Heteroskedasticity

Heteroskedasticity means that the variance of the errorsis not
constant across observations.

In particular the variance of the errors may be a function of
explanatory variables.

Think of food expenditure for example. It may well be that the
“diversity of taste” for food is greater for wealthier people than
for poor people. So you may find a greater variance of
expenditures at high income levels than at low income levels.



Heteroskedasticity may arise in the context of a“random
coefficients model.

Suppose for example that a regressor impacts on individualsin a
different way

Y, =at(b +e)X; +u,

Y.

a+b X, +e X, +u



o Assume for simplicity that@ and u are independent.
 Assumethat@ and X are independent of each other.
* Then the error term has the following properties:

E(e X. +u | X)=E(e X | X)+E(u, | X)=E( | X)X =0

Var(e X, +u | X) =Var(e X. | X) +Var(u | X) = X%s .° +s 2

e Where S’ isthevarianceof €



In both scatter diagrams the (average) slope of the underlying
relationship is the same.
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Implications of Heteroskedasticity

e Assuming all other assumptions are in place, the assumption
guaranteeing unbiasedness of OLSis not violated.
Consequently OL Sis unbiased in this model

* However the assumptions required to prove that OLS is efficient
are violated. Hence OL Sis not BL UE in this context

 We can devise an efficient estimator by reweighing the data
appropriately to take into account of heteroskedasticity



If there is heteroskedasticity in our data and we ignore it then
the standard errors of our estimateswill be incorrect

However, if all the other assumptions hold our estimates will
still be unbiased.

Since the standard errors are incorrect inference may be
misleading




Correcting the Standard errors for
Heteroskedasticity of unknown kind - The
Eicker-White procedure

* |f we suspect heteroskedasticity but we do not know its precise
form we can still compute our standard errors in such a way that
the are robust to the presence of heter oskedasticity

* This means that they will be correct whether we have
heteroskedasticity or not.

 The procedureisjustified for large samples.



. replace exs = 1 + (10+5*invnorm(uniform()))*rr + 3*invnorm(uniform())
(4785 real changes made)

Y. =1+10+v)* X +uU

. regr exs rr, robust

Regression with robust standard errors Number of obs= 4785
F( 1, 4783) = 295.96
Prob>F = 0.0000
R-squared = 0.0679
Root MSE = 26.933

| Robust
exs| Coef. Std.Err. t P>Jt] [95% Conf. Interval]
_____________ oo
rr| 10.06355 .5849706 17.20 0.000 8.916737 11.21036
_cons| 1.262277 3.063608 0.41 0.680 -4.743805 7.268359



. replace exs = 1 + (10+0*invnorm(uniform()))*rr + 3*invnorm(uniform())
(4785 real changes made)

Y =1+10+V)* X +U

regr exsrr

Source | SS o MS Number of obs= 4785
------------- S — F( 1, 4783) =27346.97
Model | 250067.192 1 250067.192 Prob>F = 0.0000
Residual | 43736.894 4783 9.14423876 R-squared = 0.8511
------------- B Adj R-squared = 0.8511
Total | 293804.086 4784 61.4138976 Root MSE = 3.0239

exs| Coef. Std.Err. t P>|t] [95% Conf. Interval]

_____________ A o —————————————
rr| 10.00641 .0605095 165.37 0.000 9.887787 10.12504
_cons| .8871864 .3266196 2.72 0.007 .2468618 1.527511



e To see how we can do thislets go back to the derivation of the
variance for the estimator of the slope coefficient in the ssmple
two variable regression model (lecture 3)

« We had that

E[(b- b)?|X]=

1 &y J — _ B B 0o
” éla a (X, - X)X, - X)E[(y, - U)(y, - u)|x]g::
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The problem arises becatise E[(u; - U)* | X] isnolongera
constant (° ).

The variance of the residual changes from observation to
observation. Hence in general we can write E[(u, - T)° | X] =

We gave an example in the random coefficients model how this
can arise. In that case the variance depended on X;



The Variance of the slope coefficient
estimated by OLS when thereis

heteroskedasticity
E[(b- b)? | X] =
1 & — o
| X - X)ZS iz],i
éd i é%ﬁ( E;z



he Eicker-White formula

2
 To estimate this variance we can replacethe S for each
observation by the sguared OL S residual for that observation

(2 =Y - &- bX

 Thuswe estimate the variance of the slope coefficient by using

-
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var(o) = _[NVar(X)]Z



Summary of steps for estimating the variance
of the slope coefficients in away that Is robust
to the presence of Heteroskedasticity

« Estimate regression model by OLS.

e QObtan residuals.

e Useresidualsin formula of previous page.

e A similar procedure can be adapted for the multiple regression
model.



Seria Correlation or Autocorrelation

We have assumed that the errors across observations are not
correlated: Assumption 3

We now consider relaxing this assumption in a specific context:
With data aver time

Suppose we have time series data: |1.e. we observe (Y,X)
sequentially in regular intervals over time. (GDP, interest rates,
Money Supply etc.).

We uset as a subscript to emphaisize that the observationas are
over time only.




The model
Consider th eSS —
onsider the regression Yt —a+ bxt _|_th

When we have serial correlation the errors are correlated over
time.

For example alarge negative shock to GDP in one period may
signal a negative shock in the next period.

One way to capture thisisto use an Autor egressive model for
theresiduals, i.e.

u. =ru,., +v,

In this formulation the error this period depends on the error in
the last period and on an innovation V.

V,is assumed to satisfy all the classical assumptions Assumption
1 to Assumption 3.




 We consider the stationary autor egressive case only in which
the effect of a shock eventually dies out. Thiswill happens if

-1<r <1

e To seethissubstitute out one period back to get

e Andsoontoget
— .+ K 2 k-
Up =1 Uy VTV 0V TVt TV g

« Thus ashock that occurs n periods back has an impact of | "



Implications of serial correlation

Under serial correlation of the stationary type OLS is unbiased
If the other assumptions are still valid (In particular Assumption
1)

OL Sisno longer efficient (Conditions for the Gauss Markov
theorem are violated).

If we ignore the presence of serial correlation and we estimate
the model using OL S, the variance of our estimator will be
Incorrect and inference will not be valid.



Estimating with serial correlation

 Definealag of avariable to be its past value. Thus Xt-1 denotes
the value of X one period ago. The period may be ayear, or a
month or whatever isthe interval of sampling (day or minute in

some financia applications)

o Write
Y, = a+ bX , + u,

rYy, =ra+ rbxXx  +ru,
o Subtract the second from the first to get
Y, - rY[-lz(a_ ra)+bXt- rbxt-l'l'(ut' rut—l)
Y, - rYt-lz(a_ ra)"'b(xt' rXt-1)+Vt

t



Now suppose we knew '
Then we could construct the variables

Yoo MY and (X - rX,)

Then the regression with these transformed variables satisfies
the Assumptions 1-4.

Thus, according to the Gauss Markov theorem if we estimate b
with these variables we will get an efficient estimator.

This procedure is called Generalised L east Squares (GLS).

However we cannot implement it directly because we do not
know I




A two step procedure for estimating the
regression function when we have
Autocorrelation

Step 1: Regress Yt on Yt-1, Xt and Xt-1. The coefficient of Yt-1
will be an estimate of I

Construct Y - rY_,and (X, - X )

t

Step 2. Run the Regression using OL S to obtain b:
Y- Y, =a +b(X, - X))+,

This procedureis called Feasible GL S




Summary

« Whenweknow ! GLSisBLUE

« When o' hasto beestimated in afirst step thenfeasible
GL Siséefficient inlarge samples only.

e Infact in small samples feasible GLS will be generally biased.

However in practice it works well with reasonably sized
samples.




EXAMPLE: Estimating the AR coefficient in the error term (rho) and transfor ming the model to
takeinto account of serial correlation.

regr [bp Ipbr Ipsmr Iryaelag* L og Butter Purchases Monthly data
Source] SS df MS Number of obs= 50 one observation lost by lagging

log butter purchases lbp| Coef. Std.Err. t P>t [95% Conf. Interval]
_____________ e e e
L og price of butter Ipbr | -.6269146 .2779184 -2.26 0.029 -1.187777 -.0660527
Log price of margarine  Ipsmr | -.2295241 5718655 -0.40 0.690 -1.383595 .9245473
Log real income Iryae| .8492604 .4972586 1.71 0.095 -.154248 1.852769

One month L ag of the above
laglpbr | .4854572 .271398 1.79 0.081 -.062246 1.033161
laglpsmr | .6630088 .5499639 1.21 0.235 -.4468633 1.772881
lagiryae | -.7295632 .5246634 -1.39 0.172 -1.788377 .3292504

L ag of dependent variable:

Estimate of rho laglbp | .6138367 .1160545 5.29 0.000 .3796292 .8480441
_cons| 2.815675 .8810168 3.20 0.003 1.037711 4.593639



. regr Ibprho Ipbrrho Ipsmrrho Iryaerho

Source] SS df MS Number of obs= 50
------------- B G L EEE R F( 3, 46)= 4.72
Model | .051787788 3 .017262596 Prob>F = 0.0059
Residual | .168231703 46 .003657211 R-squared = 0.2354
------------- B e L EE Adj R-squared = 0.1855
Total | .220019492 49 .004490194 Root MSE = .06047

All variables now have been constructed as X(t)-0.61X(t-1)

lbprho| Coef. Std. Err. t P>Jt| [95% Conf. Interval]
_____________ e e e
Ipbrrho | -.724766 .2255923 -3.21 0.002 -1.17886 -.2706722
Ipsmrrho | 4980802 .396111 1.26 0.215 -.2992498 1.29541
Iryaerho | .8608964 .4937037 1.74 0.088 -.1328776 1.85467
_cons| 2.026532 .3107121 6.52 0.000 1.401101 2.651963



