
Parallel Computing: a brief discussion

Marzia Rivi

Astrophysics Group
Department of Physics & Astronomy

Research Programming Social – Nov 10, 2015

What is parallel computing?
Traditionally, software has been written for serial
computation:

–  To be run on a single computer having a single core.
–  A problem is broken into a discrete series of instructions.
–  Instructions are executed one after another.
–  Only one instruction may execute at any moment in time.

Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem:

–  A problem is broken into discrete parts that can be solved
concurrently.

–  Instructions from each part executed simultaneously on
different cores.

Why parallel computing?
•  Save time and/or money:

–  in theory, more resources we use, shorter the time to finish, with
potential cost savings.

•  Solve larger problems:
–  when the problems are so large and complex, it is impossible to

solve them on a single computer, e.g. "Grand Challenge" problems
requiring PetaFLOPS and PetaBytes of computing resources
(en.wikipedia.org/wiki/Grand_Challenge).

–  Many scientific problems can be tackled only by increasing
processor performances.

–  Highly complex or memory greedy problems can be solved only
with greater computing capabilities.

•  Limits to serial computing: physical and practical reasons

Who needs parallel computing?

R
es

ea
rc

he
r 1

 •  has a large number of
independent jobs (e.g.
processing video files,
genome sequencing,
parametric studies)

•  uses serial applications

High Throughput
Computing (HTC)
(many computers):
•  dynamic

environment
•  multiple

independent small-
to-medium jobs

•  large amounts of
processing over
long time

•  loosely connected
resources (e.g. grid) R

es
ea

rc
he

r 2

•  developed serial code and
validated it on small
problems

•  to publish, needs some
“big problem” results

High Performance
Computing (HPC)
(single parallel
computer):
•  static

environment
•  single large scale

problems
•  tightly coupled

parallelism
 R

es
ea

rc
he

r 3

•  needs to run large parallel
simulations fast (e.g.
molecular dynamics,
computational fluid
dynamics, cosmology)

How to parallelise an application?
Automatic parallelisation tools:
•  compiler support for vectorisation of operations (SSE and AVX)

and threads parallelisation (OpenMP)
•  specific tools exists but limited practical use
•  all successful applications require intervention and steering

Parallel code development requires:
•  programming languages (with support for parallel libraries, APIs)
•  parallel programming standards (such as MPI and OpenMP)
•  compilers
•  performance libraries/tools (both serial and parallel)

But…, more that anything, it requires understanding:
•  the algorithms (program, application, solver, etc.):

•  the factors that influence parallel performance

How to parallelise an application?
•  First, make it work!

–  analyse the key features of your parallel algorithms:
•  parallelism: the type of parallel algorithm that can use parallel agents
•  granularity: the amount of computation carried out by parallel agents
•  dependencies: algorithmic restrictions on how the parallel work can be

scheduled
–  re-program the application to run in parallel and validate it

•  Then, make it work well!

–  Pay attention to the key aspects of an optimal parallel execution:
•  data locality (computation vs. communication)
•  scalability (linear scaling is the holy grail: execution time is inversely

proportional with the number of processors)

–  Use profilers and performance tools to identify problems.

Task Parallelism

Task parallelism
Thread (or task) parallelism is based on parting the operations of the

algorithm.

If an algorithm is implemented with series of independent operations these
can be spread throughout the processors thus realizing program
parallelisation.

 begin

end

task 1

task 2

task 3

task 4

cpu
1

cpu
2

cpu
3

cpu
4

Features
•  Different independent sets of

instructions applied to single
set (or multiple sets) of data.

•  May lead to work imbalance
and may not scale well and
performance limited by the
slowest process.

Thread (or task) parallelism is based on executing
concurrently different parts of the algorithm.

Data Parallelism

Data parallelism
Data parallelism means spreading data to be computed through the

processors.

The processors execute merely the same operations, but on diverse data sets.
This often means distribution of array elements across the computing units.

 begin

end

task

cpu
1

cpu
2

cpu
3

cpu
4

i<4?

data array[4] yes

no

Data parallelism means spreading data to be computed
through the processors.

Features
•  The same sets of instructions applied to different (parts of the) data.
•  Processors work only on data assigned to them and communicate

when necessary.
•  Easy to program, scale well.
•  Inherent in program loops.

Granularity

•  Coarse
–  parallelise large amounts of the total workload
–  in general, the coarser the better
–  minimal inter-processor communication
–  can lead to imbalance

•  Fine
–  parallelise small amounts of the total workload (e.g. inner loops)
–  can lead to unacceptable parallel overheads (e.g. communication)

Dependencies
Data dependence

In the following example the i index loop can be parallelized:

DO I = 1, N

DO J = 1, N

A(J,I) = A(J-1,I) + B(J,I)

END DO

END DO

fortranfortran For (i=1; i<n; i++){

for (j=1 ;j<n; j++){

a[j][i] = a[j-1][i] + b[j][i];

}

}

c/c++c/c++

In this loop parallelization is dependent on the K value:

If K > N-M or K < M-N parallelization is straightforward.

END DO }

DO I = M, N

A(I) = A(I-K) + B(I)/C(I)

END DO

fortranfortran For (i=m; i<n; i++){

a[i] = a[i-k] + b[i]/c[i];

}

c/c++c/c++

Dictate the order of operations, imposes limits on
parallelism and requires parallel synchronisation.

In this example the i index loop can be parallelized:

Data dependence
In the following example the i index loop can be parallelized:

DO I = 1, N

DO J = 1, N

A(J,I) = A(J-1,I) + B(J,I)

END DO

END DO

fortranfortran For (i=1; i<n; i++){

for (j=1 ;j<n; j++){

a[j][i] = a[j-1][i] + b[j][i];

}

}

c/c++c/c++

In this loop parallelization is dependent on the K value:

If K > N-M or K < M-N parallelization is straightforward.

END DO }

DO I = M, N

A(I) = A(I-K) + B(I)/C(I)

END DO

fortranfortran For (i=m; i<n; i++){

a[i] = a[i-k] + b[i]/c[i];

}

c/c++c/c++

In this loop parallelization is dependent on the k value:

If k > M-N or k < N-M parallelization is straightforward.

Parallel computing models

Concepts and Terminology
• Shared Memory = a computer architecture where all processors have

direct access to common physical memory. Also, it describes a model
where parallel tasks can directly address and access the same logical
memory locations.

• Distributed Memory = network based memory access for physical
memory that is not common. As a programming model, tasks can only
logically "see" local machine memory and must use communications to
access memory on other machines where other tasks are executing.

 Shared Memory Distributed Memory

Concepts and Terminology
• Shared Memory = a computer architecture where all processors have

direct access to common physical memory. Also, it describes a model
where parallel tasks can directly address and access the same logical
memory locations.

• Distributed Memory = network based memory access for physical
memory that is not common. As a programming model, tasks can only
logically "see" local machine memory and must use communications to
access memory on other machines where other tasks are executing.

 Shared Memory Distributed Memory

Shared memory Distributed memory

•  Each processor has direct access
to common physical memory
(e.g. multi-processors, cluster
nodes).

•  Agent of parallelism: the thread
(program = collection of threads).

•  Threads exchange information
implicit ly by reading/writing
shared variables.

•  Programming standard: OpenMP.

•  Local processor memory is invisible to
all other processors, network based
memory access (e.g. computer
clusters).

•  Agent of parallelism: the process
(program = collection of processes).

•  Exchanging information between
processes requires communications.

•  Programming standard: MPI.

OpenMP

http://www.openmp.org

API instructing the compiler what can be done in parallel
(high-level programming).
•  Consisting of:

–  compiler directives
–  runtime library functions
–  environment variables

•  Supported by most compilers for Fortran and C/C++.

•  Usable as serial code (threading ignored by serial compilation).

•  By design, suited for data parallelism.

Application User

Directive
Compiler

Environment
Variables

Runtime Library

Threads in Operating System

OpenMP
Threads are generated automatically at runtime and scheduled by
the OS.
•  Thread creation / destruction overhead.
•  Minimise the number of times parallel regions are entered/exited.

Execution model

master

!$OMP PARALLEL

Master thread only

#pragma omp parallel {

!$OMP END PARALLEL

All threads

Master thread only
}

Parallel region

Fortran syntax C syntax

OpenMP - example
Objective: vectorise a loop, to map the sin operation to vector x in parallel.
Idea: instruct the compiler on what to parallelise (the loop) and how (private
and shared data) and let it do the hard work.

In C:

In Fortran:

Number of threads is set by environment variable OMP_NUM_THREADS or
programmed for using the RTL function omp_set_num_threads().

#pragma omp parallel for shared(x, y, J) private(j)
for (j=0; j<J; j++) {
 y[j] = sin(x[j]);
}

$omp parallel do shared(x, y, J) private(j)
do j = 1, J
y(j) = sin(x(j))
end do
$omp end parallel do

http://www.mpi-forum.org/

MPI is a specification for a Distributed-Memory API designed
by a committee for Fortran, C and C++ languages.

•  Two versions:
–  MPI 1.0, quickly and universally adopted (most used and useful)
–  MPI 2.0, is a superset of MPI 1.0 (adding parallel I/O, dynamic

process management and direct remote memory operations) but
is not so popular.

•  Many implementations
–  open software (MPICH, MVAPICH, OpenMPI)
–  vendor (HP/Platform, SGI MPT, Intel).

MPI - Message Passing Interface

MPI implementation components

•  Libraries covering the functionality specified by the standard.
•  Header files, specifying interfaces, constants etc.

–  C/C++: mpi.h
–  Fortran: mpif.h

•  Tools to compile and link MPI applications (wrappers around
serial compilers)
–  Fortran: mpif77, mpif90
–  C: mpicc
–  C++: mpicxx, mpiCC

•  An MPI application launcher (mapping processes to CPUs)
 mpirun -np <n processes> <executable>

MPI - overview

•  Processes (MPI tasks) are mapped to processors (CPU cores).

•  Start/stop mechanisms:
–  MPI_Init() to initialise processes
–  MPI_Finalize() to finalise and clean up processes

•  Communicators:
–  a communicator is a collection (network) of processes
–  default is MPI_COMM_WORLD, which is always present and includes

all processes requested by mpirun
–  only processes included in a communicator can communicate

•  Identification mechanism:
–  process id: MPI_Comm_rank()
–  communicator size (number of processes): MPI_Comm_size()

MPI - communication
Inter-process communication (the cornerstone of MPI
programming):
•  one-to-one communication (send, receive)
•  one-to-many communication (broadcasts, scatter)
•  many-to-one communication (gather)
•  many-to-many communication (allgather)
•  reduction (e.g. global sums, global max/min) (a special many-to-one!)
•  process synchronisation (barriers)

Master-slave

Domain decomposition

MPI - example
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
 int my_rank, numprocs; char message[100]; int dest, tag, source; MPI_Status
status;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 if (my_rank != 0)
 {

 sprintf(message,"Greetings from process %d !\0",my_rank); dest = 0;
 tag = 0;
 MPI_Send(message, sizeof(message), MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 } else {
 for (source = 1; source <= (numprocs-1); source++)
 {

 MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);
 printf("%s\n",message);

 }
 }
 MPI_Finalize();
}

Hello world! (output)
If the program is executed with two processes the output is:

Greetings from process 1!

If the program is executed with four processes the output is:

Greetings from process 1!
Greetings from process 2!
Greetings from process 3!

Distributed vs shared memory
application feature shared memory / OpenMP distributed memory / MPI

parallelisation •  easy, incremental (parallelising small
parts of the code at a time)

•  mostly parallelise loops

•  relatively difficult (tends to require
a all-or-nothing approach)

•  can be used in a wider range of
contexts

scaling (hardware view) both expensive (few vendors provide
scalable solutions) and cheap (multi-
core workstations)

•  relatively cheap (most vendors
provide systems with 1000’s of
cores)

•  runs on both shared and
distributed systems

scaling (programming view) small/simple programs are easy and fast
to implement

even small/simple programs involve
large programming complexity

maintainability code is relatively easy to understand
and maintain

code is relatively difficult to
understand

readability small increase in code size, readable
code

tends to add a lot of extra coding for
message handling, code readable
with difficulty

debugging •  requires special compiler support
•  debuggers are extension of serial

ones

•  no special compiler support (just
libraries)

•  specialised debuggers

Distributed vs shared memory paradigm
Which problems are suited to Distributed Memory Processing?

•  Embarrassingly parallel problems (independent tasks), e.g. Monte
Carlo methods.

•  Computation bound problems (heavy local computation with little data
exchange between processes).
–  models with localised data, e.g. PDEs solved using finite elements/volumes

(CFD, CHMD, etc.)
–  other models with distributed data: molecular dynamics, etc.

Which problems are suited to Shared Memory Processing?

•  Communication bound problems (much data shared between threads)
–  models with non-local data: e.g. Newtonian particle dynamics
–  Fourier transform, convolutions.

Accelerators - motivation
Moore’s Law (1965):
•  the number of transistors in CPU

design doubles roughly every 2
years

•  backed by clock speed increase,
this has correlated with
exponentially increasing CPU
performance for at least 40 years.

This meant the same old (single-
threaded) code just runs faster on
newer hardware. No more!
While the “law” still holds, clock
frequency of general purpose CPUs
was “frozen” in 2004 at around 2.5-3.0
GHz and design has gone multicore.

Performance improvements are now coming from the increase in the number of
cores on a processor.

Accelerators – different philosophies

Design of accelerators optimized for
numerically intensive computation by
a massive fine grained parallelism:

•  many-cores (several hundreds)
•  leightweight threads and high

execution throughput
•  large number of threads to overcome

long-latency memory accesses.

Design of CPUs optimized for
sequential code and coarse
grained parallelism:

•  multi-core
•  sophisticated control logic unit
•  large cache memories to

reduce access latencies.

Accelerator

Accelerators - examples

NVIDIA Tesla K20X GPU
2688 cores
6GB GDDR5 memory
250 GB/sec memory bandwidth
3.95Tflops/sec of peak SP

Intel Xeon Phi 5110 MIC
60 cores
8GB GDDR5
320 GB/s memory bandwidth
240 HW threads (4 per core)
512-bit wide SIMD capability

Accelerators – programming model

Applications should use both CPUs and
the accelerator, where the latter is
exploited as a coprocessor:
•  Serial sections of the code are performed

by CPU (host).
•  The parallel ones (that exhibit rich amount

of data parallelism) are performed by
accelerator (device).

•  Host and device have separate memory
spaces: need to transfer data in a manner
similar to “one-sided” message passing.

Several languages/API:
•  GPU: CUDA, pyCUDA, OpenCL, OpenACC
•  Xeon Phi: OpenMP, Intel TBB, Cilk

GPU

Example – CUDA

void main()
{
 ….
 cudaMalloc(da,sizeof(da));
 cudaMemcpy(da,a,N,cudaMemcpyHostToDevice);
 increment_gpu<<<4,4>>>(da,b,16);
 cudaMemcpy(a,da,N,cudaMemcpyDeviceToHost);
 ….
}

One thread per iteration!

DEVICE

HOST

OpenACC

ü Supported by CRAY and PGI (slightly
d i f f e r e n t i m p l e m e n t a t i o n s , b u t
converging) and soon GCC.

ü  “Easier” code development – supports
incremental development.

ü possible performance loss – about 20%
compared to CUDA.

ü Can be “combined” with CUDA code.

http://www.openacc-standard.org/

GPU directive based API (corresponds to “OpenMP” for
CPU parallel programming).

Accelerators programming
•  Accelerators suitable for massively parallel algorithms and require

low-level programming (architecture bound) to have good
performances.

•  They can effectively help in reducing the time to solution. However
the effectiveness is strongly dependent on the algorithm and the
amount of computation.

•  The effort to get codes efficiently running on accelerators is, in
general, big, irrespectively of the programming model adopted.
However portability and maintainability of the code push toward
directive based approaches (at the expenses of some performance).

•  All the (suitable) computational demanding parts of the code should be
ported. Data transfer should be minimized or hidden. Host-Device
overlap is hard to achieve.

Hybrid parallel programming

Hybrid programming (MPI+OpenMP, MPI+CUDA) is a
growing trend.

•  Take the positive of all models.
•  Suits the memory hierarchy on “fat-nodes” (nodes with large memory

and many cores).
•  Scope for better scaling than pure MPI (less inter-node

communication) on modern clusters.

Giovanni Erbacci

Programmazione Ibrida MPI+OpenMP I

6

Available in almost all main
(processor families.

However, care must be taken in
using automatic multi-threading:
Can, in some case, slow down
applications.

!Più nodi SMP (Symmetric Multiprocessor) connessi da
una rete di interconnessione.

!Su ogni nodo è mappato (almeno) un processo MPI e
più threads OpenMP

Il modello ibrido

104

Questions?

