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What is Profiling? 

Measuring application performance 

Usually the aim is to reduce runtime 

Simple profiling: 

How long does an operation take? 

Advanced profiling: 

Why does an operation take a long time? 

 

Measuring Performance 



3  

Profiling Workflow 

1. Find which parts of the code take time 

2. Work out why they take time 

3. Optimize 

4. GOTO 1. 
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GPU Performance 

• A processor has two key performance limits 

• Floating point throughput (FLOP/s) 

• Peak ~6 TFLOP/s 

• Memory throughput (GB/s) 

• Peak ~300 GB/s (DRAM) 

• GPUs also need parallelism 

• This is how they can be so fast 

Quick overview 
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Profiling Tools 
General GPU Profiling 

• nvprof 

 

• NVIDIA Visual profiler 

• Standalone (nvvp) 

• Integrated into Nsight Eclipse 

Edition (nsight) 
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• Nsight Visual Studio Edition 

From NVIDIA 

• Tau Performance System 

 

• VampirTrace 

 

• PAPI CUDA component 

 

Third Party 
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In this talk 

We will focus on nvprof and nvvp 

nvprof => NVIDIA Profiler 

Command line 

nvvp => NVIDIA Visual Profiler 

GUI based 
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Case Study 
Recurrent Neural Network - LSTM 

• Uses: 

• Natural language processing 

• Sequences of images (eg. video) 

• Bio/medical 

• We will look at optimisation of a single iteration of LSTM 
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LSTM 

 

• Inputs and outputs are “batched 
vectors”.  

• ie. A minibatch 

• Typical length is 256-2048 

• Typical batch size is 32-128 

Viewed as a black box 

LSTM  

Cell hn-1, cn-1 hn, cn 

in 

hn 
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LSTM Details 
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LSTM Profile 
Using nvprof 

>> nvprof ./RNN 512 64  

==6805== NVPROF is profiling process 6805, command: ./RNN 512 64 

==6805== Profiling application: ./RNN 512 64  

==6805== Profiling result: 

Time(%)      Time     Calls       Avg       Min       Max  Name 

 88.46%  512.07us         8  64.009us  60.449us  75.618us  maxwell_sgemm_128x64_tn 

  4.26%  24.673us         8  3.0840us  2.9120us  4.1600us  pw_biasAdd(float*, float*, int, int) 

  1.93%  11.200us         5  2.2400us  2.0160us  2.9760us  pw_vecAdd(float*, float*, float*, int) 

  1.92%  11.136us         3  3.7120us  3.4560us  4.1920us  [CUDA memcpy DtoD] 

  1.39%  8.0650us         3  2.6880us  2.3040us  3.4570us  pw_sigmoid(float*, float*, int) 

  1.15%  6.6560us         3  2.2180us  1.9840us  2.6560us  pw_vecMul(float*, float*, float*, int) 

  0.88%  5.0880us         2  2.5440us  2.3040us  2.7840us  pw_tanh(float*, float*, int) 
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LSTM Profile 
Using nvvp 

• Can run interactively 

• Or use nvprof –o a.nvp and import file 
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SGEMM Performance 
Back of the envelope 

• SGEMM is a well known operation 

• With the inputs chosen each should perform about 33 million floating 
point operations 

• 33 million / 64us = ~516 GFLOPs. 

• GPU can do ~6000 GFLOPs! 

• What is wrong? 
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SGEMM Performance 
What is wrong? 

• Collect performance metrics: 

• Either via nvprof --analysis-metrics … 

• Or interactively 

• A lot of information available 

• Guided analysis helps filter this down 

• Leads me to: “Optimization: Increase the number of blocks executed by the 
kernel.” 

• Expose more parallelism! 
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[A1][h] = [y1] 

[A2][h] = [y2] 

[A3][h] = [y3] 

[A4][h] = [y4] 

SGEMM Performance 
Improvement #1 

•  As our matrix operations share inputs we can combine them 

A    [h] =   y  
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SGEMM Performance 
Improvement #1 

Time(%)      Time     Calls       Avg       Min       Max  Name 

 88.46%  512.07us         8  64.009us  60.449us  75.618us  maxwell_sgemm_128x64_tn 

 

Time(%)      Time     Calls       Avg       Min       Max  Name 

 75.97%  213.19us         2  106.59us  104.90us  108.29us  maxwell_sgemm_128x64_tn 

 

After: 

Before: 
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SGEMM Performance 
Improvement #2 

• We are still doing two independent matrix products 

• We can combine them  

• Or compute them simultaneously 

[h] =   y  

B1 

B2 

B3 

B4 

[i] =    z  

A1 

A2 

A3 

A4 
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SGEMM Performance 
Matrix overlapping 



19  

Final optimization 
Fuse element-wise operations 
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LSTM 

Optimisation Runtime Speedup 

Naïve  661us (1.0x) 

Combined matrices 357us 1.9x 

Matrix streaming 250us 2.6x 

Fused element-wise ops 136us 4.9x 

Performance 
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Profiling 

Profiling helped to quickly identify the slow parts 

It showed that SGEMM was underusing the GPU 

This was fixed by exposing more parallelism 

It showed that the pointwise operations were taking a significant 
proportion of our runtime 

This was fixed by fusing them 

 

 

 

5x performance improvement 
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April 4-7, 2016 | Silicon Valley | #GTC16 
www.gputechconf.com 

CONNECT 

Connect with technology 
experts from NVIDIA and 
other leading organizations 

LEARN 

Gain insight and hands-on 
training through the 
hundreds of sessions and 
research posters 

DISCOVER 

See how GPU technologies 
are creating amazing 
breakthroughs in important 
fields such as deep learning 

INNOVATE 

Hear about disruptive 
innovations as early-stage 
companies and startups 
present their work 

The world’s most important event for GPU developers 

http://www.gputechconf.com/
http://www.gputechconf.com/attend/who-attends
http://www.gputechconf.com/attend/sessions

