
Jeremy Appleyard, February 2016

Profiling GPU Code

2

What is Profiling?

Measuring application performance

Usually the aim is to reduce runtime

Simple profiling:

How long does an operation take?

Advanced profiling:

Why does an operation take a long time?

Measuring Performance

3

Profiling Workflow

1. Find which parts of the code take time

2. Work out why they take time

3. Optimize

4. GOTO 1.

4

GPU Performance

• A processor has two key performance limits

• Floating point throughput (FLOP/s)

• Peak ~6 TFLOP/s

• Memory throughput (GB/s)

• Peak ~300 GB/s (DRAM)

• GPUs also need parallelism

• This is how they can be so fast

Quick overview

5

Profiling Tools
General GPU Profiling

• nvprof

• NVIDIA Visual profiler

• Standalone (nvvp)

• Integrated into Nsight Eclipse

Edition (nsight)

• Nsight Visual Studio Edition

From NVIDIA

• nvprof

• NVIDIA Visual profiler

• Standalone (nvvp)

• Integrated into Nsight Eclipse

Edition (nsight)

• Nsight Visual Studio Edition

From NVIDIA
• nvprof

• NVIDIA Visual profiler

• Standalone (nvvp)

• Integrated into Nsight Eclipse

Edition (nsight)

• Nsight Visual Studio Edition

From NVIDIA

• Tau Performance System

• VampirTrace

• PAPI CUDA component

Third Party

6

In this talk

We will focus on nvprof and nvvp

nvprof => NVIDIA Profiler

Command line

nvvp => NVIDIA Visual Profiler

GUI based

7

Case Study
Recurrent Neural Network - LSTM

• Uses:

• Natural language processing

• Sequences of images (eg. video)

• Bio/medical

• We will look at optimisation of a single iteration of LSTM

8

LSTM

• Inputs and outputs are “batched
vectors”.

• ie. A minibatch

• Typical length is 256-2048

• Typical batch size is 32-128

Viewed as a black box

LSTM

Cell hn-1, cn-1 hn, cn

in

hn

9

LSTM Details

Wf Wo Wz Wi

Rf

Ro

Rz

Ri

+

+

+

+ σ

tanh

σ

σ

mul

mul

+ tanh

mul

ht-1

xt

ht

ct-1 ct
bxf bxo bxz bxi

bhf

bhf

bhf

bhf

10

LSTM Profile
Using nvprof

>> nvprof ./RNN 512 64

==6805== NVPROF is profiling process 6805, command: ./RNN 512 64

==6805== Profiling application: ./RNN 512 64

==6805== Profiling result:

Time(%) Time Calls Avg Min Max Name

 88.46% 512.07us 8 64.009us 60.449us 75.618us maxwell_sgemm_128x64_tn

 4.26% 24.673us 8 3.0840us 2.9120us 4.1600us pw_biasAdd(float*, float*, int, int)

 1.93% 11.200us 5 2.2400us 2.0160us 2.9760us pw_vecAdd(float*, float*, float*, int)

 1.92% 11.136us 3 3.7120us 3.4560us 4.1920us [CUDA memcpy DtoD]

 1.39% 8.0650us 3 2.6880us 2.3040us 3.4570us pw_sigmoid(float*, float*, int)

 1.15% 6.6560us 3 2.2180us 1.9840us 2.6560us pw_vecMul(float*, float*, float*, int)

 0.88% 5.0880us 2 2.5440us 2.3040us 2.7840us pw_tanh(float*, float*, int)

11

LSTM Profile
Using nvvp

• Can run interactively

• Or use nvprof –o a.nvp and import file

12

SGEMM Performance
Back of the envelope

• SGEMM is a well known operation

• With the inputs chosen each should perform about 33 million floating
point operations

• 33 million / 64us = ~516 GFLOPs.

• GPU can do ~6000 GFLOPs!

• What is wrong?

13

SGEMM Performance
What is wrong?

• Collect performance metrics:

• Either via nvprof --analysis-metrics …

• Or interactively

• A lot of information available

• Guided analysis helps filter this down

• Leads me to: “Optimization: Increase the number of blocks executed by the
kernel.”

• Expose more parallelism!

14

[A1][h] = [y1]

[A2][h] = [y2]

[A3][h] = [y3]

[A4][h] = [y4]

SGEMM Performance
Improvement #1

• As our matrix operations share inputs we can combine them

A [h] = y

15

SGEMM Performance
Improvement #1

Time(%) Time Calls Avg Min Max Name

 88.46% 512.07us 8 64.009us 60.449us 75.618us maxwell_sgemm_128x64_tn

Time(%) Time Calls Avg Min Max Name

 75.97% 213.19us 2 106.59us 104.90us 108.29us maxwell_sgemm_128x64_tn

After:

Before:

16

SGEMM Performance
Improvement #2

• We are still doing two independent matrix products

• We can combine them

• Or compute them simultaneously

[h] = y

B1

B2

B3

B4

[i] = z

A1

A2

A3

A4

17

SGEMM Performance
Improvement #2

• We are still doing two independent matrix products

• We can combine them

• Or compute them simultaneously

[h] = y

B1

B2

B3

B4

[i] = z

A1

A2

A3

A4

18

SGEMM Performance
Matrix overlapping

19

Final optimization
Fuse element-wise operations

20

LSTM

Optimisation Runtime Speedup

Naïve 661us (1.0x)

Combined matrices 357us 1.9x

Matrix streaming 250us 2.6x

Fused element-wise ops 136us 4.9x

Performance

21

Profiling

Profiling helped to quickly identify the slow parts

It showed that SGEMM was underusing the GPU

This was fixed by exposing more parallelism

It showed that the pointwise operations were taking a significant
proportion of our runtime

This was fixed by fusing them

5x performance improvement

22

April 4-7, 2016 | Silicon Valley | #GTC16
www.gputechconf.com

CONNECT

Connect with technology
experts from NVIDIA and
other leading organizations

LEARN

Gain insight and hands-on
training through the
hundreds of sessions and
research posters

DISCOVER

See how GPU technologies
are creating amazing
breakthroughs in important
fields such as deep learning

INNOVATE

Hear about disruptive
innovations as early-stage
companies and startups
present their work

The world’s most important event for GPU developers

http://www.gputechconf.com/
http://www.gputechconf.com/attend/who-attends
http://www.gputechconf.com/attend/sessions

