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Solutions to Problem Sheet 2

1. Let u = cos 2x and v = x2 − 1. Then by Leibnitz’s Rule,

d 6

dx 6
[(x2 − 1)cos 2x] =

d 6

dx 6
(cos 2x)(x2 − 1)

+

(
6

1

)
d 5

dx 5
(cos 2x)(2x)

+

(
6

2

)
d 4

dx 4
(cos 2x)2 + 0.

But

d6

dx6
(cos 2x) = −26cos 2x,

d5

dx5
(cos 2x) = −25sin 2x,

d4

dx4
(cos 2x) = 24cos 2x,

hence

d 6

dx 6
[(x2 − 1)cos 2x] = 1 · (−26cos 2x)(x2 − 1)

+ 6(−25sin 2x) · (2x)

− 6 · 5
�2

(24cos 2x) · �2

which eventually reduces to

= 16[(x2 − 1) (−4cos 2x)− 24x sin 2x+ 30 cos 2x]

= 16[(34− 4x2)cos 2x− 24x sin 2x].
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2. (a) First, we evaluate

dy

dt
= 1− cos t,

dx

dt
= sin t.

Then
dy

dx
=

dy
dt
dx
dt

=
sin t

1− cos t
,

and
d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

(
dy

dx

)
/
dx

dt
,

so

d2y

dx2
=

d

dt

(
sin t

1− cos t

)
/(1− cos t)

=
(1− cos t)cos t− sin2 t

(1− cos t)3

=
cos t− cos2 t− sin2 t

(1− cos t)3
,

where the quotient rule has been used to find
d

dt

(
dy

dx

)
.

But sin2 t+ cos2 t ≡ 1, therefore:

d2y

dx2
=

cos t− 1

(1− cos t)3

=
−((1− cos t))

(1− cos t)3

= − 1

(1− cos t)2
.
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(b) If we take a closer look at our answer for part (a),
i.e.

d2y

dx2
= − 1

(1− cos t)2
,

this must always be negative (as the square of some-
thing must always be positive). Therefore the curve
is concave.

(c) Since we already deduced that
d2y

dx2
< 0 regardless of

the value of t, we can immediately declare that any
stationary point is guaranteed to be a maximum.
Now

dy

dx
=

dy
dt
dx
dt

=
sin t

1− cos t
= 0

when

sin t = 0, For t = 0, π, 2π, ldots.

Note that if you put t = 0 or t = 2π (or any other
even multiple of π), you end up with a division by
zero for dy

dx , so it does not give a stationary point!
We have more luck with t = π; this gives x = π,
y = 2. So we have a maximum at (π, 2).
Remark: If you check t = 3π, 5π, . . ., then similarly
these are also maxima with y = 2.

3. Using the Quotient Rule with u = x+ 2, v = x2 + 4x+ 5,
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we compute

dy

dx
=

(x2 + 4x+ 5)(1)− (x+ 2)(2x+ 4)

(x2 + 4x+ 5)2

=
(x2 + 4x+ 5)− (2x2 + 8x+ 8)

(x2 + 4x+ 5)2

=
−x2 − 4x− 3

(x2 + 4x+ 5)2
,

which equals zero only when

x2 + 4x+ 3 = (x+ 3)(x+ 1) = 0,

which occurs for x = −3,−1 (where y = −0.5, 0.5 respec-
tively). Therefore these are the two stationary points for
the function, and the easiest way to classify them is by
applying the sign test on dy

dx , see Table 1.

x x < −3 −3 < x < −1 x > −1
dy
dx − + −

Slope \ / \

Table 1: The sign test on dy
dx is used here to classify the sta-

tionary points.

From this test we deduce that there is a minimum at
x = −3, while x = −1 is a maximum.

Meanwhile, observe that the denominator of the function
is x2 + 4x + 5 = (x + 2)2 + 1, which has no real roots.
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Hence there are no vertical asymptotes. However,

as x→∞, y → 0+,

as x→ −∞, y → 0−,

therefore there is a horizontal asymptote, and its equation
is y = 0, as seen in Figure 1.

Figure 1: A plot of the curve for Question 3. Observe that the
positions of the maximum and minimum have been made clear.
If you didn’t draw the horizontal asymptote, don’t panic! I will
not remove any marks, since it clashes with the x−axis.

4. (a) First, we require the y coordinate of the point, which
is found by letting x = 1 in the implicit equation:

y2(2− x) = x3 ⇒ y2 = 1.
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This gives y = −1, 1. Since we are given that y is
positive, we choose y = 1. Thus the coordinates of
the point are (1, 1). Next, we need the slope of the
tangent to (1, 1). To obtain this, start by implicitly
differentiating y2(2− x) = x3:

2y(2− x)
dy

dx
− y2 = 3x2,

which rearranges to

dy

dx
=

3x2 + y2

2y(2− x)
.

For x = 1, y = 1, this gives

dy

dx
=

4

2
= 2,

so m = 2 is the slope of the tangent.

To find the equation of the tangent, let x1 = 1 and
y1 = 1 in

y − y1 = m(x− x1),

which gives

y − 1 = 2(x− 1) ⇒ y = 2x− 1.

Meanwhile, the slope of the normal is

− 1

Slope of tangent
= −1

2
,

hence the normal satisfies

y − 1 = −1

2
(x− 1),



MATH6501 - Autumn 2015

which yields

y =
1

2
(3− x).

(b) Start by implicitly differentiating both sides. This
gives:

2x+ 2y + 2x
dy

dx
− 6y

dy

dx
= 0.

We can substitute x = 1 and y = 1 into the above
equation straightaway. The result is:

2 + 2 + 2
dy

dx
− 6

dy

dx
= 0 ⇒ 4− 4

dy

dx
= 0,

which shows that

dy

dx
= 1,

and thus the slope of the normal is −1

1
= −1.

Now recall that the normal satisfies the equation

y − y1 = m(x− x1),

where m = −1, x1 = 1 and y1 = 1. So

y − 1 = −(x− 1), ⇒ y = 2− x

is the equation of the normal.

To find the points where the normal intersects the
curve, we need to solve the simultaneous equations

x2 + 2xy − 3y2 = 0, and y = 2− x.
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Substituting y = 2− x into the other equation gives

x2 + 2x(2− x)− 3(2− x)2 = 0

⇒− 4x2 + 16x− 12 = 0

⇒4x2 − 16x+ 12 = 0

⇒x2 − 4x+ 3 = 0

⇒(x− 1)(x− 3) = 0

⇒x = 1, 3.

We already know one point with x = 1, i.e. (1, 1),
but we want the other point! Therefore we should
choose x = 3. Putting x = 3 into the equation for
the normal gives

y = 2− 3 = −1.

Hence the other point where the normal intersects
the curve is (3,−1).

5. (a) If we differentiate once, the Chain Rule tells us that

ds

dt
= −2πbA sin(2πbt), (1)

which is the velocity. If we then differentiate a
second time, we have the following:

d2s

dt2
= −(2πb)2A cos(2πbt), (2)

This is the acceleration of the piston. Finally, we will
differentiate once more to get the third derivative. . .

d3s

dt3
= (2πb)3A sin(2πbt), (3)
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. . . and this is the jerk of the piston.

(b) Looking at the equations, we see that the velocity,
acceleration and jerk have factors of b, b2 and b3

respectively. So when the frequency b is doubled. . .

� The velocity doubles.

� The acceleration is multiplied by a factor of
22 = 4.

� The jerk is multiplied by a factor of 22 = 8
(which is massive!)


