Digital Humanities & Research Software Engineering working together

Some examples of a fruitful collaboration from the Living with Machines project

Kaspar von Beelen, Mariona Coll Ardanuy, Kasra Hosseini and Federico Nanni The Alan Turing Institute

Overview of the Talk

- 1. The Research Engineering Group
- 2. The Living with Machines Project
- 3. How we work together (in theory)
- 4. How we work together (in practice)
 - a. The "Atypical Animacy" Project
 - b. DeezyMatch
- 5. Lessons learned

The Research Engineering Group

Turing REG

- A team of ~35 research software engineers and research data scientists
- Range of backgrounds: physics, biology, computer science, psychology, mathematics, digital humanities...
- Enthusiastic collaborators, researchers and developers who want to make long-lasting, reproducible and robust tools and analyses

Turing Challenges

Projects

- Projects can last anywhere from a few months to >1 year
- Projects can come from Turing Fellows, industry partners or be generated internally recent partners include:

- Range from purely "data science" to purely "software development", or anywhere in-between

- Funded by the AHRC as part of the UKRI Strategic Priorities Fund
- Collaboration between the Alan Turing Institute and the British Library
- Partner institutions: Cambridge, East Anglia, Exeter, Queen Mary

Massive Interdisciplinary Collaboration

Dr Kaspar

Beelen

Research Associate

Dr Mariona

Coll Ardanuv

Research Associate

André Piza

Research Project

Manager, Data

Science for Science

Daniel

Dr Kasra Hosseini Research Data Scientist

Karen Cordier **Research Project** Manager (Parental Leave Cover), Living with Machines

Dr Daniel Wilson **Research Associate**

Dr Timothy Hobson Senior Research Software Engineer

Professor Ruth Ahnert **Turing Fellow**

Software Engineer -

Digital Humanities

Maia Maricevic

David Beavan Senior Research

Professor **Emma Griffin Turing Fellow**

Dr Mia Ridge

British Library

Professor Jon Lawrence University of Exeter

Sir Alan Wilson

Director, Special

Projects

Claire Austin

British Library

Dr Katherine McDonouah Senior Research Associate

Dr Giorgia Tolfo

Data and Content

Manager, British

Library

Besearch Associate

Dr Olivia Vane Researcher, British Library

Engineer

van Strien Digital Curator, British

Dr Barbara McGillivrav Turing Research Fellow

Dr Giovanni Colavizza Visiting Researcher

Dr Adam

Farguhar

British Library

Science in Practice

Dr James Hetherington Director of Data

Dr Yann Ryan British Library

Dr Joshua Rhodes

Dr Sarah Gibson **Besearch Software**

Living with Machines is...

- An inquiry into how technology impacted the lives of "ordinary people" in Britain 1780-1914 (history from below)
- A study of the ever-changing relation between humans and technology
- Explores the social and cultural impact of the Industrial Revolution by mining (massive) historical collections (newspaper, maps, census)

- Applies computational methods to a domain (history) that has an uncomfortable relation with quantification
- An investigation into what it means to use computational analysis for history

- Explore heritage collections at **scale**:
 - "Distant" vs "close" reading
- Linking historical sources

Radical collaboration:

- Power imbalances related to knowledge and expertise
- Different intellectual traditions and priorities
 - The problem of putting (binary) labels on things
- Different levels of technical skills and domain expertise within the team ("scattered expertise")

How we work together (in theory!)

Example timeline

Example timeline

How we work together (in practice!)

Living Machines A Study of Atypical Animacy

Animacy in Linguistics

- Animacy is the **property of being alive**
- **Linguistic animacy** of a given entity tends to align with its biological animacy
 - ... but not always:

"He exclaimed; the machine has heard you: it moves!"

The Penny Library of Famous Books, 1895, Publ: George Newnes

 Machines sit at the fuzzy boundary between animacy and inanimacy (Yamamoto, 1999): deliberate or unconscious

Detecting living machines: motivation

- 19thC Britain: a society being transformed by industrialization
- How machines have been imagined in the 19th century from lifeless mechanical objects to living beings, and even human-like agents that feel, think, kill, and love
- Trace this phenomenon at scale: through time, space, ideologies
- Relevant for today's discussion of of the impact of technology in our society (Alan Turing, 1950: "Can machines think?")

19thC Machines animacy dataset Gathering data to annotate

- Goal: create a dataset of animacy of machines
- Original corpus: 19thC BL Books, ≈48,200, ≈4.9B tokens
- We extracted sentences in English containing machine words (*machine*, *engine*, *locomotive*...)
- We extracted interesting sentences through pooling using different methods

19thC Machines animacy dataset Annotation

Annotation was challenging, even for domain experts.

"No, no, to her mother poor Fraulein was not a woman, a heart, a soul; she was just a <u>machine</u>."

Into an Unknown World. A novel, 1897, J.S. Winter

Animacy (true/false): true if the machine is represented as having traits or characteristics (maybe implicit) distinctive of biologically animate beings or human-specific skills, feelings, or emotion.

Humanness (true/false): true if the machine is represented as sentient and capable of specifically human emotions.

19thC Machines animacy dataset (III)

- 593 sentences: 201 animate/292 inanimate expressions
- Krippendorff's α =0.74 on animacy, α =0.50 on humanness.
- Rich in atypical animacy.

Target	Sentence	Animacy	Humanness
engine	In December, the first steam fire engine was received, and tried on the shore of Lake Monona, with one thousand feet of hose.	0	0
engine	It was not necessary for Jakie to slow down in order to allow the wild engine to come up with him: she was coming up at every revolution of her wheels.	1	1
locomotive	Nearly a generation had been strangely neglected to grow up un-Americanized, and the private adventurer and the locomotive were the untechnical missionaries to open a way for the common school.	1	1
machine	The worst of it was, the people were surly; not one would get out of our way until the last minute, and many pretended not to see us coming, though the machine , held in by the brake, squeaked a pitiful warning.	1	1
machines	Our servants, like mere machines, move on their mercenary track without feeling.	1	0
machinery	We have everywhere water power to any desirable extent, suitable for propelling all kinds of machinery .	0	0

Approach in a nutshell

Joy and sorrow - life and death, wrote the little machine.

Joy and sorrow - life and death, wrote the little [MASK] .

BERT, predict the missing word in the sentence:

girl	8.1641
man	8.0409
prince	7.4537
one	7.2818
boy	6.9801
princess	6.6766
bird	6.6638
voice	6.6378
lady	6.5472
angel	6.4725
wolf	6.4654
queen	6.3818
witch	6.3068
king	6.2712
sister	6.1635
brother	6.1291

Determining animacy

- <u>Assumption:</u> given a context requiring an animate entity, a contextualized LM predicts tokens corresponding to *conventionally* animate entities.
- For each token in top predicted tokens:
 - $\circ\,$ Disambiguate to most probable WordNet sense
 - Determine the animacy of the sense using Wordnet hierarchy of nouns
- Threshold and cutoff are found through experimentation.

A Language Model is meant to be a faithful representation of the language that has been used to train it.

"They were told that the [MASK] stopped working."

BERT language models trained on...

Pre 1850 text:	1850-1875 text:	1875-1890 text:	1890-1900 text:
man 5.3291	men 10.7655	men 10.2048	mercury 8.0446
prisoners 4.9758	people 9.497	miners 7.6654	machinery 7.4067
men 4.885	miners 9.249	machines 7.4062	machine 7.2903
book 4.6477	engine 8.0428	people 7.2991	mine 7.274
people 4.556	women 8.0126	engine 7.232	mill 7.057
one 4.4271	company 7.7261	labourers 7.0957	men 7.0257
slaves 4.4034	machine 7.6021	engines 6.7786	engine 6.9966
air 4.1329	labourers 7.5987	engineers 6.5642	lead 6.9177
water 4.1148	machines 7.5012	machine 6.4712	miners 6.7764

Experiments: baselines

- Most frequent class
- Classification approach
 - Classifiers: SVMs (word embeddings, TFIDF) and BERT Classifier
 - Inputs:
 - targetExp: target expression
 - targetExp + ctxt: target expression + context (3 token left and right)
 - maskedExp + ctxt: masked target expression + context (3 token left and right)
- LSTM sequential tagging approach

Results

	Stories			19thC Machines				
	Precision	Recall	F-Score	Map	Precision	Recall	F-Score	Map
Most frequent class	0.31	0.5	0.383	0.623	0.336	0.5	0.402	0.318
SVM TFIDF: targetExp	0.911	0.893	0.902	0.928	0.696	0.713	0.704	0.474
SVM WordEmb: targetExp	0.927	0.919	0.923	0.954	0.694	0.711	0.702	0.499
BERTClassifier: targetExp	0.951	0.948	0.949	0.985	0.698	0.715	0.706	0.51
SVM TFIDF: targetExp + ctxt	0.734	0.739	0.737	0.859	0.688	0.71	0.699	0.651
SVM WordEmb: targetExp + ctxt	0.758	0.742	0.75	0.876	0.728	0.531	0.614	0.481
BERTClassifier: targetExp + ctxt	0.931	0.926	0.929	0.978	0.695	0.721	0.708	0.721
SVM TFIDF: maskedExp + ctxt	0.674	0.677	0.675	0.804	0.592	0.6	0.596	0.498
SVM WordEmb: maskedExp + ctxt	0.674	0.678	0.676	0.809	0.518	0.52	0.519	0.339
BERTClassifier: maskedExp + ctxt	0.855	0.852	0.854	0.951	0.687	0.696	0.692	0.603
SeqModel: LSTM	0.952	0.948	0.95	0.949	0.697	0.719	0.708	0.482
MaskPredict: BERT-base	0.739	0.703	0.72	0.848	0.719	0.742	0.73	0.74
MaskPredict: BERT-base +ctxt	0.839	0.774	0.806	0.892	0.758	0.778	0.768	0.795
MaskPredict: fit19thBERT +ctxt	-	—			0.758	0.775	0.766	0.777
MaskPredict: early19thBERT +ctxt	-	_	_	<u></u>	0.799	0.773	0.786	0.784

Results

	Stories			19thC Machines				
	Precision	Recall	F-Score	Map	Precision	Recall	F-Score	Map
Most frequent class	0.31	0.5	0.383	0.623	0.336	0.5	0.402	0.318
SVM TFIDF: targetExp	0.911	0.893	0.902	0.928	0.696	0.713	0.704	0.474
SVM WordEmb: targetExp	0.927	0.919	0.923	0.954	0.694	0.711	0.702	0.499
BERTClassifier: targetExp	0.951	0.948	0.949	0.985	0.698	0.715	0.706	0.51
SVM TFIDF: targetExp + ctxt	0.734	0.739	0.737	0.859	0.688	0.71	0.699	0.651
SVM WordEmb: targetExp + ctxt	0.758	0.742	0.75	0.876	0.728	0.531	0.614	0.481
BERTClassifier: targetExp + ctxt	0.931	0.926	0.929	0.978	0.695	0.721	0.708	0.721
SVM TFIDF: maskedExp + ctxt	0.674	0.677	0.675	0.804	0.592	0.6	0.596	0.498
SVM WordEmb: maskedExp + ctxt	0.674	0.678	0.676	0.809	0.518	0.52	0.519	0.339
BERTClassifier: maskedExp + ctxt	0.855	0.852	0.854	0.951	0.687	0.696	0.692	0.603
SeqModel: LSTM	0.952	0.948	0.95	0.949	0.697	0.719	0.708	0.482
MaskPredict: BERT-base	0.739	0.703	0.72	0.848	0.719	0.742	0.73	0.74
MaskPredict: BERT-base +ctxt	0.839	0.774	0.806	0.892	0.758	0.778	0.768	0.795
MaskPredict: fit19thBERT +ctxt	-	-	 .	1	0.758	0.775	0.766	0.777
MaskPredict: early19thBERT +ctxt	<u> </u>	-	-	_	0.799	0.773	0.786	0.784

Results

	Stories			19thC Machines				
	Precision	Recall	F-Score	Map	Precision	Recall	F-Score	Map
Most frequent class	0.31	0.5	0.383	0.623	0.336	0.5	0.402	0.318
SVM TFIDF: targetExp	0.911	0.893	0.902	0.928	0.696	0.713	0.704	0.474
SVM WordEmb: targetExp	0.927	0.919	0.923	0.954	0.694	0.711	0.702	0.499
BERTClassifier: targetExp	0.951	0.948	0.949	0.985	0.698	0.715	0.706	0.51
SVM TFIDF: targetExp + ctxt	0.734	0.739	0.737	0.859	0.688	0.71	0.699	0.651
SVM WordEmb: targetExp + ctxt	0.758	0.742	0.75	0.876	0.728	0.531	0.614	0.481
BERTClassifier: targetExp + ctxt	0.931	0.926	0.929	0.978	0.695	0.721	0.708	0.721
SVM TFIDF: maskedExp + ctxt	0.674	0.677	0.675	0.804	0.592	0.6	0.596	0.498
SVM WordEmb: maskedExp + ctxt	0.674	0.678	0.676	0.809	0.518	0.52	0.519	0.339
BERTClassifier: maskedExp + ctxt	0.855	0.852	0.854	0.951	0.687	0.696	0.692	0.603
SeqModel: LSTM	0.952	0.948	0.95	0.949	0.697	0.719	0.708	0.482
MaskPredict: BERT-base	0.739	0.703	0.72	0.848	0.719	0.742	0.73	0.74
MaskPredict: BERT-base +ctxt	0.839	0.774	0.806	0.892	0.758	0.778	0.768	0.795
MaskPredict: fit19thBERT +ctxt	_	—			0.758	0.775	0.766	0.777
MaskPredict: early19thBERT +ctxt	-	—	-	_	0.799	0.773	0.786	0.784

A Reproducible Experimental Setting

Living Machines: A Study of Atypical Animacy

License MI

This repository provides underlying code and materials for the paper 'Living Machines: A Study of Atypical Animacy' (COLING2020).

Table of contents

- Installation
- Directory structure
- Description of the codes
- Datasets and resources
- Evaluation results
- Citation
- Acknowledgements
- License

https://github.com/Living-with-machines/AtypicalAnimacy

Future work

- Develop new methods for targeted sense disambiguation for conducting animacy detection at scale
- Distinction between animacy and humanness
 - relation with the process of dehumanization through the language of mechanization
- Examine biases and social changes embedded in the language models
- In-depth study of the contextual cues that grant animacy and humanness.

DeezyMatch: A Deep Learning Approach to Fuzzy String Matching for Entity Linking

Motivation

Place names identified in news articles that refer to **Ashton-under-Lyne**:

Ashton-under-Lyne Ashtonunder-line ASHTONCNDER-LYNE Ashton-under-lyne Ashtonunder-Lyne ASHTON-UXDER-LYNE Ashton-cnder-Ltne Aditon-under-line Asbtcn-under-Lyne Ashton ASHTON-UNDER-LYNE

Problem

We want to link to a knowledge base (e.g. Wikidata)

- But high degree of name variation!!
- And there are 822,161 Wikidata UK place names

Ashton-under-Lyne (Q659803)

market town in the Metropolitan Borough of Tameside, Greater Manchester, England

Traditional approaches to (fuzzy) string matching:

(1) Exact string matching
(2) Calculate string similarity between a query and the 822,161 potential place names, and sort by most similar candidates: very **time consuming**!!

DeezyMatch: introduction

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Pair classifier

Candidate ranker

DeezyMatch: architecture

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Hosseini et al. (2020)

Pair classifier

Candidate ranker

DeezyMatch: architecture

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Pair classifier

Candidate ranker

Hosseini et al. (2020)

DeezyMatch: architecture

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Pair classifier

Candidate ranker

Hosseini et al. (2020)

DeezyMatch: features

A **free, open-source** software library written in Python for fuzzy string matching and candidate ranking:

- Easy-to-use interface
- Various deep neural network architectures for training new classifiers.
- User can change the architecture (RNN, GRU or LSTM), hyperparameters and preprocessing steps via input file.

```
from DeezyMatch import train
from DeezyMatch import inference
```


DeezyMatch: features

A **free, open-source** software library written in Python for fuzzy string matching and candidate ranking:

- Easy-to-use interface
- Various deep neural network architectures for training new classifiers.
- User can change the architecture (RNN, GRU or LSTM), hyperparameters and preprocessing steps via input file.
- Fine-tuning a pretrained model; transfer learning.
- Extensive documentation:

https://github.com/Living-with-machines/DeezyMatch

```
from DeezyMatch import train
from DeezyMatch import inference
```


Hosseini et al. (2020)

DeezyMatch: performance

Pair-classifier performance as measured by F-score compared with other methods:

	Santos	WG:en	OCR
LevDam Santos et al. (2018a)	0.70 0.82	0.74 0.92	0.76 0.95
DeezyMatch	0.89	0.94	0.95

DeezyMatch (DM) **candidate ranker** performance compared to LevDam(LD) and exact. T/q: "Time per query" on CPU.

	P@1	MAP@10	MAP@20	T/q
ArgM:exact ArgM:LD ArgM:DM	0.69 0.78 0.78	- 0.72 0.76	- 0.70 0.74	9s 0.3s
WOTR:exact	0.86	-	-	-
WOTR:LD	0.92	0.84	0.80	31.6s
WOTR:DM	0.93	0.90	0.87	0.7s
FMP:exact	0.77	-	-	-
FMP:LD	0.92	0.82	0.76	14.1s
FMP:DM	0.85	0.82	0.78	0.7s

Hosseini et al. (2020) Coll Ardanuy et al. (2020b)

Installation

Hosseini et al. (2020) eezyMatch Coll Ardanuy et al. (2020b)

https://github.com/Living-with-machines/DeezyMatch

DeezyMatch can be applied for performing the following tasks:

- Fuzzy string matching
- Record linkage
- · Candidate selection for entity linking systems
- Toponym matching

Table of contents

- Installation and setup
- · Data and directory structure in tutorials
- · Run DeezyMatch as a Python module or via command line
 - Quick tour
 - Train a new model
 - Finetune a pretrained model
 - Model inference
 - · Generate query and candidate vectors
 - Candidate ranker and assembling vector representations
 - Candidate ranking on-the-fly
 - Tips / Suggestions on DeezyMatch functionalities
- Examples on how to run DeezyMatch
- Reproduce Fig. 2 of DeezyMatch's paper, EMNLP2020
- How to cite DeezyMatch
- Credits

Installation

\$* master + DeezyMatch / figs / EMNLP2020_figure	Go to file Add file - ····		
kasra-hosseini Add information about models to the no	cfdcb58 on 10 Nov 2020 🕄 History		
inputs	* Move notebooks to a new directory: figs/EMNLP2020_figures/fig2	5 months ago	
Fig2_EMNLP_inference.ipynb	Add information about models to the notebook	5 months ago	
Fig2_EMNLP_plot_results.ipynb	Add information about models to the notebook	5 months ago	
Fig2_EMNLP_training.ipynb	Add information about models to the notebook	5 months ago	
README.md	* Move notebooks to a new directory: figs/EMNLP2020_figures/fig2	5 months ago	

README.md

Reproduce Fig. 2 of DeezyMatch's paper

The three notebooks in this directory can be used to reproduce Fig. 2 of DeezyMatch's paper:

Hosseini, Nanni and Coll Ardanuy (2020), DeezyMatch: A Flexible Deep Learning Approach to Fuzzy String Matching, EMNLP: Sy

- Fig2_EMNLP_training.ipynb : train and fine-tune a suit of pair classifiers.
- Fig2_EMNLP_inference.ipynb : model inference using the models trained in the Fig2_EMNLP_training.ipyn notebook.
- Fig2_EMNLP_plot_results.ipynb : plot the results of model inference done in the Fig2_EMNLP_inference notebook.

https://github.com/Living-with-machines/DeezyMatch

Hosseini et al. (2020) Coll Ardanuy et al. (2020b)

A

Current work (very early stage!)

Linking a directory of over 12k train stations to Wikidata using DeezyMatch.

Evolution of stations between 1800 and 1900.

Stations are colored by the first company operating the line.

Lessons learned

How to brainstorm ideas together

- HypGen: hypothesis generation group
- IdeasLab
- NLP reading group
- Computer vision for digital heritage interest group
- Humanities & data science discussion group

How to embed best RSE practices

- Offering git-flow overviews
- Being available for informal support (Code & Coffe)
- Having milestones independent from conference deadlines
- Having regular stand-up meetings
- Coding together and reviewing each other's code (a lot)

How to recognise all contributions

Conceptualization Methodology Implementation Mariona Coll Ardanuy^{1,5} Federico Nanni Mariona Coll Ardanuy Daniel CS Wilson^{1,5} Federico Nanni¹ Kasra Hosseini Kasra Hosseini1 Mariona Coll Ardanuy Kaspar Beelen^{1,5} Reproducibility Interpretation **Historical Analysis** Kaspar Beelen Daniel CS Wilson Kasra Hosseini Federico Nanni Mariona Coll Ardanuy Katherine McDonough Katherine McDonough^{1,5} Kaspar Beelen Daniel CS Wilson Jon Lawrence Ruth Ahnert⁵ Jon Lawrence4 Giorgia Tolfo² **Data Curation** Writing and Editing Annotation Kaspar Beelen Giorgia Tolfo Mariona Coll Ardanuy Mariona Coll Ardanuy Ruth Ahnert Federico Nanni Federico Nanni Kaspar Beelen Ruth Ahnert Giorgia Tolfo Mariona Coll Ardanuy Kaspar Beelen Jon Lawrence Kasra Hosseini Katherine McDonough Jon Lawrence Federico Nanni Daniel CS Wilson Daniel CS Wilson

> Supervision Barbara McGillivray Ruth Ahnert

Project Management Barbara McGillivray Ruth Ahnert Mariona Coll Ardanuy

Katherine McDonough Barbara McGillivray^{1,3}

To know more: https://livingwithmachines.ac.uk/highlighting-authors-contributions-and-interdisciplinary-collaborations-in-living-with-machines/

Thank you! Questions?

Finding Machines with a Dictionary

Finding Machines with a Dictionary *The Goals*

<u>Overarching</u> aim of the project:

- Study the language of mechanisation

Specific NLP research question:

- Where do the machines live?
- Or: How to define machines and detect their presence in historical documents?

General NLP task:

how to trace the manifestation of concept X, Y, Z in a time-sensitive manner?

Finding Machines with a Dictionary *The Problem*

Problem: find mentions of "machines" (the token as well as the concept)

Solution(?): Exploit information and structure of the **Oxford English Dictionary and Thesaurus**) to algorithmically detect mentions of machines in text

Finding Machines with a Dictionary Squeezing information from dictionaries

Problem: find mentions of "machines" (the token as well as the concept)

Solution(?): Exploit **information** and **structure** of the **Oxford English Dictionary and Thesaurus**) to algorithmically detect mentions of machines in text

Finding Machines with a Dictionary Exploiting sense level information

Example for *lemma id*: machine_nn01

Sense 1:

- Sense id: machine_nn01-38476096
- Definition: "figurative. A living being considered to move or act automatically or mechanically ..."
- Quotation: {id: ..., text : "... force men and women and children to degrade themselves into machines as wage-slaves", year : 1910, etc.}
- Semantic class: [['1', '8835', '25507', '29189']]

Sense 2:

- Sense id: machine_nn01-XXXXXXX

Finding Machines with a Dictionary Exploiting sense level information

Example for *lemma id*: machine_nn01

Sense 1:

- Sense id: machine_nn01-38476096
- Definition: "figurative. A living being considered to move or act automatically or mechanically ..."
- Quotation: {id: ..., text : "... force men and women and children to degrade themselves into machines as wage-slaves", year : 1910, etc.}
- Semantic class: [['1', '8835', '25507', '29189']]

Sense 2:

- Sense id: machine_nn01-XXXXXXX

Finding Machines with a Dictionary *Exploiting thesaurus* **structure**

Finding Machines with a Dictionary Exploiting thesaurus structure machine nn01 lemma machine_nn01-394y machine nn01-384z machine nn01-384x senses synonyms car_nn01-494x engine_nn01-385u siblings and descendants wheel_nn01-84x

Finding Machines with a Dictionary *Task Definition: Defining the concept*

Input:

- A query lemma L with Q query senses
- A (set of) seed sense(s) $S \subseteq Q$
- A set of rules for expansion **R**

$R \subseteq \{seed, synonym, sibling, descendant\}$

{L,S,R} Returns C

- A set of senses related to S, which we think of as representing the "concept"

In: {machine_nn01, {machine_nn01-384y}, synonyms}
Out: {machine_nn01-384y, locomotive_nn01-392o,
engine_nn01-93y, ...}

-> these are labelled 1, the remainder 0

Finding Machines with a Dictionary *Expanding the quotations*

[They sell sewing-**machines**., 1889, machine_nn01-384y, **1**] [The **locomotive** was moving fast., 1860, locomotive_nn01-320x, **1**]

[She walks like a **machine.**, 1904, machine_nn01-394y, **0**] [He works as a **boiler**, 1854, boiler-nn01-54y, **0**]

Finding Machines with a Dictionary *Expanding the quotations*

Experiments with binary classification: Baseline (adaptation of Hu et al. 2019)

- For all senses s in C (produced by {Q,S,R})
 - Label associated quotations as 1; Rest as 0
- For each labelled quotations (text with target words)
 - E. g. ... (force men and women and children to degrade themselves into machines as wage-slaves, 1)
 - Obtain contextualized vector of target word, and average vectors by category (v_0, v_1)
 - "Concept embedding" for C and not-C
 - For each word w in sent take argmax(sim(v_0, w(v)), sim(v_1, w(v)))

Finding Machines with a Dictionary Expanding the set of senses They sell sewing-machines., 1889 The locomotive was moving fast., 1860 Class 1

vector class 0

0.23

0.25

0.97

0.54

1850

1900

0.45

0.98

I bought a flying machine, 1880

Class 0 She walks like a **machine.**, **1904** He works as a **boiler.**, 1854

Finding Machines with a Dictionary

Improve on baseline by making disambiguation time sensitive

- Weighted or selective averaging for constructing the concept embedding (quotations closer in time have more weight etc)
- Adapt BERT for historical WSD
 - Fine-tune BERT-models on historical data
 - Adapt pre-training task (SenseBERT), fine-tune with additional information (GLOSSBERT)
- Adapt disambiguation step (Nearest Neighbour, Stack FC layer, etc.)

Questions

DeezyMatch

Example timeline

