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DNA methylation is the addition of a methyl group to a cytosine 

nucleotide (Figure 1). Aberrant DNA methylation has been 

implicated in several human diseases, including cancer1. 

Figure 1. Schematic of DNA methylation

There is therefore great 

biomedical interest in 

studying DNA methylation. 

One way to do so is 

through Whole Genome 

Bisulfite Sequencing 

(WGBS). However, WGBS 

is currently very expensive.

This makes it difficult to produce quality data at large scales. To 

address the issue of incomplete datasets, several tools have been 

developed to impute missing values2-4. We have developed 

GIMMEcpg, which is up to 2,675x faster and roughly as accurate 

as existing tools (𝚫R: -0.05, 𝚫MAE: +0.009). GIMMEcpg is 

available as both R and Python packages.

Datasets used for benchmarking were produced by the 

International Human Epigenome Consortium (IHEC). 

• 2 WGBS files, each with a CpG coverage of ~100x (very high 

quality) 

• Downsampled to simulate lower coverage data (Figure 2)

Simulated 

Coverage (%)

ID CpG 

Coverage

Number of 

CpG sites (M)

5 D05 6.3 13.5

7 D07 8.2 15.8

10 D10 11.2 17.8

15 D15 16.0 19.7

20 D20 20.8 20.7

25 D25 25.6 21.4

30 D30 30.3 21.9

60 D60 57.9 23.4
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Figure 2. Downsampling of high-quality 100x WGBS data. A) Workflow to generate downsampled 

files from one 100x WGBS file. In total, this was done for two 100x WGBS files to produce 48 

downsampled files (2x6x3). B) Summary of CpG coverage and counts at each downsampled level. 

Methods

GIMMEcpg utilises neighbouring CpG methylation statuses and a 

simple distance-weighted formula to impute missing methylation 

values (Figure 3). 

• CpG sites <1000 nucleotides of each other show similar 

methylation values5

• Use of simple calculations should greatly reduce time and 

memory usage compared to complex machine-learning based 

counterparts

• Polars’ lazy API to process data in parallel and for automatic 

query optimisation6

• Optional ‘accurate mode’ makes use of H2OAutoML to train 

several models based on neighbouring CpG sites7

• Best model based on mean residual deviance used for 

imputation

Figure 3. Formula used to impute missing methylation values based on neighbouring 

CpG information (distance and methylation).

Random DeepCpG METHImpute BoostME GIMMEcpg
D05 4.75 NA 601.82 95.92 31.7
D07 4.29 NA 601.39 181.83 31.82
D10 3.63 NA 601.18 178.8 34.42
D15 2.96 NA 601.03 175.24 38.49
D20 2.61 NA 600.97 174.17 39.24
D25 2.41 NA 600.95 173.33 38.33
D30 2.28 NA 600.94 172.33 39.22
D60 1.96 NA 600.95 171.12 41.31

Random DeepCpG METHImpute BoostME GIMMEcpg
D05 34.7 15 10.3 NA 7.2
D07 35.6 5.4 9.8 5 6
D10 36.5 5.6 10.4 5.3 6.2
D15 42.3 11.3 16.6 11.2 11.9
D20 42.2 11.5 17 11.3 12
D25 42.2 11.5 17.2 11.4 12.1
D30 42.2 11.7 17.3 11.5 12.2
D60 42.3 12.5 16.7 12.3 12.7

B)A)

Figure 4. Performance of GIMMEcpg in comparison with other imputation methods, 

averaged out across 6 files per downsampled level. A) Number of CpG sites (in millions) 

imputed. As the simulated coverage increases, the number of missing values to impute 

decreases. B) Relative Mean Absolute Error (R-MAE) values of different imputation methods.

• GIMMEcpg imputed as many missing CpG sites as existing tools 

(Figure 4A)

• Accuracy of GIMMEcpg in its default mode was comparable to 

other tools and much better than random imputation (Figure 4B)
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Figure 5. Time and RAM usage of GIMMEcpg in comparison with other imputation 

methods, averaged out across 6 files per downsampled level. A) Time taken (minutes) for 

different imputation methods to calculate missing values. B) Random access memory (RAM; 

GB) used by different imputation methods to perform required calculations. RAM benchmarking 

for DeepCpG has not been included due to DeepCpG requiring a different machine with GPUs.

• Compared to existing imputation tools, GIMMEcpg was a lot 

faster (Figure 5A)

• RAM usage of GIMMEcpg was also lower than other imputation 

methods (Figure 5B)

• The reduced run time allows GIMMEcpg to scale to large WBGS 

datasets

• We tested this scalability on a subset of available IHEC 

datasets (497 files)

• GIMMEcpg completed imputation for all 497 files (~376 billion 

data points) in under 10 hours
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• Compared to existing machine-learning based imputation tools, 

GIMMEcpg performed with similar accuracy but with a marked 

reduction in computation time

• Suggests that machine learning is not always the superior 

choice over simpler methods

• Benchmarking highlighted the inability of BoostME to impute 

sparse data (Figure 4B), where imputation is arguably needed 

the most

• Unlike BoostME, GIMMEcpg did not have the same issue

• Run times of GIMMEcpg is poised to reduce even further as 

Polars announced their partnership with NVIDIA, bringing GPU 

acceleration to future versions
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