MATHG6501 - Autumn 2015

Solutions to Problem Sheet 2

1. Let u = cos2x and v = 22

6
w[(:{;2 — 1)cos 2x]
But
CZ;(COS 2x)
j;(cos 2x)
Ci(cos 2x)
hence
CZ;[(J:Q — 1)cos 2z]

— 1. Then by Leibnitz’s Rule,

i
- (i

(cos 2z)(z? — 1)

(cos2x)(2x)

(cos2x)2 + 0.

—20¢os 2x,
—25in 2z,

24cos 2x,

1-(—2%o0s2x)(x* — 1)

which eventually reduces to

= 16[(x? — 1) (—4cos 2x) — 24z sin 2z + 30 cos 2]
= 16[(34 — 42?)cos 2z — 24 sin 2x].
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2. (a) First, we evaluate

d d
d—?:l—cost, d—gtc:sint.
Then
dy % _ sint
dr 4z 1 _ cost’
dx & 1—cost
and
Ry _d(dy\_d (dy) de
de?  dx \dx) dt \dz )’ dt’
SO
d?y d sint
— == — 1—cost
dxz?  dt (1 —cost) /{1~ cost)
_ (1 —cost)cost —sin?¢
(1 —cost)?
cost — cos®t — sin’ ¢
(1 — cost)? ’

where the quotient rule has been used to find % <le3/> .
x

But sin?¢ + cos?t = 1, therefore:

d%y cost — 1

dz? ~ (1 —cost)3

_ —((1 = cost))
(1 —cost)?
1

(1 —cost)?
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(b)

If we take a closer look at our answer for part (a),
ie.
d?y 1

dz2 (1 —cost)?’
this must always be negative (as the square of some-
thing must always be positive). Therefore the curve

is concave.

d%y
dz?
the value of ¢, we can immediately declare that any
stationary point is guaranteed to be a mazimum.

Now

Since we already deduced that < 0 regardless of

dy

dy it sint
— = T — 7_ =
dx d—f 1 —cost

when
sint =0, Fort=0,n,2n,ldots.

Note that if you put t = 0 or ¢ = 27 (or any other
even multiple of 7), you end up with a division by
zero for %, so it does not give a stationary point!
We have more luck with ¢ = 7; this gives x = m,
y = 2. So we have a maximum at (7, 2).

Remark: If you check ¢t = 37, 5, ..., then similarly
these are also maxima with y = 2.

3. Using the Quotient Rule with v = 2+ 2, v = 2% + 4z + 5,
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we compute

dy (22 + 4z +5)(1) — (z +2)(2z + 4)

dzx (22 4 4z + 5)2

(22 + 42 +5) — (222 + 82 + 8)
(22 + 4x + 5)2

—z2 -4z —3

(22 +4x +5)2’

which equals zero only when
2 +4r+3=(x+3)(z+1) =0,

which occurs for z = —3, —1 (where y = —0.5, 0.5 respec-
tively). Therefore these are the two stationary points for
the function, and the easiest way to classify them is by
applying the sign test on %’ see Table 1.

T r< -3 | 33<r<—-1|x>-1

d,
2 - + -
Slope |\ / \

Table 1: The sign test on Z—Z 1s used here to classify the sta-
tionary points.

From this test we deduce that there is a minimum at
xr = —3, while £ = —1 is a maximum.

Meanwhile, observe that the denominator of the function
is 22 + 42 + 5 = (z + 2)? + 1, which has no real roots.
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Hence there are no vertical asymptotes. However,

as T — 00, y— 0T,
as T — —00, y— 07,

therefore there is a horizontal asymptote, and its equation
is y = 0, as seen in Figure 1.

(-1..5)
0.4

0.2

(s}
-y
=

-02r

(-3.-.5)

Figure 1: A plot of the curve for Question 3. Observe that the
positions of the mazimum and minimum have been made clear.
If you didn’t draw the horizontal asymptote, don’t panic! I will
not remove any marks, since it clashes with the r—axis.

4. (a) First, we require the y coordinate of the point, which
is found by letting z = 1 in the implicit equation:

v (2 —2) =23 = v =1
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This gives y = —1,1. Since we are given that y is
positive, we choose y = 1. Thus the coordinates of
the point are (1,1). Next, we need the slope of the
tangent to (1,1). To obtain this, start by implicitly

differentiating 32%(2 — z) = x3:

dy
2y(2 — @) —y* =327,

which rearranges to

dy 322 + y?
dr — 2y(2—=x)
For x =1, y = 1, this gives
dy 4
_— = = = 2
de 2 ’

so m = 2 is the slope of the tangent.
To find the equation of the tangent, let 1 = 1 and
y1 =11in

y— 1 =m(z —z1),

which gives
y—1=2(zx-1) = y=2zr-1
Meanwhile, the slope of the normal is

1 1
~ Slope of tangent 2’

hence the normal satisfies
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which yields

Y= %(3—@.

Start by implicitly differentiating both sides. This
gives:

d d
2x+2y+2x—y—6y—y = 0.
dx dx

We can substitute x = 1 and y = 1 into the above
equation straightaway. The result is:

dy dy dy
2-1—2-&-2% 6@—0 = 4 4@—0,

which shows that

dy
e A
dx ’

1
and thus the slope of the normal is -1= —1.

Now recall that the normal satisfies the equation
y— 1y =m(z—z1),
where m = —1, x1 =1 and y; = 1. So
y—1l=—(x-1), = y=2-=x

is the equation of the normal.

To find the points where the normal intersects the
curve, we need to solve the simultaneous equations

22 +2zy—3y* =0, and y=2-—=z.
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Substituting y = 2 — « into the other equation gives

22 +22(2—12) -3(2-2)>=0

= —4r? + 160 —12=0
=42? — 162 +12 =0
=1> —4r+3=0
=z-1)(z-3)=0
=zr=1,3.
We already know one point with =1, i.e. (1,1),
but we want the other point! Therefore we should

choose © = 3. Putting x = 3 into the equation for
the normal gives

y=2-3=-1.

Hence the other point where the normal intersects
the curve is (3, —1).

If we differentiate once, the Chain Rule tells us that

d
25,:._2wasnm2wbo, (1)

which is the velocity. If we then differentiate a
second time, we have the following:

d’s

dt?

This is the acceleration of the piston. Finally, we will

differentiate once more to get the third derivative. ..
d3s

i (27rb)3A sin(27bt), (3)

— —(27b)2 A cos(2nbt), (2)
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...and this is the jerk of the piston.

(b) Looking at the equations, we see that the velocity,
acceleration and jerk have factors of b, b and b3
respectively. So when the frequency b is doubled. . .

e The velocity doubles.

e The acceleration is multiplied by a factor of
22 =4,

e The jerk is multiplied by a factor of 22 =
(which is massive!)



