GIMMEcpg: Global Imputation of Mean CPG Methylation

Niuzheng Chai¹, Ismail Moghul^{1,2}, Nikolas Pontikos^{1,2}, Alison Hardcastle^{1,2}, Javier Herrero³, Stephan Beck^{3†}

¹UCL Institute of Ophthalmology, ²Moorfields Eye Hospital, ³UCL Cancer Institute

There is therefore great

studying DNA methylation.

through Whole Genome

(WGBS). However, WGBS

is currently very expensive.

biomedical interest in

One way to do so is

Bisulfite Sequencing

Background

DNA methylation is the addition of a methyl group to a cytosine nucleotide (Figure 1). Aberrant DNA methylation has been implicated in several human diseases, including cancer¹.

This makes it difficult to produce quality data at large scales. To address the issue of incomplete datasets, several tools have been developed to impute missing values²⁻⁴. We have developed GIMMEcpg, which is up to 2,675x faster and roughly as accurate as existing tools (ΔR : -0.05, ΔMAE : +0.009). GIMMEcpg is available as both R and Python packages.

Main Datasets Used

Datasets used for benchmarking were produced by the International Human Epigenome Consortium (IHEC).

- 2 WGBS files, each with a CpG coverage of ~100x (very high quality)
- Downsampled to simulate lower coverage data (Figure 2)

۸)	D)				
A)	6)	Simulated Coverage (%)	ID	CpG Coverage	Number of CpG sites (M)
100x WGBS		5	D05	6.3	13.5
Downsampli	ng	7	D07	8.2	15.8
D05, D07, D10, D15,	eds per file	10	D10	11.2	17.8
D20, D25, D30, D60		15	D15	16.0	19.7
J3 random se		20	D20	20.8	20.7
D05-1, D05-2, D05-3		25	D25	25.6	21.4
D60-1, D60-2,		30	D30	30.3	21.9
D00-3		60	D60	57.9	23.4

Figure 2. Downsampling of high-quality 100x WGBS data. A) Workflow to generate downsampled files from one 100x WGBS file. In total, this was done for two 100x WGBS files to produce 48 downsampled files (2x6x3). B) Summary of CpG coverage and counts at each downsampled level.

Methods

GIMMEcpg utilises neighbouring CpG methylation statuses and a simple distance-weighted formula to impute missing methylation values (Figure 3).

Figure 3. Formula used to impute missing methylation values based on neighbouring CpG information (distance and methylation).

- CpG sites <1000 nucleotides of each other show similar methylation values⁵
- Polars' lazy API to process data in parallel and for automatic query optimisation⁶
- - Best model based on mean residual deviance used for imputation

Results - Performance

Figure 4. Performance of GIMMEcpg in comparison with other imputation methods, averaged out across 6 files per downsampled level. A) Number of CpG sites (in millions) imputed. As the simulated coverage increases, the number of missing values to impute decreases. B) Relative Mean Absolute Error (R-MAE) values of different imputation methods.

niuzheng.chai.21@ucl.ac.uk

- Use of simple calculations should greatly reduce time and
- memory usage compared to complex machine-learning based counterparts
- Optional 'accurate mode' makes use of H2OAutoML to train several models based on neighbouring CpG sites⁷

	Random	DeepCpG	METHImpute	BoostME	GIMMEcpg	
D05	34.7	15	10.3	NA	7.2	
D07	35.6	5.4	9.8	5	6	
D10	36.5	5.6	10.4	5.3	6.2	
D15	42.3	11.3	16.6	11.2	11.9	
D20	42.2	11.5	17	11.3	12	
D25	42.2	11.5	17.2	11.4	12.1	
D30	42.2	11.7	17.3	11.5	12.2	
D60	42.3	12.5	16.7	12.3	12.7	

GIMMEcpg imputed as many missing CpG sites as existing tools (Figure 4A)

• Accuracy of GIMMEcpg in its default mode was comparable to other tools and much better than random imputation (Figure 4B)

Results - Resource Usage

A)) B)											
		Random	DeepCpG	METHImpute	BoostME	GIMMEcpg		Random	DeepCpG	METHImpute	BoostME	GIMMEcpg
	D05	0.205	1698.000	70.800	18.140	0.666	D05	4.75	NA	601.82	95.92	31.7
	D07	0.168	1758.000	61.200	27.640	0.605	D07	4.29	NA	601.39	181.83	31.82
	D10	0.129	1794.000	68.400	27.120	0.609	D10	3.63	NA	601.18	178.8	34.42
	D15	0.098	1758.000	64.800	28.630	0.739	D15	2.96	NA	601.03	175.24	38.49
	D20	0.094	1776.000	60.600	26.430	0.650	D20	2.61	NA	600.97	174.17	39.24
	D25	0.074	1776.000	64.800	27.490	0.674	D25	2.41	NA	600.95	173.33	38.33
	D30	0.067	1710.000	58.720	27.840	0.679	D30	2.28	NA	600.94	172.33	39.22
	D60	0.049	1794.000	46.300	33.010	0.637	D60	1.96	NA	600.95	171.12	41.31

Figure 5. Time and RAM usage of GIMMEcpg in comparison with other imputation methods, averaged out across 6 files per downsampled level. A) Time taken (minutes) for different imputation methods to calculate missing values. **B)** Random access memory (RAM; GB) used by different imputation methods to perform required calculations. RAM benchmarking for DeepCpG has not been included due to DeepCpG requiring a different machine with GPUs.

- faster (**Figure 5A**)
- methods (Figure 5B)
- datasets
 - datasets (497 files)

Discussion

- reduction in computation time
- the most
- acceleration to future versions

References

1 Jin, Z. et al. Genes & Diseases 5, 1–8 (2018), 2 Angermueller, C. et al. Genome Biol 18, 67 (2017), 3 Taudt, A. et al. BMC Genomics 19, 444 (2018), 4 The McDonnell Genome Institute et al. BMC Genomics 19, 390 (2018), 5 Eckhardt, F. et al. Nat Genet 38, 1378–1385 (2006), 6 Vink, R. et al. (2024), 7 LeDell, E. et al. 7th ICML Workshop on Automated Machine Learning (AutoML) (2020

Compared to existing imputation tools, GIMMEcpg was a lot

• RAM usage of GIMMEcpg was also lower than other imputation

• The reduced run time allows GIMMEcpg to scale to large WBGS

• We tested this scalability on a subset of available IHEC

• GIMMEcpg completed imputation for all 497 files (~376 billion data points) in under 10 hours

• Compared to existing machine-learning based imputation tools, GIMMEcpg performed with similar accuracy but with a marked

• Suggests that machine learning is not always the superior choice over simpler methods

• Benchmarking highlighted the inability of BoostME to impute sparse data (Figure 4B), where imputation is arguably needed

• Unlike BoostME, GIMMEcpg did not have the same issue • Run times of GIMMEcpg is poised to reduce even further as Polars announced their partnership with NVIDIA, bringing GPU