Partial Differentiation: Extra Practice

In the lectures we went through Questions 1, 2 and 3. But I have plenty more questions to try!

Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions:

1. $f(x, y)=\left(x^{2}-1\right)(y+2)$
2. $f(x, y)=e^{x+y+1}$
3. $f(x, y)=e^{-x} \sin (x+y)$.

Solutions

1. First,

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial}{\partial x}\left[\left(x^{2}-1\right)(y+2)\right] \\
& =(y+2) \frac{\partial}{\partial x}\left[\left(x^{2}-1\right)\right] \\
& =(y+2)(2 x) \\
& =2 x(y+2) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left[\left(x^{2}-1\right)(y+2)\right] \\
& =\left(x^{2}-1\right) \frac{\partial}{\partial x}[(y+2)] \\
& =\left(x^{2}-1\right) \cdot 1 \\
& =\left(x^{2}-1\right) .
\end{aligned}
$$

2. We can start by observing that

$$
e^{x+y+1}=e^{x} e^{y} e
$$

So

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial}{\partial x}\left(e e^{x} e^{y}\right) \\
& =e e^{y} \frac{\partial}{\partial x}\left(e^{x}\right) \\
& =e e^{y}\left(e^{x}\right) \\
& =e^{x+y+1}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(e e^{x} e^{y}\right) \\
& =e e^{x} \frac{\partial}{\partial y}\left(e^{y}\right) \\
& =e e^{x}\left(e^{y}\right) \\
& =e^{x+y+1} .
\end{aligned}
$$

3. Using the Product Rule,

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial}{\partial x}\left(e^{-x}\right) \sin (x+y)+e^{-x} \frac{\partial}{\partial x}(\sin (x+y)) \\
& =-e^{-x} \sin (x+y)+e^{-x}(1 \cdot \cos (x+y)) \\
& =e^{-x}(\cos (x+y)-\sin (x+y)) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(e^{-x}\right) \sin (x+y)+e^{-x} \frac{\partial}{\partial y}(\sin (x+y)) \\
& =0+e^{-x}(1 \cdot \cos (x+y)) \\
& =e^{-x} \cos (x+y) .
\end{aligned}
$$

Further practice questions

Here are some more practice questions you can try. These may be useful for exam revision.
Find $\frac{\partial \dot{f}}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions:

1. $f(x, y)=(x y-1)^{2}$
2. $f(x, y)=\frac{1}{x+y}$
3. $f(x, y)=\ln (x+y)$
4. $f(x, y)=\sin ^{2}(x-3 y)$
5. $f(x, y)=x^{y}$.

Also, find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ for the functions

1. $f(x, y, z)=1+x y^{2}-2 z^{2}$
2. $f(x, y, z)=x-\sqrt{y^{2}+z}$
3. $f(x, y, z)=e^{-x y z}$.

Solutions will be typed up soon!

