Solutions to Problem Sheet 2

1. Let $u=\cos 2 x$ and $v=x^{2}-1$. Then by Leibnitz's Rule,

$$
\begin{aligned}
\frac{d^{6}}{d x^{6}}\left[\left(x^{2}-1\right) \cos 2 x\right] & =\frac{d^{6}}{d x^{6}}(\cos 2 x)\left(x^{2}-1\right) \\
& +\binom{6}{1} \frac{d^{5}}{d x^{5}}(\cos 2 x)(2 x) \\
& +\binom{6}{2} \frac{d^{4}}{d x^{4}}(\cos 2 x) 2+0
\end{aligned}
$$

But

$$
\begin{aligned}
\frac{d^{6}}{d x^{6}}(\cos 2 x) & =-2^{6} \cos 2 x \\
\frac{d^{5}}{d x^{5}}(\cos 2 x) & =-2^{5} \sin 2 x \\
\frac{d^{4}}{d x^{4}}(\cos 2 x) & =2^{4} \cos 2 x
\end{aligned}
$$

hence

$$
\begin{aligned}
\frac{d^{6}}{d x^{6}}\left[\left(x^{2}-1\right) \cos 2 x\right] & =1 \cdot\left(-2^{6} \cos 2 x\right)\left(x^{2}-1\right) \\
& +6\left(-2^{5} \sin 2 x\right) \cdot(2 x) \\
& -\frac{6 \cdot 5}{\not 2}\left(2^{4} \cos 2 x\right) \cdot \not 2
\end{aligned}
$$

which eventually reduces to

$$
\begin{aligned}
& =16\left[\left(x^{2}-1\right)(-4 \cos 2 x)-24 x \sin 2 x+30 \cos 2 x\right] \\
& =16\left[\left(34-4 x^{2}\right) \cos 2 x-24 x \sin 2 x\right]
\end{aligned}
$$

2. (a) First, we evaluate

$$
\frac{d y}{d t}=1-\cos t, \quad \frac{d x}{d t}=\sin t .
$$

Then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\sin t}{1-\cos t}
$$

and

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(\frac{d y}{d x}\right) / \frac{d x}{d t},
$$

so

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d t}\left(\frac{\sin t}{1-\cos t}\right) /(1-\cos t) \\
& =\frac{(1-\cos t) \cos t-\sin ^{2} t}{(1-\cos t)^{3}} \\
& =\frac{\cos t-\cos ^{2} t-\sin ^{2} t}{(1-\cos t)^{3}}
\end{aligned}
$$

where the quotient rule has been used to find $\frac{d}{d t}\left(\frac{d y}{d x}\right)$.
But $\sin ^{2} t+\cos ^{2} t \equiv 1$, therefore:

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\cos t-1}{(1-\cos t)^{3}} \\
& =\frac{-((1-\cos t))}{(1-\cos t)^{3}} \\
& =-\frac{1}{(1-\cos t)^{2}}
\end{aligned}
$$

(b) If we take a closer look at our answer for part (a), i.e.

$$
\frac{d^{2} y}{d x^{2}}=-\frac{1}{(1-\cos t)^{2}}
$$

this must always be negative (as the square of something must always be positive). Therefore the curve is concave.
(c) Since we already deduced that $\frac{d^{2} y}{d x^{2}}<0$ regardless of the value of t, we can immediately declare that any stationary point is guaranteed to be a maximum. Now

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\sin t}{1-\cos t}=0
$$

when

$$
\sin t=0, \quad \text { For } t=0, \pi, 2 \pi, \text { ldots }
$$

Note that if you put $t=0$ or $t=2 \pi$ (or any other even multiple of π), you end up with a division by zero for $\frac{d y}{d x}$, so it does not give a stationary point! We have more luck with $t=\pi$; this gives $x=\pi$, $y=2$. So we have a maximum at $(\pi, 2)$.
Remark: If you check $t=3 \pi, 5 \pi, \ldots$, then similarly these are also maxima with $y=2$.
3. Using the Quotient Rule with $u=x+2, v=x^{2}+4 x+5$,
we compute

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(x^{2}+4 x+5\right)(1)-(x+2)(2 x+4)}{\left(x^{2}+4 x+5\right)^{2}} \\
& =\frac{\left(x^{2}+4 x+5\right)-\left(2 x^{2}+8 x+8\right)}{\left(x^{2}+4 x+5\right)^{2}} \\
& =\frac{-x^{2}-4 x-3}{\left(x^{2}+4 x+5\right)^{2}}
\end{aligned}
$$

which equals zero only when

$$
x^{2}+4 x+3=(x+3)(x+1)=0
$$

which occurs for $x=-3,-1$ (where $y=-0.5,0.5$ respectively). Therefore these are the two stationary points for the function, and the easiest way to classify them is by applying the sign test on $\frac{d y}{d x}$, see Table 1 .

x	$x<-3$	$-3<x<-1$	$x>-1$
$\frac{d y}{d x}$	-	+	-
Slope	\backslash	$/$	\backslash

Table 1: The sign test on $\frac{d y}{d x}$ is used here to classify the stationary points.

From this test we deduce that there is a minimum at $x=-3$, while $x=-1$ is a maximum.

Meanwhile, observe that the denominator of the function is $x^{2}+4 x+5=(x+2)^{2}+1$, which has no real roots.

Hence there are no vertical asymptotes. However,

$$
\begin{array}{rrr}
\text { as } & x \rightarrow \infty, & y \rightarrow 0^{+}, \\
\text {as } & x \rightarrow-\infty, & y \rightarrow 0^{-},
\end{array}
$$

therefore there is a horizontal asymptote, and its equation is $y=0$, as seen in Figure 1.

Figure 1: A plot of the curve for Question 3. Observe that the positions of the maximum and minimum have been made clear. If you didn't draw the horizontal asymptote, don't panic! I will not remove any marks, since it clashes with the x-axis.
4. (a) First, we require the y coordinate of the point, which is found by letting $x=1$ in the implicit equation:

$$
y^{2}(2-x)=x^{3} \quad \Rightarrow \quad y^{2}=1
$$

This gives $y=-1,1$. Since we are given that y is positive, we choose $y=1$. Thus the coordinates of the point are $(1,1)$. Next, we need the slope of the tangent to $(1,1)$. To obtain this, start by implicitly differentiating $y^{2}(2-x)=x^{3}$:

$$
2 y(2-x) \frac{d y}{d x}-y^{2}=3 x^{2}
$$

which rearranges to

$$
\frac{d y}{d x}=\frac{3 x^{2}+y^{2}}{2 y(2-x)}
$$

For $x=1, y=1$, this gives

$$
\frac{d y}{d x}=\frac{4}{2}=2
$$

so $m=2$ is the slope of the tangent.
To find the equation of the tangent, let $x_{1}=1$ and $y_{1}=1$ in

$$
y-y_{1}=m\left(x-x_{1}\right),
$$

which gives

$$
y-1=2(x-1) \quad \Rightarrow \quad y=2 x-1
$$

Meanwhile, the slope of the normal is

$$
-\frac{1}{\text { Slope of tangent }}=-\frac{1}{2},
$$

hence the normal satisfies

$$
y-1=-\frac{1}{2}(x-1)
$$

which yields

$$
y=\frac{1}{2}(3-x) .
$$

(b) Start by implicitly differentiating both sides. This gives:

$$
2 x+2 y+2 x \frac{d y}{d x}-6 y \frac{d y}{d x}=0 .
$$

We can substitute $x=1$ and $y=1$ into the above equation straightaway. The result is:

$$
2+2+2 \frac{d y}{d x}-6 \frac{d y}{d x}=0 \quad \Rightarrow \quad 4-4 \frac{d y}{d x}=0
$$

which shows that

$$
\frac{d y}{d x}=1
$$

and thus the slope of the normal is $-\frac{1}{1}=-1$.
Now recall that the normal satisfies the equation

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

where $m=-1, x_{1}=1$ and $y_{1}=1$. So

$$
y-1=-(x-1), \quad \Rightarrow \quad y=2-x
$$

is the equation of the normal.
To find the points where the normal intersects the curve, we need to solve the simultaneous equations

$$
x^{2}+2 x y-3 y^{2}=0, \quad \text { and } \quad y=2-x .
$$

Substituting $y=2-x$ into the other equation gives

$$
\begin{aligned}
x^{2} & +2 x(2-x)-3(2-x)^{2}=0 \\
& \Rightarrow-4 x^{2}+16 x-12=0 \\
& \Rightarrow 4 x^{2}-16 x+12=0 \\
& \Rightarrow x^{2}-4 x+3=0 \\
& \Rightarrow(x-1)(x-3)=0 \\
& \Rightarrow x=1,3 .
\end{aligned}
$$

We already know one point with $x=1$, i.e. $(1,1)$, but we want the other point! Therefore we should choose $x=3$. Putting $x=3$ into the equation for the normal gives

$$
y=2-3=-1
$$

Hence the other point where the normal intersects the curve is $(3,-1)$.
5. (a) If we differentiate once, the Chain Rule tells us that

$$
\begin{equation*}
\frac{d s}{d t}=-2 \pi b A \sin (2 \pi b t) \tag{1}
\end{equation*}
$$

which is the velocity. If we then differentiate a second time, we have the following:

$$
\begin{equation*}
\frac{d^{2} s}{d t^{2}}=-(2 \pi b)^{2} A \cos (2 \pi b t) \tag{2}
\end{equation*}
$$

This is the acceleration of the piston. Finally, we will differentiate once more to get the third derivative. . .

$$
\begin{equation*}
\frac{d^{3} s}{d t^{3}}=(2 \pi b)^{3} A \sin (2 \pi b t) \tag{3}
\end{equation*}
$$

... and this is the jerk of the piston.
(b) Looking at the equations, we see that the velocity, acceleration and jerk have factors of b, b^{2} and b^{3} respectively. So when the frequency b is doubled...

- The velocity doubles.
- The acceleration is multiplied by a factor of $2^{2}=4$.
- The jerk is multiplied by a factor of $2^{2}=8$ (which is massive!)

