The NeuroML ecosystem for standardised multi-scale modelling in neuroscience

Ankur Sinha Silver Lab Department of Neuroscience, Physiology, & Pharmacology University College London

2024-05-10

An understanding of the brain

- ~86B neurons
- ~100T synapses
- also ~85B glia

¹Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience **3**, 31 (2009)

¹von Bartheld, C. S. et al. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. Journal of Comparative Neurology 524, 3865–3895. ISSN: 1096-9861 (June 2016)

An understanding of the brain

- specialised circuits
- different neuronal types
- synaptic connections
- complex sub-cellular processes

¹Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience **3**, 31 (2009)

¹von Bartheld, C. S. et al. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. Journal of Comparative Neurology 524, 3865–3895. ISSN: 1096-9861 (June 2016)

Models are fully observable, controllable.

Models are fully observable, controllable.

Models are fully observable, controllable.

- Combine individual experimental results into unified theories
- Explore generalisability of experimental results over wider range of conditions
- Generate new experimentally testable, physically plausible hypotheses: dictate experiment design

Models: different scales

Models: different scales

¹ Murray, J. M. Local online learning in recurrent networks with random feedback. eLife 8 (eds Latham, P. et al.) e43299. ISSN: 2050-084X (2019)

¹Schirner, M. et al. Learning how network structure shapes decision-making for bio-inspired computing. Nature Communications 14. ISSN: 2041-1723 (May 2023)

¹Yao, H. K. *et al.* Reduced inhibition in depression impairs stimulus processing in human cortical microcircuits. *Cell Reports* 38. ISSN: 2211-1247. https://doi.org/10.1016/j.celrep.2021.110232 (Jan. 2022)

¹ Mäki-Marttunen, T. et al. A unified computational model for cortical post-synaptic plasticity. eLife 9 (eds Shouval, H. Z. et al.) e55714. ISSN: 2050-084X. https://doi.org/10.7554/eLife.55714 (July 2020)

Models: different scales

¹ Murray, J. M. Local online learning in recurrent networks with random feedback. eLife 8 (eds Latham, P. et al.) e43299. ISSN: 2050-084X (2019)

¹ Schirner, M. et al. Learning how network structure shapes decision-making for bio-inspired computing. Nature Communications 14. ISSN: 2041-1723 (May 2023)

¹Yao, H. K. *et al.* Reduced inhibition in depression impairs stimulus processing in human cortical microcircuits. *Cell Reports* 38. ISSN: 2211-1247. https://doi.org/10.1016/j.celrep.2021.110232 (Jan. 2022)

¹ Mäki-Marttunen, T. et al. A unified computational model for cortical post-synaptic plasticity. eLife 9 (eds Shouval, H. Z. et al.) e55714. ISSN: 2050-084X. https://doi.org/10.7554/eLife.55714 (July 2020) A *mechanistic* understanding of the brain requires biophysically detailed modelling

The model life cycle

- many specialist tools:
 - NEURON, NEST, Brian, GENESIS, MOOSE, STEPS, ANNarchy, TVB, LFPy, NeuroLib, EDEN, Arbor, NetPyNE...

- many specialist tools:
 - NEURON, NEST, Brian, GENESIS, MOOSE, STEPS, ANNarchy, TVB, LFPy, NeuroLib, EDEN, Arbor, NetPyNE...
- but:
 - different APIs, syntax:
 - · increased difficulty for users

- many specialist tools:
 - NEURON, NEST, Brian, GENESIS, MOOSE, STEPS, ANNarchy, TVB, LFPy, NeuroLib, EDEN, Arbor, NetPyNE...
- but:
 - different APIs, syntax:
 - · increased difficulty for users
 - not well defined model descriptions:
 - models cannot be easily validated

- many specialist tools:
 - NEURON, NEST, Brian, GENESIS, MOOSE, STEPS, ANNarchy, TVB, LFPy, NeuroLib, EDEN, Arbor, NetPyNE...
- but:
 - different APIs, syntax:
 - · increased difficulty for users
 - not well defined model descriptions:
 - models cannot be easily validated
 - custom machine readable internal representations:
 - · models cannot be easily inspected/analysed

- many specialist tools:
 - NEURON, NEST, Brian, GENESIS, MOOSE, STEPS, ANNarchy, TVB, LFPy, NeuroLib, EDEN, Arbor, NetPyNE...
- but:
 - different APIs, syntax:
 - · increased difficulty for users
 - not well defined model descriptions:
 - models cannot be easily validated
 - custom machine readable internal representations:
 - · models cannot be easily inspected/analysed
 - ad-hoc utilities:
 - · cannot be used with all tools

Makes computational neuroscience models less FAIR (Findable, Accessible, Interoperable, Reusable)

¹Abrams, M. B. et al. A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility. Neuroinformatics 20, 25–36. ISSN: 1559-0089. https://doi.org/10.1007/s12021-020-09509-0 (2022): https://incf.org

¹ COmputational Modeling in Blology NEtwork (COMBINE): https://co.mbine.org/

Standards enable FAIR neuroscience

¹Abrams, M. B. et al. A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility. Neuroinformatics 20, 25–36. ISSN: 1559-0089. https://doi.org/10.1007/s12021-020-09509-0 (2022): https://incf.org

¹ COmputational Modeling in Blology NEtwork (COMBINE): https://co.mbine.org/

NeuroML ecosystem supports all stages of the model cycle

- standard/specification
- software ecosystem

NeuroML standard

Model specification (schema: XSD)

- elements
- attributes
- hierarchical relationships

NeuroML standard

Model specification (schema: XSD)

- elements
- attributes
- hierarchical relationships

Dynamics (LEMS component type definitions)

• dynamical behaviour

NeuroML is declarative, modular, structured, hierarchical

NeuroML provides users with a set of curated model elements

¹ Full standard is at: https://docs.neuroml.org/Userdocs/Specification.html

NeuroML software ecosystem

¹ 3D interactive visualisation of Sadeh et al. [9] on Open Source Brain: https://v1.opensourcebrain.org

¹ 3D interactive visualisation using NetPyNE-UI on Open Source Brain v2: https://opensourcebrain.org

NeuroML: sharing and re-using models

😑 🌎 OpenSourceBrain					₽ 😌
	🛪 🖽 Projects 🤉 😚 Packages 🗛 Teams 🗊 A People 😰				
Repositories				Newr	epository
					÷

¹ Standardized models on Github: Open Source Brain: https://github.com/OpenSourceBrain

NeuroML: sharing and re-using models

🍪 Open Source Brain 🚥					Sign in
	ALL REPOSITORIES 2024			📰 🔲 🔍 Search	
				modeling	
	WormNeuroAtlas				Open Details
	M1-channelopthies-OSB				Open Details
	Thalamocortical network with epilepsy				
Documentation					Open Details
	Spiking neuronal networks performing motor control				
	Artificial neural networks (ANNs) have been			Modeling NetPyNE	Open Details
	Spiking neuronal network model of				
	visual-motor cortex playing a virtual racket-ball game				Onen Detailt
					open becaus
Create new 👻		IC C 1 2			

¹ Standardized models on Open Source Brain v2: https://v2.opensourcebrain.org

NeuroML: sharing and re-using models

Sinha, A. et al. The NeuroML ecosystem for standardized multi-scale modeling in neuroscience. bioRxiv. eprint: https://www.biorxiv.org/content/early/2023/12/11/2023. 12.07.570537.full.pdf.https://www.biorxiv.org/content/ early/2023/12/11/2023.12.07.570537 (2023)(in review)

https://docs.neuroml.org
https://opensourcebrain.org