
Heteroskedasticity

• Heteroskedasticity means that the variance of the errors is not 
constant across observations.

• In particular the variance of the errors may be a function of 
explanatory variables.

• Think of food expenditure for example. It may well be that the 
“diversity of taste” for food is greater for wealthier people than 
for poor people. So you may find a greater variance of 
expenditures at high income levels than at low income levels.



• Heteroskedasticity may arise in the context of a “random 
coefficients model.

• Suppose for example that a regressor impacts on individuals in a
different way
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• Assume for simplicity  that and u are independent.
• Assume that  and X are independent of each other.
• Then the error term has the following properties:

• Where          is the variance of
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Scatter Diagram HOMOSKEDASTICITY
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In both scatter diagrams the (average) slope of the underlying 
relationship is the same.
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Implications of Heteroskedasticity

• Assuming all other assumptions are in place, the assumption 
guaranteeing unbiasedness of OLS is not violated. 
Consequently OLS is unbiased in this model

• However the assumptions required to prove that OLS is efficient 
are violated. Hence OLS is not BLUE in this context

• We can devise an efficient estimator by reweighing the data 
appropriately to take into account of heteroskedasticity



• If there is heteroskedasticity in our data and we ignore it then
the standard errors of our estimates will be incorrect

• However, if all the other assumptions hold our estimates will 
still be unbiased.

• Since the standard errors are incorrect inference may be 
misleading



Correcting the Standard errors for 
Heteroskedasticity of unknown kind - The

Eicker-White procedure
• If we suspect heteroskedasticity but we do not know its precise 

form we can still compute our standard errors in such a way that
the are robust to the presence of heteroskedasticity

• This means that they will be correct whether we have 
heteroskedasticity or not.

• The procedure is justified for large samples.



. replace exs = 1 + (10+5*invnorm(uniform()))*rr + 3*invnorm(uniform())

(4785 real changes made)

. regr exs rr, robust

Regression with robust standard errors                 Number of obs =    4785

F(  1,  4783) =  295.96

Prob > F      =  0.0000

R-squared     =  0.0679

Root MSE =  26.933

------------------------------------------------------------------------------

|               Robust

exs | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

rr |   10.06355   .5849706    17.20   0.000     8.916737    11.21036

_cons |   1.262277   3.063608     0.41   0.680    -4.743805    7.268359

------------------------------------------------------------------------------
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. replace exs = 1 + (10+0*invnorm(uniform()))*rr + 3*invnorm(uniform())

(4785 real changes made)

. regr exs rr

Source |       SS df MS              Number of obs =    4785

-------------+------------------------------ F(  1,  4783) =27346.97

Model |  250067.192     1  250067.192 Prob > F      =  0.0000

Residual |   43736.894  4783  9.14423876           R-squared     =  0.8511

-------------+------------------------------ Adj R-squared =  0.8511

Total |  293804.086  4784  61.4138976           Root MSE =  3.0239

------------------------------------------------------------------------------

exs | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

rr |   10.00641   .0605095   165.37   0.000     9.887787    10.12504

_cons |   .8871864   .3266196     2.72   0.007     .2468618    1.527511

------------------------------------------------------------------------------
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• To see how we can do this lets go back to the derivation of the 
variance for the estimator of the slope coefficient in the simple 
two variable regression model (lecture 3)

• We had that
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• The problem arises because                                     is no longer a 
constant (      ).

• The variance of the residual changes from observation to 
observation. Hence in general we can write

• We gave an example in the random coefficients model how this 
can arise. In that case the variance depended on Xi
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The Variance of the slope coefficient 
estimated by OLS when there is 

heteroskedasticity
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The Eicker-White formula

• To estimate this variance we can replace the         for each 
observation by the squared OLS residual for that observation

• Thus we estimate the variance of the slope coefficient by using 
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Summary of steps for estimating the variance 
of the slope coefficients in a way that is robust 

to the presence of Heteroskedasticity
• Estimate regression model by OLS.

• Obtain residuals.

• Use residuals in formula of previous page.

• A similar procedure can be adapted for the multiple regression 
model.



Serial Correlation or Autocorrelation

• We have assumed that the errors across observations are not 
correlated: Assumption 3

• We now consider relaxing this assumption in a specific context: 
With data aver time

• Suppose we have time series data: I.e. we observe (Y,X)
sequentially in regular intervals over time. (GDP, interest rates, 
Money Supply etc.).

• We use t as a subscript to emphaisize that the observationas are 
over time only.



The model
• Consider the regression

• When we have serial correlation the errors are correlated over 
time.

• For example a large negative shock to GDP in one period may 
signal a negative shock in the next period.

• One way to capture this is to use an Autoregressive model for 
the residuals, i.e.

• In this formulation the error this period depends on the error in 
the last period and on an innovation vt.

• vt is assumed to satisfy all the classical assumptions  Assumption 
1 to Assumption 3.
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• We consider the stationary autoregressive case only in which 
the effect of a shock eventually dies out. This will happens if

• To see this substitute out one period back to get

• And so on to get

• Thus a shock that occurs n periods back has an impact of 
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Implications of serial correlation

• Under serial correlation of the stationary type OLS is unbiased 
if the other assumptions are still valid (In particular Assumption 
1) 

• OLS is no longer efficient (Conditions for the Gauss Markov 
theorem are violated).

• If we ignore the presence of serial correlation and we estimate 
the model using OLS, the variance of our estimator will be 
incorrect and inference will not be valid.



Estimating with serial correlation

• Define a lag of a variable to be its past value. Thus Xt-1 denotes 
the value of X one period ago. The period may be a year, or a 
month or whatever is the interval of sampling (day or minute in 
some financial applications)

• Write:

• Subtract the second from the first to get
ttt
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• Now suppose we knew
• Then we could construct the variables

• Then the regression with these transformed variables satisfies 
the Assumptions 1-4.

• Thus, according to the Gauss Markov theorem if we estimate b
with these variables we will get an efficient estimator.

• This procedure is called Generalised Least Squares (GLS).
• However we cannot implement it directly because we do not 

know 
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A two step procedure for estimating the 
regression function when we have 

Autocorrelation
• Step 1: Regress Yt on Yt-1, Xt and Xt-1. The coefficient of Yt-1 

will be an estimate of
• Construct 

• Step 2. Run the Regression using OLS to obtain b: 

• This procedure is called Feasible GLS
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Summary

• When we know           GLS is BLUE

• When            has to be estimated in a first step then feasible 
GLS is efficient in large samples only.

• In fact in small samples feasible GLS will be generally biased. 
However in practice it works well with reasonably sized 
samples.
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EXAMPLE: Estimating the AR coefficient in the error term (rho) and transforming the model to 
take into account of serial correlation.

regr lbp lpbr lpsmr lryae lag* Log Butter Purchases Monthly data

Source |       SS df       MS Number of obs =      50 one observation lost by lagging

------------------------------------------------------------------------------

log butter purchases       lbp | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

Log price of butter lpbr |  -.6269146   .2779184    -2.26   0.029    -1.187777   -.0660527

Log price of margarine lpsmr |  -.2295241   .5718655    -0.40   0.690    -1.383595    .9245473

Log real income lryae |   .8492604   .4972586     1.71   0.095     -.154248    1.852769

One month Lag of the above

laglpbr |   .4854572    .271398     1.79   0.081     -.062246    1.033161

laglpsmr |   .6630088   .5499639     1.21   0.235    -.4468633    1.772881

laglryae |  -.7295632   .5246634    -1.39   0.172    -1.788377    .3292504

Lag of dependent variable:

Estimate of rho         laglbp |   .6138367   .1160545 5.29   0.000     .3796292    .8480441

_cons |   2.815675   .8810168     3.20   0.003     1.037711    4.593639

------------------------------------------------------------------------------



. regr lbprho lpbrrho lpsmrrho lryaerho

Source |       SS df       MS              Number of obs =      50

-------------+------------------------------ F(  3,    46) =    4.72

Model |  .051787788     3  .017262596 Prob > F      =  0.0059

Residual |  .168231703    46  .003657211           R-squared     =  0.2354

-------------+------------------------------ Adj R-squared =  0.1855

Total |  .220019492    49  .004490194           Root MSE      =  .06047

All variables now have been constructed as X(t)-0.61X(t-1)

------------------------------------------------------------------------------

lbprho | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

lpbrrho |   -.724766   .2255923    -3.21   0.002     -1.17886   -.2706722

lpsmrrho |   .4980802    .396111     1.26   0.215    -.2992498     1.29541

lryaerho |   .8608964   .4937037     1.74   0.088    -.1328776     1.85467

_cons |   2.026532   .3107121     6.52   0.000     1.401101    2.651963

------------------------------------------------------------------------------


