_{2})(X_{i1} - \overline{X}_{1})}{\sum (X_{i2} - \overline{X}_{2})^{2}}$$

$$\hat{b}_{12} \sum (X_{i2} - \overline{X}_2)(X_{i1} - \overline{X}_1)$$

• This implies that

$$\sum_{i=1}^{N} \left[ (X_{i1} - \overline{X}_1) - \hat{b}_{12} (X_{i2} - \overline{X}_2) \right]^2 = \sum_{i=1}^{N} (X_{i1} - \overline{X}_1)^2 - \hat{b}_{12} \sum_{i=1}^{N} (X_{i1} - \overline{X}_1) (X_{i2} - \overline{X}_2)$$

• Now the point of all these derivations can be seen if we note that

$$\hat{v}_i = (X_{i1} - \overline{X}_1) - \hat{b}_{12}(X_{i2} - \overline{X}_2)$$

Is the residual from the regression of  $X_1$  on  $X_2$ .

- This implies that the OLS estimator for  $b_1$  can be obtained in the following two steps:
  - Regress  $X_1$  on  $X_2$  and obtain the residuals from this regression
  - Regress *Y* on on these residuals
- Thus the second step regression is

$$Y_i = b_1 \hat{v}_i + u_i$$

• This procedure will give identical estimates for  $\hat{b}_1$  as the original formula we derived.

• The usefulness of this stepwise procedure lies in the insights it can give us rather than in the computational procedure it suggests.

### What can we learn form this?

- Our ability to measure the impact of  $X_1$  on Y depends on the extent to which  $X_1$  varies over and above the part of  $X_1$  that can be "explained" by  $X_2$ .
- Suppose we include  $X_2$  in the regression in a case where  $X_2$  does not belong in the regression, i.e. in the case where  $b_2$  is zero. This approach shows the extent to which this will lead to **efficiency loss** in the estimation of  $b_1$ .
- Efficiency Loss means that the estimation precision of  $\hat{b_1}$  declines as a result of including  $X_2$  when  $X_2$  does not belong in the regression.

# The efficiency loss of including irrelevant regressors

- We now show this result explicitly.
- Suppose that  $b_2$  is zero.
- Then we know by applying the Gauss Markov theorem that the efficient estimator of is  $b_1$  is

$$\widetilde{b}_1 = \frac{\operatorname{cov}(X_1 Y)}{\operatorname{Var}(X_1)}$$

• Instead, by including  $X_2$  in the regression we estimate  $b_1$  as

$$\hat{b}_{1} = \frac{\sum_{i=1}^{N} \left[ (X_{i1} - \overline{X}_{1}) - \hat{b}_{12} (X_{i2} - \overline{X}_{2}) \right] (Y_{i} - \overline{Y})}{\sum_{i=1}^{N} \left[ (X_{i1} - \overline{X}_{1}) - \hat{b}_{12} (X_{i2} - \overline{X}_{2}) \right]^{2}}$$

- The Gauss Markov theorem directly implies that  $\tilde{b}_1$  cannot be less efficient that  $\hat{b}_1$
- However we can show this directly.
- We know that the variance of  $b_1$  is

$$Var(\widetilde{b}_1) = \frac{\mathbf{S}^2}{NVar(X_1)}$$

• By applying the same logic to the 2nd step regression we get that

$$Var(\widetilde{b}_1) = \frac{\mathbf{S}^2}{NVar(\widehat{v})}$$

- Since  $\hat{V}$  is the residual from the regression of  $X_1$  on  $X_2$  it must be the case that the variance of  $\hat{V}$  is no larger than the variance of  $X_1$  itself.
- Hence  $Var(X_1) \ge Var(\hat{v})$
- This implies  $Var(\tilde{b}_1) \leq Var(\hat{b}_1)$
- Thus we can state the following result:
- <u>Including an unnecessary regressor, which is correlated with the others, reduces the efficiency of estimation of the the coefficients on the other included regressors.</u>

## Summary of results

• Omitting a regressor <u>which has an impact</u> on the dependent variable and is correlated with the included regressors leads to "<u>omitted variable bias"</u>

• Including a regressor which has no impact on the dependent variable and is correlated with the included regressors leads to a reduction in the efficiency of estimation of the variables included in the regression.