Profiling GPU Code

Jeremy Appleyard, February 2016

What is Profiling?

Measuring Performance

- Measuring application performance
 - Usually the aim is to reduce runtime
- Simple profiling:
 - How long does an operation take?
- Advanced profiling:
 - Why does an operation take a long time?

Profiling Workflow

- 1. Find which parts of the code take time
- 2. Work out why they take time
- 3. Optimize
- 4. GOTO 1.

GPU Performance

Quick overview

- A processor has two key performance limits
 - Floating point throughput (FLOP/s)
 - Peak ~6 TFLOP/s
 - Memory throughput (GB/s)
 - Peak ~300 GB/s (DRAM)
- GPUs also need parallelism
 - This is how they can be so fast

Profiling Tools

General GPU Profiling

From NVIDIA

- nvprof
- NVIDIA Visual profiler
 - Standalone (nvvp)
 - Integrated into Nsight Eclipse Edition (nsight)
- Nsight Visual Studio Edition

Third Party

- Tau Performance System
- VampirTrace
- PAPI CUDA component

In this talk

- We will focus on nvprof and nvvp
- NVIDIA Profiler
 - Command line
- nvvp => <u>NV</u>IDIA <u>V</u>isual <u>P</u>rofiler
 - GUI based

Case Study

Recurrent Neural Network - LSTM

- Uses:
 - Natural language processing
 - Sequences of images (eg. video)
 - Bio/medical
- We will look at optimisation of a single iteration of LSTM

LSTM Viewed as a black box

- Inputs and outputs are "batched vectors".
 - ie. A minibatch
- Typical length is 256-2048
- Typical batch size is 32-128

LSTM Details

LSTM Profile Using nvprof

>> nvprof ./RNN 512 64							
==6805== NVPROF is profiling process 6805, command: ./RNN 512 64							
==6805== Profiling application: ./RNN 512 64							
==6805==	Profiling	result:					
Time(%)	Time	Calls	Avg	Min	Max	Name	
88.46 %	512.07us	8	64.009us	60.449us	75.618us	maxwell_ sgemm _128x64_tn	
4.26%	24.673us	8	3.0840us	2.9120us	4.1600us	<pre>pw_biasAdd(float*, float*, int, int)</pre>	
1.93%	11.200us	5	2.2400us	2.0160us	2.9760us	<pre>pw_vecAdd(float*, float*, float*, int)</pre>	
1.92%	11.136us	3	3.7120us	3.4560us	4.1920us	[CUDA memcpy DtoD]	
1.39%	8.0650us	3	2.6880us	2.3040us	3.4570us	<pre>pw_sigmoid(float*, float*, int)</pre>	
1.15%	6.6560us	3	2.2180us	1.9840us	2.6560us	<pre>pw_vecMul(float*, float*, float*, int)</pre>	
0.88%	5.0880us	2	2.5440us	2.3040us	2.7840us	<pre>pw_tanh(float*, float*, int)</pre>	

LSTM Profile Using nvvp

- Can run interactively
- Or use nvprof -o a.nvp and import file

🖃 [0] Tesla M40									
Context 1 (CUDA)									
🗆 🍸 MemCpy (DtoD)									
Compute	maxwell_s	maxwel	maxwell	maxwell	maxwell	maxwell	maxwel	maxwel	
L 🍸 90.2% maxwell_sgemm_12	maxwell_s	maxwel	maxwell	maxwell	maxwell	maxwell	maxwel	maxwel	
└ 🍸 4.4% pw_biasAdd(float*, fl									
└ 🍸 1.9% pw_vecAdd(float*, fl									
└ 🍸 1.5% pw_sigmoid(float*, fl									
└ 🍸 1.2% pw_vecMul(float*, flo									
└ 🍸 0.9% pw_tanh(float*, float*									
Streams									
L Default	maxwell_s	maxwel	maxwell	maxwell	maxwell	maxwell	maxwel	maxwel	

Back of the envelope

- SGEMM is a well known operation
- With the inputs chosen each should perform about 33 million floating point operations
- 33 million / 64us = ~516 GFLOPs.
 - GPU can do ~6000 GFLOPs!
- What is wrong?

What is wrong?

- Collect performance metrics:
 - Either via nvprof --analysis-metrics ...
 - Or interactively
- A lot of information available
 - Guided analysis helps filter this down
 - Leads me to: "Optimization: Increase the number of blocks executed by the kernel."
 - Expose more parallelism!

Improvement #1

 $[A_{1}][h] = [y_{1}]$ $[A_{2}][h] = [y_{2}]$ $[A_{3}][h] = [y_{3}]$ $[A_{4}][h] = [y_{4}]$

As our matrix operations share inputs we can combine them

Improvement #1

Before:

 Time(%)
 Time
 Calls
 Avg
 Min
 Max
 Name

 88.46%
 512.07us
 8
 64.009us
 60.449us
 75.618us
 maxwell_sgemm_128x64_tn

After:

 Time(%)
 Time
 Calls
 Avg
 Min
 Max
 Name

 75.97%
 213.19us
 2
 106.59us
 104.90us
 108.29us
 maxwell_sgemm_128x64_tn

SGEMM Performance Improvement #2

- We are still doing two independent matrix products
 - We can combine them
 - Or compute them simultaneously

$$\begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \begin{bmatrix} h \end{bmatrix} = \begin{bmatrix} y \\ y \\ B_1 \\ B_2 \\ B_3 \\ B_4 \end{bmatrix} \begin{bmatrix} i \end{bmatrix} = \begin{bmatrix} z \\ z \\ B_4 \end{bmatrix}$$

Improvement #2

- We are still doing two independent matrix products
 - We can combine them
 - Or compute them simultaneously

$$\begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \begin{bmatrix} h \end{bmatrix} = \begin{bmatrix} y \\ y \\ d_4 \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \end{bmatrix} \begin{bmatrix} i \end{bmatrix} = \begin{bmatrix} z \\ z \\ B_4 \end{bmatrix}$$

Matrix overlapping

Final optimization

Fuse element-wise operations

LSTM Performance

Optimisation	Runtime	Speedup
Naïve	661us	(1.0x)
Combined matrices	357us	1.9x
Matrix streaming	250us	2.6x
Fused element-wise ops	136us	4.9x

Profiling 5x performance improvement

- Profiling helped to quickly identify the slow parts
- It showed that SGEMM was underusing the GPU
 - This was fixed by exposing more parallelism
- It showed that the pointwise operations were taking a significant proportion of our runtime
 - This was fixed by fusing them

April 4-7, 2016 | Silicon Valley | #GTC16 www.gputechconf.com

CONNECT

Connect with technology experts from NVIDIA and other leading organizations

LEARN

Gain insight and hands-on training through the hundreds of sessions and research posters

DISCOVER

See how GPU technologies are creating amazing breakthroughs in important fields such as deep learning

INNOVATE

Hear about disruptive innovations as early-stage companies and startups present their work

The world's most important event for GPU developers