
RSDG @ UCL

Julia: A Fresh Approach
to Numerical Computing

Mosè Giordano
@giordano �m.giordano@ucl.ac.uk

Knowledge Quarter Codes Tech Social

October 16, 2019

https://github.com/giordano
mailto:m.giordano@ucl.ac.uk

Julia’s Facts

• v1.0.0 released in 2018 at UCL
• Development started in 2009 at MIT, first

public release in 2012
• Julia co-creators won the 2019 James H.

Wilkinson Prize for Numerical Software
• Julia adoption is growing rapidly in

numerical optimisation, differential
equations, machine learning,
differentiable programming

• It is used and taught in several universities
(https://julialang.org/teaching/)

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 2 / 29

https://julialang.org/teaching/

Julia on Nature

Nature 572, 141-142 (2019). doi: 10.1038/d41586-019-02310-3

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 3 / 29

http://dx.doi.org/10.1038/d41586-019-02310-3

Solving the Two-Language Problem: Julia

• Multiple dispatch
• Dynamic type system
• Good performance, approaching that of statically-compiled languages
• JIT-compiled scripts
• User-defined types are as fast and compact as built-ins
• Lisp-like macros and other metaprogramming facilities
• No need to vectorise: for loops are fast
• Garbage collection: no manual memory management
• Interactive shell (REPL) for exploratory work
• Call C and Fortran functions directly: no wrappers or special APIs
• Call Python functions: use the PyCall package
• Designed for parallelism and distributed computation
Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 4 / 29

Multiple Dispatch

using D i f f e r e n t i a l E q u a t i o n s , Measurements ,
P l o t s

g = 9.79 ± 0 . 0 2 ; # G r a v i t a t i o n a l constant
L = 1.00 ± 0 . 0 1 ; # Length of the pendulum

I n i t i a l speed & angle , time span
u0 = [0 ± 0 , á / 60 ± 0.01]
tspan = (0 . 0 , 6 . 3)

Def ine the problem
function pendulum (du , u , p , t)

Ú = u [1]
dÚ = u [2]
du [1] = dÚ
du [2] = −(g/L) *Ú

end

Pass to s o l v e r s
prob = ODEProblem (pendulum , u0 , tspan)
s o l = solve (prob , T s i t 5 () , r e l t o l = 1e−6)

A n a l y t i c s o l u t i o n
u = u0 [2] . * cos . (s q r t (g / L) . * s o l . t)

p l o t (s o l . t , get index . (s o l . u , 2) ,
l a b e l = " Numerical ")

p l o t ! (s o l . t , u , l a b e l = " A n a l y t i c ")

0 1 2 3 4 5 6

-0.050

-0.025

0.000

0.025

0.050

Numerical
Analytic

From DifferentialEquations.jl tutorial “Numbers with Un-

certainties”, by Mosè Giordano & Chris Rackauckas

JuliaCon 2019 talk “The Unreasonable
Effectiveness of Multiple Dispatch”:
https://www.youtube.com/watch?v=

kc9HwsxE1OY

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 5 / 29

https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.youtube.com/watch?v=kc9HwsxE1OY

Multiple Dispatch: An Example

Define the types

The abstract type ‘Shape‘

abstract type Shape end

Followings are subtypes of the abstract type ‘Shape‘

struct Paper <: Shape end

struct Rock <: Shape end

struct Scissors <: Shape end

Define the rules of the game

play(::Type{Paper}, ::Type{Rock}) = "Paper wins"

play(::Type{Paper}, ::Type{Scissors}) = "Scissors win"

play(::Type{Rock}, ::Type{Scissors}) = "Rock wins"

play(::Type{T}, ::Type{T}) where {T<:Shape} =

"Tie, try again"

play(a::Type{<:Shape}, b::Type{<:Shape}) =

play(b, a) # Commutativity

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 6 / 29

Multiple Dispatch: An Example (cont.)

Let’s play!

julia> play(Scissors, Rock)

"Rock wins"

julia> play(Scissors, Scissors)

"Tie, try again"

julia> play(Rock, Paper)

"Paper wins"

julia> play(Scissors, Paper)

"Scissors win"

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 7 / 29

Multiple Dispatch: An Example (cont.)

Extend the game by adding a new shape

julia> struct Well <: Shape end

julia> play(::Type{Well}, ::Type{Rock}) = "Well wins";

julia> play(::Type{Well}, ::Type{Scissors}) = "Well wins";

julia> play(::Type{Well}, ::Type{Paper}) = "Paper wins";

julia> play(Paper, Well)

"Paper wins"

julia> play(Well, Rock)

"Well wins"

julia> play(Well, Well)

"Tie, try again"

https://giordano.github.io/blog/2017-11-03-rock-paper-scissors/

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 8 / 29

https://giordano.github.io/blog/2017-11-03-rock-paper-scissors/

Metaprogramming

• Like Lisp, Julia is homoiconic: it represents its own code as a data
structure of the language itself

• Since code is represented by objects that can be created and
manipulated from within the language, it is possible for a program to
transform and generate its own code. This allows sophisticated code
generation without extra build steps, and also allows true Lisp-style
macros operating at the level of abstract syntax trees (ASTs)

• In contrast, preprocessor "macro" systems, like that of C and C++,
perform textual manipulation and substitution before any actual parsing
or interpretation occurs

• Julia’s macros allow you to modify an unevaluated expression and return
a new expression at parsing-time

• Macros allows the creation of domain-specific languages (DSLs). See
https://julialang.org/blog/2017/08/dsl

For more information, read the manual:
https://docs.julialang.org/en/v1/manual/metaprogramming/. MP is
powerful but hard: https://www.youtube.com/watch?v=mSgXWpvQEHE

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 9 / 29

https://julialang.org/blog/2017/08/dsl
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://www.youtube.com/watch?v=mSgXWpvQEHE

Domain-Specifc Languages
Lotka-Volterra equations (predator-prey model):

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

You can define this problem as follows:

function lotka_volterra!(du,u,p,t)

du[1] = p[1]*u[1] - p[2]*u[1]*u[2]

du[2] = -p[3]*u[2] + p[4]*u[1]*u[2]

end

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 10 / 29

Domain-Specifc Languages
Lotka-Volterra equations (predator-prey model):

dx
dt

= ax − bxy

dy
dt

= −cy + dxy

You can define this problem as follows:

function lotka_volterra!(du,u,p,t)

du[1] = p[1]*u[1] - p[2]*u[1]*u[2]

du[2] = -p[3]*u[2] + p[4]*u[1]*u[2]

end

Or use @ode_def macro from ParameterizedFunctions.jl:

lotka_volterra! = @ode_def LotkaVolterra begin

dx = a*x - b*x*y

dy = -c*y + d*x*y

end a b c d

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 10 / 29

Domain-Specifc Languages (cont.)

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 11 / 29

Calling Other Languages

Do you have code in other languages that you want to be able to use? Don’t
worry!

julia> ccall((:exp, "libm.so.6"), Cdouble, (Cdouble,), 1.57)

4.806648193775178

julia> my_shell = ccall((:getenv, "libc.so.6"),

Cstring, (Cstring,), "SHELL")

Cstring(0x00007ffdf927c6b6)

julia> unsafe_string(my_shell)

"/bin/zsh"

Some examples about playing with pointers at https:
//giordano.github.io/blog/2019-05-03-julia-get-pointer-value/.

JuliaCon 2019 talk: https://www.youtube.com/watch?v=ez-KVi0leOw

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 12 / 29

https://giordano.github.io/blog/2019-05-03-julia-get-pointer-value/
https://giordano.github.io/blog/2019-05-03-julia-get-pointer-value/
https://www.youtube.com/watch?v=ez-KVi0leOw

Calling Other Languages (cont.)

julia> using PyCall

julia> const math = pyimport("math");

julia> math.sin(math.pi / 4) - sin(pi / 4)

0.0

julia> const np = pyimport("numpy");

julia> np.random.rand(3, 4)

3×4 Array{Float64 ,2}:

0.423639 0.863076 0.164781 0.160279

0.452385 0.368733 0.779607 0.474547

0.139557 0.777287 0.226157 0.493904

If you come to Julia from another language, keep in mind the following
differences:
https://docs.julialang.org/en/v1/manual/noteworthy-differences/

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 13 / 29

https://docs.julialang.org/en/v1/manual/noteworthy-differences/

Best Programming Practices

• Packages are git repositories
• Testing framework in standard library
• Continuous integration with several

different services (Travis, AppVeyor,
Cirrus, Drone, Gitlab Pipelines, Azure
Pipelines, GitHub Actions, etc. . .)

• Code coverage: Coveralls, Codecov
• Documentation: docstrings, doctests
• PkgEval: test all registered packages

Tutorial on how to develop Julia packages:
https://www.youtube.com/watch?v=QVmU29rCjaA

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 14 / 29

https://www.youtube.com/watch?v=QVmU29rCjaA

Reproducibility

• Package manager integrated with the language
• “Artifacts” (binary packages, data, etc. . .) treated as packages
• Reproducible environments:

• Project.toml: direct dependencies and their minimum required versions
• Manifest.toml: complete checkout of the environment (all “packages” with

fixed versions). It allows full reproducibility

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 15 / 29

What’s Bad About Julia

JuliaCon 2019 talk: https://www.youtube.com/watch?v=TPuJsgyu87U

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 16 / 29

https://www.youtube.com/watch?v=TPuJsgyu87U

What’s Bad About Julia (cont.)

• Compilation latency can be
annoying during development

• Plotting framework not exciting
• Global variables are bad
• Ecosystem still young

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 17 / 29

Platforms 1: GPU

• High-level programming without GPU experience
• Low-level programming for high-performance and flexibility
• Rich ecosystem: CUDAnative.jl, CuArrays.jl, GPUifyLoops.jl, etc. . .

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 18 / 29

https://github.com/JuliaGPU/CUDAnative.jl
https://github.com/JuliaGPU/CuArrays.jl
https://github.com/vchuravy/GPUifyLoops.jl

Platforms 1: GPU (cont.)

j u l i a > f (x) = 3x^2 + 5x + 2 ;

j u l i a > A = [1 f0 , 2f0 , 3f0] ;

j u l i a > A .= f . (2 . * A.^2 .+ 6 . * A.^3 .− s q r t . (A))
3−element Array { Float32 , 1 } :

184.0
9213.753

96231.72

j u l i a > using CuArrays

j u l i a > B = CuArray ([1 f0 , 2f0 , 3f0]) ;

j u l i a > B .= f . (2 . * B.^2 .+ 6 . * B.^3 .− s q r t . (B))
3−element CuArray { Float32 , 1 } :

184.0
9213.753

96231.72

More info in https://doi.org/10.1109/TPDS.2018.2872064

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 19 / 29

https://doi.org/10.1109/TPDS.2018.2872064

Platforms 2: TPU

• Tensor Processing Units are developed by Google for neural network
machine learning

• Julia supports TPUs via https://github.com/JuliaTPU/XLA.jl

• Kernels are pure Julia code, but calls require @tpu macro
• JuliaCon 2019 talk: https://www.youtube.com/watch?v=QeG1IWeVKek
• Paper: https://arxiv.org/abs/1810.09868
Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 20 / 29

https://github.com/JuliaTPU/XLA.jl
https://www.youtube.com/watch?v=QeG1IWeVKek
https://arxiv.org/abs/1810.09868

Platforms 3: WebAssembly (experimental)

Credits: Keno Fisher on Twitter: https://twitter.com/KenoFischer/status/1158517084642582529

Mozilla awarded a grant to develop Julia support for WebAssembly
Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 21 / 29

https://twitter.com/KenoFischer/status/1158517084642582529

Platforms 4: FPGA (very experimental)

Credits: Keno Fisher on Twitter: https://twitter.com/KenoFischer/status/1154865907472183296

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 22 / 29

https://twitter.com/KenoFischer/status/1154865907472183296

Applications: Past – Celeste.jl

Project goals:
1 Catalog all galaxies and stars that are visible through the next

generation of telescopes
• The Large Synoptic Survey Telescope (LSST) will house a 3200-megapixel

camera producing 15 TB of images nightly

2 Replace non-statistical approaches to building astronomical catalogs
from photometrical data

3 Identify promising galaxies for spectrograph targeting
• Better understand dark energy and the geometry of the Universe

4 Develop and extensible model and inference procedure, for use by the
astronomical community
• Future applications might include finding supernovae and detecting

near-Earth asteroids
Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 23 / 29

Applications: Past – Celeste.jl (cont.)

Accomplishments:
1 Reached 1.54 petaFLOPS performance (first First Julia application to

exceed 1 petaFLOPS)
• Julia is probably the first dynamic high-level language to enter the

petaFLOPS club (other languages in it: Assembly, Fortran, C/C++)
• Code ran on 9568 Intel Xeon Phi nodes of Cori (Phase II)
• 1.3 milion threads on 650000 KNL cores

2 Processed most of SDSS dataset in 14.6 minutes
• Loaded and analysed 178 TB
• Optimised 188 million stars and galaxies

3 First comprehensive catalog of visible objects with state-of-the-art point
and uncertainty estimates

4 Demonstration of Variational Inference on 8 billion parameters
• 2 orders of mangnitude larger than other reported results

Discover more:
• https://github.com/jeff-regier/Celeste.jl

• JuliaCon 2017 talk: https://www.youtube.com/watch?v=uecdcADM3hY

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 24 / 29

https://github.com/jeff-regier/Celeste.jl
https://www.youtube.com/watch?v=uecdcADM3hY

Applications: Present – PuMaS

PharmaceUtical Modeling And Simulation

• Suite of tools for developing, simulating, fitting, and analyzing
pharmaceutical models

• Bring efficient implementations of all aspects of pharmaceutical
modeling under one cohesive package

• Deliver personalised treatment schedules for each individual
• Seemless integration with the rest of Julia ecosystem

(Measurements.jl, JuliaDB.jl, Query.jl, etc.)
• Collaboration between Center for Translational Medicine of University of

Maryland, Baltimore and Julia Computing
Talks at JuliaCon 2018: https://www.youtube.com/watch?v=KQ4Vtsd9XNw
and JuliaCon 2019: https://www.youtube.com/watch?v=i8LGmT0mKnE

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 25 / 29

https://www.youtube.com/watch?v=KQ4Vtsd9XNw
https://www.youtube.com/watch?v=i8LGmT0mKnE

Applications: Future – CLIMA

• Collaboration between Caltech, NASA JPL, MIT, Naval Postgraduate
School, funded among others by NSF: https://clima.caltech.edu/

• First Earth model that automatically learns from diverse data sources
• Modeling platform that is scalable and built for growth
• It will need to run on the world’s fastest supercomputers and on the

cloud, using both GPU and CPUs
• Scalable for different resolutions, to have local and global climate
• Julia chosen to ensure performance on modern heterogeneous

architectures without sacrificing scientific productivity information
Talk at JuliaCon 2019: https://www.youtube.com/watch?v=gD5U_U9kZk8

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 26 / 29

https://clima.caltech.edu/
https://www.youtube.com/watch?v=gD5U_U9kZk8

Take-Home Messages

• Great composability: complex packages can work together
• Incremental optimisation: from prototype to final product step by step

• https://docs.julialang.org/en/v1/manual/performance-tips/

• https://mitmath.github.io/18337/lecture2/optimizing

• Julia programs are organised around multiple dispatch
• Metaprogramming capabilities
• Most of Julia is written in Julia itself
• My 2 cents: main Julia’s strength is genericity, which increases

productivity

Got interested?
• Official website: https://julialang.org/
• Manual: https://docs.julialang.org/en/
• List of registered packages: https://pkg.julialang.org/
• GitHub repository: https://github.com/JuliaLang/julia
• Discussion forum: https://discourse.julialang.org/
• Slack workspace: https://slackinvite.julialang.org/

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 27 / 29

https://docs.julialang.org/en/v1/manual/performance-tips/
https://mitmath.github.io/18337/lecture2/optimizing
https://julialang.org/
https://docs.julialang.org/en/
https://pkg.julialang.org/
https://github.com/JuliaLang/julia
https://discourse.julialang.org/
https://slackinvite.julialang.org/

Take-Home Messages

• Great composability: complex packages can work together
• Incremental optimisation: from prototype to final product step by step

• https://docs.julialang.org/en/v1/manual/performance-tips/

• https://mitmath.github.io/18337/lecture2/optimizing

• Julia programs are organised around multiple dispatch
• Metaprogramming capabilities
• Most of Julia is written in Julia itself
• My 2 cents: main Julia’s strength is genericity, which increases

productivity

Got interested?
• Official website: https://julialang.org/
• Manual: https://docs.julialang.org/en/
• List of registered packages: https://pkg.julialang.org/
• GitHub repository: https://github.com/JuliaLang/julia
• Discussion forum: https://discourse.julialang.org/
• Slack workspace: https://slackinvite.julialang.org/
Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 27 / 29

https://docs.julialang.org/en/v1/manual/performance-tips/
https://mitmath.github.io/18337/lecture2/optimizing
https://julialang.org/
https://docs.julialang.org/en/
https://pkg.julialang.org/
https://github.com/JuliaLang/julia
https://discourse.julialang.org/
https://slackinvite.julialang.org/

JuliaCon 2020 in Lisbon!

https://juliacon.org/2020/

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 28 / 29

https://juliacon.org/2020/

Come for the Pizza, Stay for the Language

Mosè Giordano (RSDG @ UCL) Julia: A Fresh Approach to Numerical Computing October 16, 2019 29 / 29

