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What is parallel computing? 
Traditionally, software has been written for serial 
computation:  

–  To be run on a single computer having a single core.  
–  A problem is broken into a discrete series of instructions.  
–  Instructions are executed one after another.  
–  Only one instruction may execute at any moment in time.  

 

Parallel computing is the simultaneous use of multiple 
compute resources to solve a computational problem:  

–  A problem is broken into discrete parts that can be solved 
concurrently.  

–  Instructions from each part executed simultaneously on 
different cores.  

 



Why parallel computing? 
•  Save time and/or money:  

–  in theory, more resources we use, shorter the time to finish, with 
potential cost savings.  

•  Solve larger problems:  
–  when the problems are so large and complex, it is impossible to 

solve them on a single computer, e.g. "Grand Challenge" problems 
requiring PetaFLOPS and PetaBytes of computing resources 
(en.wikipedia.org/wiki/Grand_Challenge).  

–  Many scientific problems can be tackled only by increasing 
processor performances. 

–  Highly complex or memory greedy problems can be solved only 
with greater computing capabilities. 

 

•  Limits to serial computing: physical and practical reasons  



Who needs parallel computing? 
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 •  has a large number of 
independent jobs (e.g. 
processing video files, 
genome sequencing, 
parametric studies) 

•  uses serial applications 

High Throughput 
Computing (HTC) 
(many computers): 
•  dynamic 

environment 
•  multiple 

independent small-
to-medium jobs 

•  large amounts of 
processing over 
long time 

•  loosely connected 
resources (e.g. grid) R

es
ea

rc
he

r 2
 

 

•  developed serial code and 
validated it on small 
problems 

•  to publish, needs some 
“big problem” results 

High Performance 
Computing (HPC) 
(single parallel 
computer): 
•  static 

environment 
•  single large scale 

problems 
•  tightly coupled 

parallelism 
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•  needs to run large parallel 
simulations fast (e.g.  
molecular dynamics, 
computational fluid 
dynamics, cosmology) 



How to parallelise an application? 
Automatic parallelisation tools: 
•  compiler support for vectorisation of operations (SSE and AVX) 

and threads parallelisation (OpenMP) 
•  specific tools exists but limited practical use  
•  all successful applications require intervention and steering 

Parallel code development requires: 
•  programming languages (with support for parallel libraries, APIs) 
•  parallel programming standards (such as MPI and OpenMP) 
•  compilers 
•  performance libraries/tools (both serial and parallel) 
 

But…, more that anything, it requires understanding: 
•  the algorithms (program, application, solver, etc.): 

•  the factors that influence parallel performance 



How to parallelise an application? 
•  First, make it work! 

–  analyse the key features of your parallel algorithms: 
•  parallelism: the type of parallel algorithm that can use parallel agents 
•  granularity: the amount of computation carried out by parallel agents 
•  dependencies: algorithmic restrictions on how the parallel work can be 

scheduled 
–  re-program the application to run in parallel and validate it 

 
•  Then, make it work well! 

–  Pay attention to the key aspects of an optimal parallel execution: 
•  data locality (computation vs. communication) 
•  scalability (linear scaling is the holy grail: execution time is inversely 

proportional with the number of processors)  

–  Use profilers and performance tools to identify problems. 



Task Parallelism  

Task parallelism 
Thread (or task) parallelism is based on parting the operations of the 

algorithm. 

 

If an algorithm is implemented with series of independent operations these 
can be spread throughout the processors thus realizing program 
parallelisation. 

 begin 

end 

task 1 

task 2 

task 3 

task 4 

cpu 
1 

cpu 
2 

cpu 
3 

cpu 
4 

Features 
•  Different independent sets of 

instructions applied to single 
set (or multiple sets) of data. 

•  May lead to work imbalance 
and may not scale well and 
performance limited by the 
slowest process. 

Thread (or task) parallelism is based on executing 
concurrently different parts of the algorithm. 



Data Parallelism 

 

 

Data parallelism 
Data parallelism means spreading data to be computed through the 

processors. 

 

The processors execute merely the same operations, but on diverse data sets. 
This often means distribution of array elements across the computing units. 

 begin 

end 

task 

cpu 
1 

cpu 
2 

cpu 
3 

cpu 
4 

i<4? 

data array[4] yes 

no 

Data parallelism means spreading data to be computed 
through the processors. 
 

Features 
•  The same sets of instructions applied to different (parts of the) data. 
•  Processors work only on data assigned to them and communicate 

when necessary. 
•  Easy to program, scale well. 
•  Inherent in program loops. 



Granularity 

•  Coarse 
–  parallelise large amounts of the total workload 
–  in general, the coarser the better 
–  minimal inter-processor communication 
–  can lead to imbalance  

•  Fine 
–  parallelise small amounts of the total workload (e.g. inner loops) 
–  can lead to unacceptable parallel overheads (e.g. communication) 



Dependencies 
Data dependence

In the following example the i index loop can be parallelized:

DO I = 1, N

DO J = 1, N

A(J,I) = A(J-1,I) + B(J,I)

END DO

END DO

fortranfortran For (i=1; i<n; i++){

for (j=1 ;j<n; j++){

a[j][i] = a[j-1][i] + b[j][i];

}

}

c/c++c/c++

In this loop parallelization is dependent on the K value: 

If K > N-M or K < M-N parallelization is straightforward.

END DO }

DO I = M, N

A(I) = A(I-K) + B(I)/C(I)

END DO

fortranfortran For (i=m; i<n; i++){

a[i] = a[i-k] + b[i]/c[i];

}

c/c++c/c++

Dictate the order of operations, imposes limits on 
parallelism and requires parallel synchronisation. 
 

In this example the i index loop can be parallelized:   
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END DO

END DO

fortranfortran For (i=1; i<n; i++){

for (j=1 ;j<n; j++){

a[j][i] = a[j-1][i] + b[j][i];

}

}

c/c++c/c++

In this loop parallelization is dependent on the K value: 

If K > N-M or K < M-N parallelization is straightforward.

END DO }

DO I = M, N

A(I) = A(I-K) + B(I)/C(I)

END DO

fortranfortran For (i=m; i<n; i++){

a[i] = a[i-k] + b[i]/c[i];

}

c/c++c/c++

In this loop parallelization is dependent on the k value:  

If k > M-N or k < N-M  parallelization is straightforward. 



Parallel computing models 

Concepts and Terminology 
• Shared Memory = a computer architecture where all processors have 

direct access to common physical memory. Also, it describes a model 
where parallel tasks can directly address and access the same logical 
memory locations. 

• Distributed Memory = network based memory access for physical 
memory that is not common. As a programming model, tasks can only 
logically "see" local machine memory and must use communications to 
access memory on other machines where other tasks are executing. 
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Shared memory Distributed memory 

•  Each processor has direct access  
to common physical memory 
(e.g. multi-processors, cluster 
nodes). 

•  Agent of parallelism: the thread 
(program = collection of threads). 

•  Threads exchange information 
implicit ly by reading/writing 
shared variables. 

•  Programming standard: OpenMP. 

•  Local processor memory is invisible to 
all other processors, network based 
memory access (e.g. computer 
clusters). 

•  Agent of parallelism: the process 
(program = collection of processes). 

•  Exchanging information between 
processes requires communications. 

•  Programming standard: MPI.  



OpenMP 

http://www.openmp.org 
 

API instructing the compiler what can be done in parallel 
(high-level programming). 
•  Consisting of:  

–  compiler directives 
–  runtime library functions  
–  environment variables 

 
 

•  Supported by most compilers for Fortran and C/C++. 

•  Usable as serial code (threading ignored by serial compilation). 

•  By design, suited for data parallelism. 

 

Application User

Directive
Compiler

Environment
Variables

Runtime Library

Threads in Operating System



OpenMP 
Threads are generated automatically at runtime and scheduled by 
the OS. 
•  Thread creation / destruction overhead. 
•  Minimise the number of times parallel regions are entered/exited. 
 
 

 

Execution model

master

!$OMP PARALLEL

Master thread only

#pragma omp parallel {

!$OMP END PARALLEL

All threads

Master thread only
}

Parallel region 

Fortran syntax C syntax 



OpenMP - example 
Objective: vectorise a loop, to map the sin operation to vector x in parallel. 
Idea: instruct the compiler on what to parallelise (the loop) and how (private 
and shared data) and let it do the hard work. 

In C: 
  
 
 
 

 
In Fortran: 
  
 
 
 
 

Number of threads is set by environment variable OMP_NUM_THREADS or 
programmed for using the RTL function omp_set_num_threads(). 

 

#pragma omp parallel for shared(x, y, J) private(j) 
for (j=0; j<J; j++) { 
   y[j] = sin(x[j]); 
} 

$omp parallel do shared(x, y, J) private(j) 
do j = 1, J 
y(j) = sin(x(j)) 
end do 
$omp end parallel do 



http://www.mpi-forum.org/ 
 

MPI is a specification for a Distributed-Memory API designed 
by a committee for Fortran, C and C++ languages. 
 

•  Two versions: 
–  MPI 1.0, quickly and universally adopted (most used and useful) 
–  MPI 2.0, is a superset of MPI 1.0 (adding parallel I/O, dynamic 

process management and direct remote memory operations) but 
is not so popular. 

•  Many implementations 
–  open software (MPICH, MVAPICH, OpenMPI) 
–  vendor (HP/Platform, SGI MPT, Intel). 
 

MPI - Message Passing Interface 



MPI implementation components 

•  Libraries covering the functionality specified by the standard. 
•  Header files, specifying interfaces, constants etc.  

–  C/C++: mpi.h  
–  Fortran: mpif.h   

•  Tools to compile and link MPI applications (wrappers around 
serial compilers) 
–  Fortran: mpif77, mpif90 
–  C: mpicc 
–  C++: mpicxx, mpiCC  

•  An MPI application launcher (mapping processes to CPUs) 
  mpirun -np <n processes> <executable> 

 



MPI - overview  

•  Processes (MPI tasks) are mapped to processors (CPU cores). 

•  Start/stop mechanisms:  
–  MPI_Init() to initialise processes 
–  MPI_Finalize() to finalise and clean up processes 

•  Communicators: 
–  a communicator is a collection (network) of processes 
–  default is MPI_COMM_WORLD, which is always present and includes 

all processes requested by mpirun 
–  only processes included in a communicator can communicate 

•  Identification mechanism: 
–  process id: MPI_Comm_rank() 
–  communicator size (number of processes): MPI_Comm_size() 

 



MPI - communication 
Inter-process communication (the cornerstone of MPI 
programming): 
•  one-to-one communication (send, receive) 
•  one-to-many communication (broadcasts, scatter) 
•  many-to-one communication (gather) 
•  many-to-many communication (allgather) 
•  reduction (e.g. global sums, global max/min) (a special many-to-one!) 
•  process synchronisation (barriers) 

Master-slave 

Domain decomposition 



MPI - example 
#include "mpi.h"  
#include <stdio.h> 
#include <stdlib.h> 
int main( int argc, char *argv[])  
{  
   int my_rank, numprocs; char message[100]; int dest, tag, source; MPI_Status 
status;  
   MPI_Init(&argc,&argv);  
   MPI_Comm_rank(MPI_COMM_WORLD,&my_rank); 
   MPI_Comm_size(MPI_COMM_WORLD,&numprocs);  
   if (my_rank != 0)  
   { 

 sprintf(message,"Greetings from process %d !\0",my_rank); dest = 0; 
 tag = 0; 
 MPI_Send(message, sizeof(message), MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

    } else {  
        for (source = 1; source <= (numprocs-1); source++)  
        { 

   MPI_Recv(message, 100, MPI_CHAR,  source, tag, MPI_COMM_WORLD, &status);  
   printf("%s\n",message);  

        } 
    } 
 MPI_Finalize();   
} 

Hello world! (output) 
If the program is executed with two processes the output is: 
  
Greetings from process 1!  
  
If the program is executed with four processes the output is: 
  
Greetings from process 1! 
Greetings from process 2! 
Greetings from process 3! 

 



Distributed vs shared memory 
application feature shared memory / OpenMP distributed memory / MPI 

parallelisation •  easy, incremental (parallelising small 
parts of the code at a time) 

•  mostly parallelise loops 

•  relatively difficult (tends to require 
a all-or-nothing approach) 

•  can be used in a wider range of 
contexts 

scaling (hardware view) both expensive (few vendors provide 
scalable solutions) and cheap (multi-
core workstations) 

•  relatively cheap (most vendors 
provide systems with 1000’s of 
cores) 

•  runs on both shared and 
distributed systems 

scaling (programming view) small/simple programs are easy and fast 
to implement 

even small/simple programs involve 
large programming complexity 

maintainability code is relatively easy to understand 
and maintain 

code is relatively difficult to 
understand 

readability small increase in code size, readable 
code 

tends to add a lot of extra coding for 
message handling, code readable 
with difficulty 

debugging •  requires special compiler support 
•  debuggers are extension of serial 

ones 

•  no special compiler support (just 
libraries) 

•  specialised debuggers  



Distributed vs shared memory paradigm 
Which problems are suited to Distributed Memory Processing? 

•  Embarrassingly parallel problems (independent tasks), e.g. Monte 
Carlo methods. 

•  Computation bound problems (heavy local computation with little data 
exchange between processes). 
–  models with localised data, e.g. PDEs solved using finite elements/volumes 

(CFD, CHMD, etc.) 
–  other models with distributed data: molecular dynamics, etc. 

 

Which problems are suited to Shared Memory Processing? 

•  Communication bound problems (much data shared between threads) 
–  models with non-local data: e.g. Newtonian particle dynamics 
–  Fourier transform, convolutions. 

 



Accelerators - motivation 
Moore’s Law (1965): 
•  the number of transistors in CPU 

design doubles roughly every 2 
years 

•  backed by clock speed increase,  
this has correlated with 
exponentially increasing CPU 
performance for at least 40 years. 

 

This meant the same old (single-
threaded) code just runs faster on 
newer hardware. No more!   
While the “law” still holds, clock 
frequency of general purpose CPUs 
was “frozen” in 2004 at around 2.5-3.0 
GHz and design has gone multicore. 
 

Performance improvements are now coming from the increase in the number of 
cores on a processor.  



Accelerators – different philosophies 

Design of accelerators optimized for 
numerically intensive computation by 
a massive fine grained parallelism:  

•  many-cores (several hundreds) 
•  leightweight threads and high 

execution throughput 
•  large number of threads to overcome 

long-latency memory accesses.    

Design of CPUs optimized for 
sequential code and coarse 
grained parallelism: 

•  multi-core 
•  sophisticated control logic unit 
•  large cache memories to 

reduce access latencies. 

Accelerator 



Accelerators - examples 

NVIDIA Tesla K20X GPU  
2688 cores 
6GB GDDR5 memory  
250 GB/sec memory bandwidth  
3.95Tflops/sec of peak SP 

Intel Xeon Phi 5110 MIC 
60 cores                
8GB GDDR5 
320 GB/s memory bandwidth 
240 HW threads (4 per core) 
512-bit wide SIMD capability  



Accelerators – programming model 

Applications should use both CPUs and 
the accelerator, where the latter is 
exploited as a coprocessor: 
•  Serial sections of the code are performed 

by CPU (host).   
•  The parallel ones (that exhibit rich amount 

of data parallelism) are performed by 
accelerator (device).   

•  Host and device have separate memory 
spaces: need to transfer data in a manner 
similar to “one-sided” message passing. 

 
Several languages/API: 
•  GPU: CUDA, pyCUDA, OpenCL, OpenACC  
•  Xeon Phi: OpenMP, Intel TBB, Cilk 

GPU 



Example – CUDA  

 

void main()  
{ 
  …. 
  cudaMalloc(da,sizeof(da)); 
  cudaMemcpy(da,a,N,cudaMemcpyHostToDevice); 
  increment_gpu<<<4,4>>>(da,b,16); 
  cudaMemcpy(a,da,N,cudaMemcpyDeviceToHost);  
  …. 
} 

One thread per iteration! 

DEVICE 

HOST 



OpenACC  

ü Supported by CRAY and PGI (slightly 
d i f f e r e n t i m p l e m e n t a t i o n s , b u t 
converging) and soon GCC.  

ü  “Easier” code development – supports 
incremental development. 

ü possible performance loss – about 20% 
compared to CUDA. 

ü Can be “combined” with CUDA code. 

http://www.openacc-standard.org/ 
 
GPU directive based API (corresponds to “OpenMP” for 
CPU parallel programming). 



Accelerators programming 
•  Accelerators suitable for massively parallel algorithms and require 

low-level programming (architecture bound) to have good 
performances. 

•  They can effectively help in reducing the time to solution. However 
the effectiveness is strongly dependent on the algorithm and the 
amount of computation. 

•  The effort to get codes efficiently running on accelerators is, in 
general, big, irrespectively of the programming model adopted. 
However portability and maintainability of the code push toward 
directive based approaches (at the expenses of some performance). 

•  All the (suitable) computational demanding parts of the code should be 
ported. Data transfer should be minimized or hidden. Host-Device 
overlap is hard to achieve.  



Hybrid parallel programming 

Hybrid programming (MPI+OpenMP, MPI+CUDA) is a 
growing trend. 
 

•  Take the positive of all models. 
•  Suits the memory hierarchy on “fat-nodes” (nodes with large memory 

and many cores). 
•  Scope for better scaling than pure MPI (less inter-node 

communication) on modern clusters. 
 

  
 

Giovanni Erbacci
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Available in almost all main
(processor families.  

However, care must be taken in
using automatic multi-threading:
Can, in some case, slow down
applications.

!Più nodi SMP (Symmetric Multiprocessor) connessi da 
una rete di interconnessione. 

!Su ogni nodo è mappato (almeno) un processo MPI e 
più threads OpenMP

Il modello ibrido

104



Questions? 


