Introduction to Logic: Worksheet 2 Due: 28th November 2008

- 1. Which of the following are sentences of *SL* and which are not? For those that are not explain why they are not. For those that are, specify the main connective and the immediate sentential components.
 - (a) A & B & C
 - (b) $A = ((B \& C) \supset A)$
 - (c) $\mathbf{P} \vee (\mathbf{Q} \supset \mathbf{R})$
 - (d) $\sim [U \supset (A \lor (B \& \sim C)] \equiv T$
 - (e) $(A_1 \supset A_2) \vee (A_3 \supset A_4)$

(5 marks)

- 2. Determine by means of truth-tables whether the following sentences are truth-functionally true, truth-functionally false, or truth-functionally indeterminate.
 - (a) A v B
 - (b) $S \supset (\sim S \supset T)$
 - (c) $(A \& B) \equiv (\sim A \lor \sim B)$
 - (d) $[(A \supset B) \& (B \supset C)] \supset (A \supset C)$

(8 marks)

- 3. In each of the following, explain you answers.
 - (a) Suppose that P and Q are truth-functionally equivalent. From this information alone can we tell whether P = Q is truth-functionally true, truth-functionally false, or truth-functionally indeterminate?
 - (b) Suppose that $\{\sim P\}$ is truth-functionally consistent. From this information alone can we tell whether **P** is truth-functionally true, truth-functionally false, or truth-functionally indeterminate?
 - (c) Suppose that **P** is truth-functionally false. From this information alone can we tell whether any argument which has **P** as a premise is truth-functionally valid?
 - (d) Suppose that **P** is truth-functionally indeterminate. Does it follow that the sentence it symbolises is logically indeterminate?
 - (e) Suppose that the sentences **P** and **Q** symbolise are logically inconsistent. Does it follow that **P** and **Q** are truth-functionally inconsistent?

(10 marks)

- 4. Use truth-tables to determine whether the following sets of sentences are consistent.
 - (a) $\{(A \supset B), (C \& A), (C = \sim B)\}$
 - (b) $\{(H \vee I), \sim G, (G = \sim I)\}$

(4 marks)

- 5. Use truth-tables to determine whether the following arguments are valid.
 - (a) $A \supset B$

(b) $\sim B$

$$\frac{\sim A \equiv B}{A}$$

(4 marks)

(Total 31 marks)