Digital Humanities & Research Software
Engineering working together

Some examples of a fruitful collaboration from the Living with
Machines project

Kaspar von Beelen, Mariona Coll Ardanuy, Kasra Hosseini and Federico Nanni
The Alan Turing Institute



Overview of the Talk

1. The Research Engineering Group
The Living with Machines Project

How we work together (in theory)

el S

How we work together (in practice)
a. The “Atypical Animacy” Project
b. DeezyMatch

5. Lessons learned




\$

The Research
Engineering Group

NG NNTANTAN



Turing REG

- A team of ~35 research software engineers and r
data scientists

- Range of backgrounds: physics, biology, comput
psychology, mathematics, digital humanities...

- Enthusiastic collaborators, researchers and deve
who want to make long-lasting, reproducible anc
tools and analyses



Turing Challenges

~ Make algorithmic
systems fair,
transparent ‘and ethlcal

Deliver safer smarter

englneerlng

Design computers for
‘the next generation
-_of algorithms *

i » N
_ e

Manage security in an
insecure world

Supercharge research

{in science and | |
humanities -

‘ Shine a. light on our

economy

Foster government
innovation




Projects

- Projects can last anywhere from a few months tg

- Projects can come from Turing Fellows, industr
or be generated internally - recent partners inc

NATS 8" Microsof

- Range from purely “data science” to purely “soft
development”, or anywhere in-between

TOYOTA

maobilit

FOUNDATION



<

\

Living with Machines

NG NNTANTAN



Living with Machines

 Funded by the AHRC as part of the UKRI Strategic Priorities

Fund
* Collaboration between the Alan Turing Institute and the

British Library
* Partner institutions: Cambridge, East Anglia, Exeter, Queen

Mary



Massive Interdisciplinary

Collaboration

Professor Ruth
Ahnert
Turing Fellow

Dr Barbara
McGillivray

Turing Research
Fellow

Dr Giovanni
Colavizza
Visiting Researcher

David Beavan
Senior Research
Software Engineer —
Digital Humanities

Maja Maricevic
British Library

Dr Adam
Farquhar
British Library

Professor
Emma Griffin
Turing Fellow

Dr Mia Ridge
British Library

Dr James

Hetherington

Director of Data
Science in Practice

Claire Austin
British Library

Professor Jon  Dr Katherine
Lawrence McDonough
: = Senior Research
University of Exeter Associate
I" .
— >

Sir Alan Wilson Dr Giorgia Tolfo

Director, Special Data and Content
Projects Manager, British
Library

Dr Joshua
Rhodes

Research Associate

Dr Yann Ryan
British Library

Dr Kaspar
Beelen

Research Associate

Dr Mariona
Coll Ardanuy

Research Associate

Dr Federico André Piza
Nanni Research Project

Manager, Data
Research Data Science for Science

Scientist
Dr Olivia Vane Daniel
Researcher, British van Strien
Library o o
Digital Curator, British
Library
Dr Sarah Dr Rosa
Gibson Filgueira
Research Software Data Architect, EPCC
Engineer

Dr Kasra

Hosseini

Research Data
Scientist

Karen Cordier

Research Project
Manager (Parental
Leave Cover), Living
with Machines

Dr Daniel
Wilson
Research Associate

Dr Timothy

Hobson

Senior Research
Software Engineer



Living with Machines is...

- An inquiry into how technology impacted the li
“ordinary people” in Britain 1780-1914 (histor
below)

- A study of the ever-changing relation betwee
and technology

- Explores the social and cultural impact of the In

Revolution by mining (massive) historical collecti
(newspaper, maps, census)



Living with Machines

- Applies computational methods §
to a domain (history) that has an 7%
uncomfortable relation with
quantification

- An investigation into what it
means to use computational
analysis for history




Living with Machines

- Explore heritage collections at scale:
- “Distant” vs “close” reading
- Linking historical sources




Living with Machines

Radical collaboration:

- Power imbalances related to knowledge and
- Different intellectual traditions and prioritie
- The problem of putting (binary) labels o
- Different levels of technical skills and domai
within the team (“scattered expertise”)



How we work togethe
(in theory!)

NG NNTANTAN



Example timeline

Week(s) Month(s) year(s)
A A

R

Start writing?

I | I I I
| 1 I I I
Start | Turnideasinto |, Hack week(s) Set up : Implement | Submit  Maintenance
Hypothesis, | DS/ SE I Exploring available | infrastructure 1 new methods | paper
initial I (sub-)tasks | datasets/ libraries/ 1| | 1 Other users,
questions : : methods : Repositories : Test, Cl, : Make projects?
EDA e (e.g., GitHub), project reproducibility, i o
: Exploratory Data 'Identify limitations of ! ,0ard for planning / : develop a new librarv? ! repo pUbI!c' Address issues,
I P y [ — I : ) I P Yo 1 (documentation
I Analysis , existing methods or | sprint meetings I | ' add more
I | datasets | I Results and I env, ..) functionalities, ...
I Design flowchart ! I Public repos from the 1 i\ [
I I Doweneednew | beginning I analysis I
: : method(s) for our : (if at all possible) : :
| | tasks? | . Write paper |
I | I Create DB I I
I I Collect more data? I I I
I I , I Baselines I I
: 1 Needannotations? 1 gart with simple or | '
: : Other requirements : well-established : :
I | I methods I I
I | I I I
I 1 I I I
[ 1 I I I
| | I I I



Example timeline
Week(s) Month(s) year(s)

p— ()

Start Turn ideas into Hack week(s) Set up Implement Submit Maintenance
Hypothesis, DS/ SE Exploring available infrastructure new methods paper
initial (sub-)tasks datasets / libraries / Other users,
questions methods Repositories Test, Cl, Make projects?
EDA e (e.g., GitHub), project reproducibility, i o
Exploratory Data Identify limitations of  poard for planning / develg a new Iibér ? repo pUbI!c' Address issues,
P y isti P y (documentation
Analysis existing methods or sprint meetings ' add more
datasets eny, ...)

functionalities, ...

Results and

Design flowchart Public repos from the

Do we need new beginning analysis
method(s) for our (if at all possible)
tasks? Write paper
Create DB
Collect more data?
Baselines

ions? L
Need annotations: Start with simple or

well-established

Other requirements methods

Start writing?

Deadline is approaching!!!
R EE S —————.



How we work togethe
(in practice!)

NG NNTANTAN



Living Machines
A Study of Atypical Animacy

NG NNTANTAN



Animacy in Linguistics

 Animacy is the property of being alive

* Linguistic animacy of a given entity tends to align wit
biological animacy

... but not always:

“He exclaimed; the machine has heard you: it moves!”

The Penny Library of Fomous Books, 1895, Publ: George Newnes

* Machines sit at the fuzzy boundary between animacy anc
inanimacy (Yamamoto, 1999): deliberate or unconscious



Detecting living machines: motivation

19thC Britain: a society being transformed by industrializ:

How machines have been imagined in the 19th century f
mechanical objects to living beings, and even human-li
that feel, think, kill, and love

lifeless

Trace this phenomenon at scale: through time, space, ide

Relevant for today’s discussion of of the impact of techno
society (Alan Turing, 1950: “Can machines think?”)



19thC Machines animacy dataset
Gathering data to annotate

e Goal: create a dataset of animacy of machines

e Original corpus: 19thC BL Books, =48,200, =4.9B tokens

e \We extracted sentences in English containing machine worc
(machine, engine, locomotive...)

e \We extracted interesting sentences through pooling using di
methods



19thC Machines animacy dataset
Annotation

Annotation was challenging, even for domain experts.

“No, no, to her mother poor Fraulein was not a woman, a heart,
a soul; she was just a machine.”

Into an Unknown World. A novel, 1897, J.S. Winter

Animacy (true/false): true if the machine is represented as havin
characteristics (maybe implicit) distinctive of biologically animate
human-specific skills, feelings, or emotion.

Humanness (true/false): true if the machine is represented as sentie
capable of specifically human emotions.



Target

engine
engine

locomotive

machine

machines
machinery

Sentence

In December, the first steam fire engine was received, and tried on the shore of
Lake Monona, with one thousand feet of hose.

It was not necessary for Jakie to slow down in order to allow the wild engine to
come up with him; she was coming up at every revolution of her wheels.

Nearly a generation had been strangely neglected to grow up un-Americanized,
and the private adventurer and the locomotive were the untechnical missionaries

to open a way for the common school.

The worst of it was, the people were surly; not one would get out of our way until
the last minute, and many pretended not to see us coming, though the machine,
held in by the brake, squeaked a pitiful warning.

Our servants, like mere machines, move on their mercenary track without feeling.
We have everywhere water power to any desirable extent, suitable for propelling
all kinds of machinery.

Animacy Humanness

0

1




Approach in a nutshell

BERT, predict the missing word in the sentence:

girl
man
prince

one

boy

princess
bird
voice
lady
angel
wolf
queen
witch
king
sister

brother

8.1641
8.0409
7.4537
7.2818
6.9801
6.6766
6.6638
6.6378
6.5472
6.4725
6.4654
6.3818
6.3068
6.2712
6.1635

6.1291

24



Determining animacy

e Assumption: given a context requiring an
animate entity, a contextualized LM
predicts tokens corresponding to
conventionally animate entities.

e For each token in top predicted tokens:

o Disambiguate to most probable WordNet sense

o Determine the animacy of the sense using
Wordnet hierarchy of nouns

e Threshold and cutoff are found through
experimentation.

entity

(.

|
O

physical_entity

Iiving_thing]
>
O
organism
T
O
person
I WordNet encloses
relations between
girl word senses




A Language Model is meant to be a faithful representation of th
language that has been used to train it.

“They were told that the [ MASK]| stopped workin

BERT language models trained on...

Pre 1850 text: 1850-1875 text: 1875-1890 text: 1890-

man 5.3291 men 10.7655 men 10.2048 mercury 8.0446
prisoners 4.9758 | people 9.497 miners 7.6654 machinery 7.4067
men 4.885 miners 9.249 machines 7.4062 machine 7.2903
book 4.6477 engine 8.0428 people 7.2991 mine 7.274
people 4.556 women 8.0126 engine 7.232 mill 7.057

one 4.4271 company 7.7261 labourers 7.0957 men 7.0257
slaves 4.4034 machine 7.6021 engines 6.7786 engine 6.9966
air 4.1329 labourers 7.5987  engineers 6.5642 lead 6.9177

water 4.1148 machines 7.5012 machine 6.4712 miners 6.7764



Experiments: baselines

 Most frequent class

» Classification approach
* Classifiers: SVMs (word embeddings, TFIDF) and BERT Class
* I|nputs:
® targetExp: target EXDFESSiOI’l

* targetExp + ctxt: target expression + context (3 token left and righ
* maskedExp + ctxt: masked target expression + context (3 token left

« LSTM sequential tagging approach




Stories 19thC Machines
Precision Recall F-Score Map | Precision Recall F-Score  Map

Most frequent class | 031 0.5 0.383  0.623 0.336 0.5 0402  0.318

SVM TFIDF: targetExp 0911 0.893 0902  0.928 0.696 0.713 0.704 0474
SVM WordEmb: targetExp 0.927 0.919 0923  0.954 0.694 0.711 0.702  0.499
BERTC Classifier: targetExp 0.951 0.948 0949  0.985 0.698 0.715 0.706 0.51

SVM TFIDF: targetExp + ctxt 0.734 0.739 0.737  0.859 0.688 0.71 0.699  0.651
SVM WordEmb: targetExp + ctxt 0.758 0.742 0.75 0.876 0.728 0.531 0.614 0481
BERTC Classifier: targetExp + ctxt 0.931 0.926 0929  0.978 0.695 0.721 0.708  0.721

SVM TFIDF: maskedExp + ctxt 0.674 0.677 0.675  0.804 0.592 0.6 0.596  0.498
SVM WordEmb: maskedExp + ctxt 0.674 0.678 0.676  0.809 0.518 0.52 0.519  0.339
BERTClassifier: maskedExp + ctxt 0.855 0.852 0.854  0.951 0.687 0.696 0.692  0.603

SeqModel: LSTM 0.952 0.948 0.95 0.949 0.697 0.719 0.708  0.482

MaskPredict: BERT-base 0.739 0.703 0.72 0.848 0.719 0.742 0.73 0.74
MaskPredict: BERT-base +ctxt 0.839 0.774 0.806  0.892 0.758 0.778 0.768  0.795
MaskPredict: fitl9thBERT +ctxt 0.758 0.775 0.766  0.777
MaskPredict: early |I9thBERT +ctxt 0.799 0.773 0.786  0.784




Stories 19thC Machines
Precision Recall F-Score Map | Precision Recall F-Score  Map

Most frequent class | 031 0.5 0.383  0.623 0.336 0.5 0402  0.318

SVM TFIDF: targetExp 0911 0.893 0902  0.928 0.696 0.713 0.704 0474
SVM WordEmb: targetExp 0.927 0.919 0923  0.954 0.694 0.711 0.702  0.499
BERTC Classifier: targetExp 0.951 0.948 0949  0.985 0.698 0.715 0.706 0.51

SVM TFIDF: targetExp + ctxt 0.734 0.739 0.737  0.859 0.688 0.71 0.699  0.651
SVM WordEmb: targetExp + ctxt 0.758 0.742 0.75 0.876 0.728 0.531 0.614 0481
BERTC Classifier: targetExp + ctxt 0.931 0.926 0929  0.978 0.695 0.721 0.708  0.721

SVM TFIDF: maskedExp + ctxt 0.674 0.677 0.675  0.804 0.592 0.6 0.596  0.498
SVM WordEmb: maskedExp + ctxt 0.674 0.678 0.676  0.809 0.518 0.52 0.519  0.339
BERTClassifier: maskedExp + ctxt 0.855 0.852 0.854  0.951 0.687 0.696 0.692  0.603

SeqModel: LSTM 0.952 0.948 0.95 0.949 0.697 0.719 0.708  0.482

MaskPredict: BERT-base 0.739 0.703 0.72 0.848 0.719 0.742 0.73 0.74
MaskPredict: BERT-base +ctxt 0.839 0.774 0.806  0.892 0.758 0.778 0.768  0.795
MaskPredict: fitl9thBERT +ctxt 0.758 0.775 0.766  0.777
MaskPredict: early |I9thBERT +ctxt 0.799 0.773 0.786  0.784




Stories 19thC Machines
Precision Recall F-Score Map | Precision Recall F-Score  Map

Most frequent class | 031 0.5 0.383  0.623 0.336 0.5 0402  0.318

SVM TFIDF: targetExp 0911 0.893 0902  0.928 0.696 0.713 0.704 0474
SVM WordEmb: targetExp 0.927 0.919 0923  0.954 0.694 0.711 0.702  0.499
BERTC Classifier: targetExp 0.951 0.948 0949  0.985 0.698 0.715 0.706 0.51

SVM TFIDF: targetExp + ctxt 0.734 0.739 0.737  0.859 0.688 0.71 0.699  0.651
SVM WordEmb: targetExp + ctxt 0.758 0.742 0.75 0.876 0.728 0.531 0.614 0481
BERTC Classifier: targetExp + ctxt 0.931 0.926 0929  0.978 0.695 0.721 0.708  0.721

SVM TFIDF: maskedExp + ctxt 0.674 0.677 0.675  0.804 0.592 0.6 0.596  0.498
SVM WordEmb: maskedExp + ctxt 0.674 0.678 0.676  0.809 0.518 0.52 0.519  0.339
BERTClassifier: maskedExp + ctxt 0.855 0.852 0.854  0.951 0.687 0.696 0.692  0.603

SeqModel: LSTM 0.952 0.948 0.95 0.949 0.697 0.719 0.708  0.482

MaskPredict: BERT-base 0.739 0.703 0.72 0.848 0.719 0.742 0.73 0.74
MaskPredict: BERT-base +ctxt 0.839 0.774 0.806  0.892 0.758 0.778 0.768  0.795
MaskPredict: fitl9thBERT +ctxt - - - - 0.758 0.775 0.766  0.777
MaskPredict: early |I9thBERT +ctxt - - - - (0799 0.773 0.786  0.784 )




A Reproducible Experimental Setting

Living Machines:
A Study of Atypical Animacy

This repository provides underlying code and materials for the paper 'Living Machines: A Study of Atypical
Animacy' (COLING2020).

Table of contents

o |Installation

o Directory structure

e Description of the codes
o Datasets and resources
o Evaluation results

o Citation

e Acknowledgements

e License

https://github.com/Living-with-machines/AtypicalAnimacy



Future work

 Develop new methods for targeted sense disambiguation
for conducting animacy detection at scale

« Distinction between animacy and humanness

* relation with the process of dehumanization through the langua
of mechanization

« Examine biases and social changes embedded in the
language models

* In-depth study of the contextual cues that grant animacy
and humanness.



DeezyMatch:
A Deep Learning Approach to
Fuzzy String Matching for
Entity Linking

NG NNTANTAN



Motivation

Place names identified in news
articles that refer to
Ashton-under-Lyne:

Ashton-under-Lyne ™\
Ashtonunder-line
ASHTONCNDER-LYNE
Ashton-under-lyne
Ashtonunder-Lyne
ASHTON-UXDER-LYNE
Ashton-cnder-Ltne
Aditon-under-line
Asbtcn-under-Lyne
Ashton
ASHTON-UNDER-LYNE

/

Problem

We want to link to a knowledge base (e.g. Wikidata)
e But high degree of name variation!!
e And there are 822,161 Wikidata UK place names

Ashton—under-Lyne (Q659803)

market town in the Metropolitan Borough of Tameside, Greater Manchester, England

Traditional approaches to (fuzzy) string matching:

(1) Exact string matching

(2) Calculate string similarity between a query and
the 822,161 potential place names, and sort by most
similar candidates: very time consuming!!




DeezyMatch: introduction

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Pair classifier Candidate ranker Hosseini et al. (2020)



DeezyMatch: architecture

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Query-candidate

pairs dataset:
Training/Evaluation

A4

Embedding
(character, n-gram, word)

&

RNN/GRU/LSTM

(Bi-directional, multilayer) |

Shared

weights/biases

(Bi-

RNN/GRU/LSTM
directional, multilayer)

S

Combine
representations

!

Prediction

Fully-connected layers

A4

Pair classifier

Candidate ranker

Hosseini et al. (2020)



DeezyMatch: architecture

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Query-candidate

pairs dataset:
Training/Evaluation

A4

Embedding
(character, n-gram, word)

&

RNN/GRU/LSTM

(Bi-directional, multilayer) |

Shared

weights/biases

RNN/GRU/LSTM

(Bi-directional, multilayer)

~

Combine
representations

!

~

Fully-connected layers

A4

Prediction

All candidate
mentions

Query
mention(s)

——— —

Output vector representations
for queries and candidates

P ——

Rank results according to
— — | vector distances, cosine similarities, or
model prediction scores

Pair classifier

Candidate ranker

Hosseini et al. (2020)



DeezyMatch: architecture

A flexible deep learning approach to fuzzy string matching and candidate ranking.

Vectors for
A it Query all candidate mentions
mentions mention(s) are computed only once

Query-candidate

pairs dataset:
Training/Evaluation

Embedding Adaptive searching
(character, n-gram, word) algorithm applicable to

/ \ large KBs and query sets

RNN/GRU/LSTM i Shared " RNN/GRU/LSTM | || _ _ __,| Output vector representations
(Bi-directional, multilayer) | weights/biases (Bi-directional, multilayer) for queries and candidates

Combine
representations

!

Fully-connected layers

o ———— ]
Dimension 2

Rank results according to /
Prediction [——— — | vector distances, cosine similarities, or | 5
model prediction scores step

b,

Dimension 1

Pair classifier Candidate ranker Hosseini et al. (2020)



DeezyMatch: features

A free, open-source software library written in
Python for fuzzy string matching and candidate
ranking:

- Easy-to-use interface

- Various deep neural network architectures for training new
classifiers.

- User can change the architecture (RNN, GRU or LSTM),
hyperparameters and preprocessing steps via input file.

from DeezyMatch import train
from DeezyMatch import inference

# train a new model

train (input_file_path,
dataset_train_path,
model_name)

# model inference

inference (input_file_path,
dataset_inference_path,
pretrained_model_path)

Hosseini et al. (2020)



Train: Dataset-2
Eval : Dataset-2

Train: Dataset-1 + 2
Eval : Dataset-2

F1 score

Train: Dataset-1
Eval : Dataset-2

o
~

0.6

0.5

=G
== GRU
==

RNN
=== skyline 1 —== skyline 1
— .= skyline 2 ==¥a skyline 2
----- baseline -===+ baseline
P escstasasalsssssaianaaiesssusssnnsssnissinsaseninsaniasssdany Lashasasdsinnnssansasansaissssiabssenanussessasssssusnssnandes
o (@] (@] (@] O o o o o o o (@]
nN (@] o (@] o o n o o (@] o o
o~ o o o o o o (@] o) (@] o o
[o0] O o < < (o] (e} o < <
— m . O e 0] — m . (o) o 0]
#entries #entries

Hosseini et al. (2020)



DeezyMatch: features

A free, open-source software library written in
Python for fuzzy string matching and candidate
ranking:

- Easy-to-use interface

- Various deep neural network architectures for training new
classifiers.

- User can change the architecture (RNN, GRU or LSTM),
hyperparameters and preprocessing steps via input file.

- Fine-tuning a pretrained model; transfer learning.

- Extensive documentation:
https:/github.com/Living-with-machines/DeezyMatch

from DeezyMatch import train
from DeezyMatch import inference

# train a new model

train (input_file_path,
dataset_train_path,
model_name)

# model inference

inference (input_file_path,
dataset_inference_path,
pretrained_model_path)

model A

o
©

o
©

== GRU
=—a=RNN
===+ skyline 1
—-- skyline 2
----- baseline

F1 score
I
~

=
o

o©
wn

#entries

Hosseini et al

. (2020)


https://github.com/Living-with-machines/DeezyMatch

DeezyMatch: performance

Pair-classifier performance as measured by F-score compared with other methods:

Santos WG:en OCR
LevDam 0.70 0.74 0.76
Santos et al. (2018a) 0.82 0.92 0.95
DeezyMatch 0.89 0.94 0.95

DeezyMatch (DM) candidate ranker performance compared to LevDam(LD) and exact. T/q: "Time

per query" on CPU.

P@1 MAP@10 MAP@20 T/q
ArgM:exact 0.69 - - -
ArgM:LD 0.78 0.72 0.70 Os
ArgM:DM 0.78 0.76 0.74 0.3s
WOTR:exact 0.86 - - -
WOTR:LD 0.92 0.84 0.80 31.6s
WOTR:DM 0.93 0.90 0.87 0.7s
FMP:exact 0.77 - - -
FMP:LD 0.92 0.82 0.76 14.1s
FMP:DM 0.85 0.82 0.78 0.7s

Hosseini et al. (2020)
Coll Ardanuy et al. (2020b)



README.md ) 2

A Flexible Deep Neural Network Approach to Fuzzy String Matching

DeezyMatch can be applied for performing the following tasks:

« Fuzzy string matching
* Record linkage
+ Candidate selection for entity linking systems

+ Toponym matching

Table of contents

« Installation and setup
« Data and directory structure in tutorials

* Run DeezyMatch as a Python module or via command line
Quick tour

°

°

Train a new model

°

Finetune a pretrained model
Model inference

°

o

Generate query and candidate vectors

°

Candidate ranker and assembling vector representations

°

Candidate ranking on-the-fly
Tips / Suggestions on DeezyMatch functionalities

°

« Examples on how to run DeezyMatch

* Reproduce Fig. 2 of DeezyMatch's paper, EMNLP2020
* How to cite DeezyMatch

« Credits

Installation

. .. . . Hosseini et al. (2020)
https://github.com/Living-with-machines/DeezyMatch Coll Ardanuy et al. (2020b)



https://github.com/Living-with-machines/DeezyMatch

README.md

A Flexible Deep Neural Network Approach to Fuzzy String Matching

DeezyMatch can be applied for performing the following tasks:

« Fuzzy string matching

* Record linkage

+ Candidate selection for entity linking systems
+ Toponym matching

Table of contents

« Installation and setup
« Data and directory structure in tutorials

* Run DeezyMatch as a Python module or via command line
o Quick tour

o Train a new model

o Finetune a pretrained model

o Model inference

o Generate query and candidate vectors

o Candidate ranker and assembling vector representations
o Candidate ranking on-the-fly

o Tips / Suggestions on DeezyMatch functionalities

Examples on how to run DeezyMatch

Reproduce Fig. 2 of DeezyMatch's paper, EMNLP2020
How to cite DeezyMatch

Credits

.

Installation

¥ master - DeezyMatch / figs /| EMNLP2020_figures / fig2 / Gotofile  Addfile ~

kasra-hosseini Add information about models to the notebook

I inputs * Move notebooks to a new directory: figs/EMNLP2020_figures/fig2
[ Fig2_EMNLP_inference.ipynb Add information about models to the notebook

[ Fig2_EMNLP_plot_results.ipynb Add information about models to the notebook

[ Fig2_EMNLP_training.ipynb Add information about models to the notebook

[ README.md * Move notebooks to a new directory: figs/EMNLP2020_figures/fig2
README.md

Reproduce Fig. 2 of DeezyMatch's paper

The three notebooks in this directory can be used to reproduce Fig. 2 of DeezyMatch's paper:
Hosseini, Nanni and Coll Ardanuy (2020), DeezyMatch: A Flexible Deep Learning Approach to Fuzzy String Matching, EMNLP: Sy
* Fig2_EMNLP_training.ipynb : train and fine-tune a suit of pair classifiers.

* Fig2_EMNLP_inference.ipynb : model inference using the models trained in the Fig2 EMNLP_training.ipyn notebook.
* Fig2 EMNLP_plot_results.ipynb : plot the results of model inference done in the Fig2_EMNLP_inference notebook.

cfdcb58 on 10 Nov 2020 D History

5 months ago
5 months ago
5 months ago
5 months ago

5 months ago

7

https://github.com/Living-with-machines/DeezyMatch

Hosseini et al. (2020)
Coll Ardanuy et al. (2020b)



https://github.com/Living-with-machines/DeezyMatch

Current work
(very early stage!)

Linking a directory of
over 12K train stations
to Wikidata using
DeezyMatch.

Evolution of stations
between 1800 and
1900.

Stations are colored
by the first company
operating the line.

Glasgow

Belfast

Dublin

Manchester

Birmingham

London

Amst




Lessons learned

NG NNTANTAN



How to brainstorm ideas together

e HypGen: hypothesis generation group

e |deaslLab

e NLP reading group

e Computer vision for digital heritage interest gro
e Humanities & data science discussion group




How to embed best RSE practices

e Offering git-flow overviews
e Being available for informal support (Code & Coff
e Having milestones independent from conference
e Having regular stand-up meetings

e Coding together and reviewing each other’s code



Conceptualization
Mariona Coll Ardanuy'*
Daniel CS Wilson'®

Reproducibility
Kasra Hosseini
Federico Nanni

Data Curation
Kaspar Beelen
Mariona Coll Ardanuy
Federico Nanni
Giorgia Tolfo

Methodology
Mariona Coll Ardanuy
Federico Nanni'
Kasra Hosseini'

Interpretation
Kaspar Beelen
Mariona Coll Ardanuy
Katherine McDonough'*
Daniel CS Wilson
Ruth Ahnert’
Jon Lawrence*
Giorgia Tolfo?

Annotation
Giorgia Tolfo
Ruth Ahnert
Kaspar Beelen
Mariona Coll Ardanuy
Jon Lawrence
Katherine McDonough
Federico Nanni
Daniel CS Wilson

Implementation
Federico Nanni
Kasra Hosseini

Mariona Coll Ardanuy
Kaspar Beelen'?

Historical Analysis
Daniel CS Wilson
Katherine McDonough
Kaspar Beelen
Jon Lawrence

Writing and Editing
Mariona Coll Ardanuy
Federico Nanni
Ruth Ahnert
Kaspar Beelen
Kasra Hosseini
Jon Lawrence
Katherine McDonough
Barbara McGillivray'-
Daniel CS Wilson

Supervision
Barbara McGillivray
Ruth Ahnert

Project Management
Barbara McGillivray
Ruth Ahnert
Mariona Coll Ardanuy




<

\

Thank you! Questions?

NG NNTANTAN



\$

Finding Machines with 2
Dictionary

NG NNTANTAN



Finding Machines with a Dictionary
The Goals

Overarching aim of the project:
- Study the language of mechanisation
Specific NLP research question:

- Where do the machines live?
- Or: How to define machines and detect their presence in

historical documents?

General NLP task:

- how to trace the manifestation of concept X, Y, Z ina
time-sensitive manner?




Finding Machines with a Dictionary
The Problem

Problem: find mentions of “machines” (the token as
the concept)

Solution(?): Exploit information and structure of th
English Dictionary and Thesaurus) to algorithmicall
mentions of machines in text



Finding Machines with a Dictionary
Squeezing information from dictionaries

Problem: find mentions of “machines” (the token as
the concept)

Solution(?): Exploit information and structure of t
English Dictionary and Thesaurus) to algorithmical
mentions of machines in text



Finding Machines with a Dictionary
Exploiting sense level information

Example for lemma id: machine_nnO1

Sense 1:

Sense id: machine_nn01-38476096

Definition: “figurative. A living being considered to move or act
automatically or mechanically ...”

Quotation: {id: ..., text : “... force men and women and children to
degrade themselves into machines as wage-slaves”, year : 1910, etc.}
Semantic class: [['1', '8835', '25507", '29189']]

Sense 2:

etc.

Sense id: machine_nnO1-XXXXXXX



Finding Machines with a Dictionary
Exploiting sense level information

Example for lemma id: machine_nnO1

Sense 1:

Sense id: machine_nn01-38476096

Definition: “figurative. A living being considered to move or act
automatically or mechanically ...”

Quotation: {id: ..., text : “... force men and women and children to
degrade themselves into machines as wage-slaves”, year : 1910, etc.}
Semantic class: [['1’, '8835', '25507', '29189']]

Sense 2:

etc.

Sense id: machine_nnO1-XXXXXXX



Finding Machines with a Dictionary
Exploiting thesaurus structure

machine_nn01

lemma
senses machine_nn01-384x ... machine_nn01-384x
synonyms car nn01-384x ... engine_nn01-384x

siblings and descendants wheel_nn01-384x



Finding Machines with a Dictionary
Exploiting thesaurus structure

machine_nn01

lemma \

machine_nn01-394y

/\

synonyms car_nn01-494x engine_nn01-385u

senses machine_nn01-384x

siblings and descendants wheel nn01-84x



Finding Machines with a Dictionary
Task Definition: Defining the concept

Input:

- A query lemma L with Q query senses
- A (set of) seed sense(s) S € Q
- A set of rules for expansion R

R € {seed, synonym, sibling, descendant}

{L,S,R} Returns C

- A set of senses related to S, which we think of as
representing the “concept”



Finding Machines with a Dictionary
Expanding the set of senses

In: {machine_nn01, {machine_nn01-384y}, synonym

Out: {machine_nn01-384y, locomotive_nn01-3920,
engine_nn01-93y, ...}

-> these are labelled 1, the remainder O



Finding Machines with a Dictionary
Expanding the quotations

[They sell sewing-machines., 1889, machine_nn01-3

[The locomotive was moving fast., 1860,
locomotive_nn01-320x, 1]

[She walks like a machine., 1904, machine_nn01-39
[He works as a boiler, 1854, boiler-nn01-54y, 0]



Finding Machines with a Dictionary
Expanding the quotations

Experiments with binary classification:
Baseline (adaptation of Hu et al. 2019)

- For all senses s in C (produced by {Q,S,R})
- Label associated quotations as 1; Rest as 0

- For each labelled quotations (text with target words)

- E.g....(force men and women and children to degrade themselves into machines
as wage-slaves, 1)

- Obtain contextualized vector of target word, and average vectors by
category (v_0, v_1)
- “Concept embedding” for C and not-C
- For each word w in sent take argmax(sim(v_0, w(v)), sim(v_1, w(v)))



Finding Machines with a Dictionary
Expanding the set of senses

They sell sewing-machines. 054
The[locomotive]was moving fast. 097
Class 1

vector class 1

vector class 0

Class O
She walks like a|machine.

0.97

0.54

He works as a|boiler.




Finding Machines with a Dictionary

Expanding the set of senses

They sell sewing-machines.

The[locomotive]was moving fast.

| bought a flying|machine

Class O

She walks like a|machine.

He works as a

boiler.

vector class 1

vector class 0




Finding Machines with a Dictionary

Expanding the set of senses

They sell sewing-machines], 1889

The[locomotive

Class 1

| bought a flying

Class O
She walks like

machine/, 1880

almachine.| 1904

He works as a

boiler.

1854

was moving fast., 1860

vector class 1

vector class 0

0.54




Finding Machines with a Dictionary

Expanding the set of senses

They sell sewing-machines], 1889

The[locomotive

Class 1

| bought a flying

Class O
She walks like

machine/, 1880

almachine.| 1904

He works as a

boiler.

1854

was moving fast., 1860

vector class 1

vector class 0




Finding Machines with a Dictionary

Improve on baseline by making disambiguation time/sensitive

- Weighted or selective averaging for constructing the

concept embedding (quotations closer in time have
more weight etc)

- Adapt BERT for historical WSD
- Fine-tune BERT-models on historical data

Adapt pre-training task (SenseBERT), finettune
with additional information (GLOSSBERT)

Adapt disambiguation step (Nearest Neighbour, Stack
FC layer, etc.)



Training
corpora

60% of OED

Application
corpora

(test) 20% of OED
quotations

containing
lemma in BL

(validation) 20% of
OED quotations

Embedding
models

Pre-trained BERT

BERT token
embeddings fine-
tuned

Trained type
embeddings

A\

Disambigliation

Y

Baselines

Baseline
(e.g. McGregor &
McGillivray 2018)

Output




Questions

T NN



DeezyMatch

Example timeline

Week(s) Month(s)

Turn ideas into
DS /SE
(sub-)tasks

Start
Hypothesis,
initial
questions
EDA
Exploratory Data
Analysis

Design flowchart

Hack week(s)
Exploring available
datasets / libraries /
methods

Identify limitations
of existing methods or
datasets

Do we need new
method(s) for our
tasks?

Collect more data?

Set up
infrastructure

Repositories
(e.g., GitHub), project
board for planning /

sprint meetings

Public repos from the
beginning
(if at all possible)

Create DB

Baselines

1
I o
I cr e |
reproducibility,
develop a new library? | (documentation

Results and
analysis

|
|
1
1
|
: Write paper
|
|
I

functig




