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The Fourth Paradigm: 
Data-Intensive Science



Much of Science is now Data-Intensive

Number of Researchers

Data Volume

• Extremely large data sets
• Expensive to move
• Domain standards
• High computational needs
• Supercomputers, HPC, Grids
e.g. High Energy Physics, Astronomy

• Large data sets
• Some Standards within Domains
• Shared Datacenters & Clusters
• Research Collaborations
e.g. Genomics, Financial

• Medium & Small data sets
• Flat Files, Excel
• Widely diverse data; Few standards
• Local Servers & PCs
e.g. Social Sciences, Humanities

Four “V’s” of Data
•Volume
•Variety
•Velocity
•Veracity

‘The Long Tail of 
Science’ 



Jim Gray, Turing Award Winner



The ‘Cosmic Genome Project’:
The Sloan Digital Sky Survey

• Survey of more than ¼ of the night sky

• Survey produces 200 GB of data per night

• Two surveys in one – images and spectra

• Nearly 2M astronomical objects, including 
800,000 galaxies, 100,000 quasars

• 100’s of TB of data, and data is public

• Started in 1992, ‘finished’ in 2008

The SkyServer Web Service was 
built at JHU by team led by Alex 
Szalay and Jim Gray

The University of Chicago

Princeton University

The Johns Hopkins University

The University of Washington

New Mexico State University

Fermi National Accelerator Laboratory

US Naval Observatory

The Japanese Participation Group

The Institute for Advanced Study

Max Planck Inst, Heidelberg

Sloan Foundation, NSF, DOE, NASA



Open Data: Public Use of the Sloan Data 

• SkyServer web service has 
had over 400 million web

• About 1M distinct users
vs 10,000 astronomers

• >1600 refereed papers!

• Delivered 50,000 hours
of lectures to high schools

 New publishing paradigm: 
data is published before
analysis by astronomers

 Platform for ‘citizen science’ 
with GalaxyZoo project

Posterchild in 21st century data publishing



X-Info
• The evolution of X-Info and Comp-X for each discipline X
• How to codify and represent our knowledge

• Data ingest  
• Managing a petabyte
• Common schema
• How to organize it 
• How to reorganize it
• How to share with others

• Query and Vis tools 
• Building and executing models
• Integrating data and Literature  
• Documenting experiments
• Curation and long-term 

preservation

The Generic Problems

Experiments &
Instruments

Simulations

Literature

Other Archives

facts

facts

facts

facts

Questions

Answers

Slide thanks to Jim Gray



What X-info Needs from Computer Science 
(not drawn to scale)

Science Data 
& Questions

Scientists

Database
To store data

Execute
Queries

Systems

Data Mining
Algorithms

Miners

Question & 
Answer

Visualization

Tools

Slide thanks to Jim Gray



Working Cross-Culture:  
A Way to Engage With Domain Scientists  
• Communicate in terms of scenarios

• Work on a problem that gives 100x benefit
• Weeks/task vs hours/task

• Solve 20% of the problem
• The other 80% will take decades 

• Prototype

• Go from working-to-working: Always have
• Something to show 
• Clear next steps
• Clear goal

• Avoid death-by-collaboration-meetings

Slide thanks to Jim Gray



Thousand years ago – Experimental Science
• Description of natural phenomena

Last few hundred years – Theoretical Science
• Newton’s Laws, Maxwell’s Equations…

Last few decades – Computational Science
• Simulation of complex phenomena

Today – Data-Intensive Science
• Scientists overwhelmed with data sets

from many different sources 

• Data captured by instruments

• Data generated by simulations

• Data generated by sensor networks

The Fourth Paradigm: Data-Intensive Science
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eScience is the set of tools and technologies
to support data federation and collaboration

• For analysis and data mining
• For data visualization and exploration
• For scholarly communication and dissemination

With thanks to Jim Gray

http://es.rice.edu/ES/humsoc/Galileo/Images/Astro/Instruments/hevelius_telescope.gif


Data-Intensive Scientific Discovery

The Fourth Paradigm
Science@Microsoft http://research.microsoft.com

Amazon.com

http://research.microsoft.com/en-us/collaboration/fourthparadigm/default.aspx
mailto:Science@Microsoft
http://research.microsoft.com/
http://www.amazon.com/Fourth-Paradigm-Data-Intensive-Scientific-ebook/dp/B00318D9Y2/ref=sr_1_4?ie=UTF8&s=books&qid=1261412355&sr=8-4


Three Examples of 
Data-Intensive Science



Genomics and Personalized medicine

Use genetic markers (e.g. SNPs) 
to…

 Understand causes of disease

 Diagnose a disease

 Infer propensity to get a disease

 Predict reaction to a drug



Genomics, Machine Learning and the Cloud

• Wellcome Trust data for seven 
common diseases

• Look at all SNP pairs (about 60 
billion)

• Analysis with state-of-the-art 
Machine Learning algorithm 
requires 1,000 compute years and 
produces 20 TB output 

• Using 27,000 compute cores in 
Microsoft’s Cloud, the analysis 
was completed in 13 days 

First result: SNP pair implicated in 
coronary artery disease

The Problem



NSF’s Ocean Observatory Initiative

Slide courtesy of John Delaney



Oceans and Life

Slide courtesy of John Delaney



CEDA: Centre for Environmental Data Analysis

To support environmental science, further environmental 
data archival practices, and develop and deploy new 
technologies to enhance access to data



Centre for Environmental Data Analysis:
JASMIN infrastructure

Part data store, part supercomputer, part private cloud…



End-to end Network Support for 
Data-intensive Research?



UK e-Science Program: Six Key Elements for 
a Global e-Infrastructure (2004)

1. High bandwidth Research Networks

2. Internationally agreed AAA Infrastructure

3. Development Centres for Open Software

4. Technologies and standards for Data Provenance, Curation and 
Preservation

5. Open access to Data and Publications via Interoperable Repositories

6. Discovery Services and Collaborative Tools

Plus:

7.   Supercomputing and HPC resources

8.   Training of Scientific Software Engineers and Data Scientists



The goal of ‘campus bridging’ is to enable the 
seamlessly integrated use among: 

• a researcher’s personal cyberinfrastructure 
• cyberinfrastructure at other campuses
• cyberinfrastructure at the regional, national 

and international levels

so that they all function as if they were 
proximate to the scientist

NSF Task Force on ‘Campus Bridging’ (2011)



What are ‘Science DMZs’ 
and why do we need them?

• The Science DMZ model addresses 
network performance problems seen at 
research institutions

• It creates an environment optimized for 
data-intensive scientific applications 
such as high volume bulk data transfer or 
remote control of experiments

• Most networks designed to support 
general-purpose business operations and 
are not capable of  supporting the data 
movement requirements of data-
intensive science applications Thanks to Eli Dart, LBNL



The Problem of Packet Loss

• Most scientific data 
transfers use TCP 

• Packet loss can cause 
dramatic loss in 
throughput

• TCP interprets packet 
loss as network 
congestion and reduces 
rate of transmission of 
data

The Science DMZ model provides the 
framework for building a network 
infrastructure that is more loss tolerant

Thanks to Eli Dart, LBNL



Need for European adoption of 
‘Science DMZ’ end-to-end network architecture

• Science DMZs implemented at over 100 US universities
• NSF invested more than $60M in DMZ campus cyberinfrastructure

 Need to connect ESFRI Large Experimental Facilities and HPC systems via 
Science DMZs
 Need research funding agencies to work together with GEANT and NRENs 

to support high bandwidth end-to-end connections to researchers at 
institutions
 AAI systems can support industry access to research infrastructure



Creation of European ‘Superfacilities’?
• In the US large  experimental facilities are

creating ‘superfacilities’ to solve advanced
science questions by tightly coupling
distributed resources

• Data volume and analysis needs for many 
experiments are growing faster than the
experimental facility computing resources

• Experimental facilities with the greatest data
growth are integrating:

• Remote HPC resources
• Advanced workflow and analysis tools
• High-performance networks capable of

supporting data-intensive science



STFC Harwell Site Experimental Facilities in UK

ISIS

CLF



Pacific Research Platform
• NSF funding $5M award to UC San Diego and UC

Berkeley to establish a science-driven high-
capacity data-centric “freeway system” on a large
regional scale.

• This network infrastructure will give the research
institutions the ability to move data 1,000 times
faster compared to speeds on today’s Internet.

August 2015

 “PRP will enable researchers to use standard
tools to move data to and from their labs and
their collaborators’ sites, supercomputer centers
and data repositories distant from their campus
IT infrastructure, at speeds comparable to
accessing local disks,” said co-PI Tom DeFanti



Open Science and the US OSTP Memo



US White House Memorandum
on Increased Public Access to Research Results
• Directive requiring the major Federal Funding agencies 

“to develop a plan to support increased public access to the results of 
research funded by the Federal Government.”

• The memorandum defines digital data 

“as the digital recorded factual material commonly accepted in the 
scientific community as necessary to validate research findings including 
data sets used to support scholarly publications, but does not include 
laboratory notebooks, preliminary analyses, drafts of scientific papers, 
plans for future research, peer review reports, communications with 
colleagues, or physical objects, such as laboratory specimens.” 

22 February 2013



Open Access:  2013 as the Tipping Point? 

• US White House Memorandum 22 February 2013

• Global Research Council Action Plan 30 May 2013

• G8 Science Ministers Joint Statement 12 June 2013

• European Union Parliament 13 June 2013

• University of California 2 August 2013



University of California approves Open Access

• UC is the largest public research university in the world 
and its faculty members receive roughly 8% of all 
research funding in the U.S. 

• UC produces 40,000 publications per annum 
corresponding to about 2 – 3 % of all peer-reviewed 
articles in world each year

• UC policy requires all 8000 faculty to deposit full text 
copies of their research papers in the UC eScholarship
repository unless they specifically choose to opt-out 

2 August 2013



The US National Library of Medicine
• The NIH Public Access Policy

ensures that the public has access 
to the published results of NIH 
funded research. 

• Requires scientists to submit final 
peer-reviewed journal manuscripts 
that arise from NIH funds to the 
digital archive PubMed Central upon 
acceptance for publication. 

• Policy requires that these papers 
are accessible to the public on 
PubMed Central no later than 12 
months after publication.

Nucleotide 
sequences

Protein 
sequences

Taxon

Phylogeny MMDB

3 -D 
Structure

PubMed 
abstracts

Complete 
Genomes

PubMed Entrez 
Genomes

Publishers Genome 
Centers

Entrez cross-database search 

http://publicaccess.nih.gov/policy.htm
http://www.pubmedcentral.nih.gov/


• PMC Compliance Rate
• Before legal mandate compliance was 19%

• Signed into law by George W. Bush in 2007

• After legal mandate compliance up to 75%

• NIH have taken further step of announcing in 2013 that they
‘… will hold processing of non-competing continuation awards if 
publications arising from grant awards are not in compliance with the 
Public Access Policy.’

• Since NIH implemented their policy about continuation 
awards
• Compliance rate increasing ½% per month

• By November 2014, compliance rate had reached 86%

NIH  Open Access Compliance?



Serious problems of research reproducibility 
in bioinformatics

During a decade as head of global 
cancer research at Amgen, C. Glenn 
Begley identified 53 "landmark" 
publications -- papers in top journals, 
from reputable labs -- for his team to 
reproduce. 

Result: 47 of the 53 could not be 
replicated!





Linking Publications to Data:
The State of the Art



Links to e-resources

Links to data

Links to objects

Astrophysics Data System ADS



ourt

Literature Data“Seamless Astronomy”
(Tools)

World Wide Telescope

Blogs, Wikis, etc.

TOPCAT

DataScope

ds9

“Registries”

Disclaimer: This slide shows key excerpts from within 

the astronomy community & excludes more general s/w 

that is used, such as Papers, Zotero,  Mendeley, 

EndNote, graphing & statistics packages, data handling 

software, search engines, etc.

Courtesy of Alyssa 
Goodman

http://labs.adsabs.harvard.edu/ui/
http://simbad.u-strasbg.fr/simbad/
http://aladin.u-strasbg.fr/
http://www.flickr.com/photos/66496709@N00/5495030376/


Strasbourg CDS Data Services 



44 % of data 

links from 

2001 broken in 

2011

Pepe et al. 2012

Sustainability of Data Links?



Datacite and ORCID

DataCite

• International consortium to establish easier access to scientific research 
data 

• Increase acceptance of research data as legitimate, citable contributions 
to the scientific record 

• Support data archiving that will permit results to be verified and re-
purposed for future study.

ORCID - Open Research & Contributor ID 

• Aims to solve the author/contributor name ambiguity problem in scholarly 
communications

• Central registry of unique identifiers for individual researchers 

• Open and transparent linking mechanism between ORCID and other 
current author ID schemes. 

• Identifiers can be linked to the researcher’s output to enhance the 
scientific discovery process

http://www.tib-hannover.de/fileadmin/datacite/index.html


Research Reproducibility
and Computational Science



Jon Claerbout and the Stanford Exploration 
Project (SEP) with the oil and gas industry

• Jon Claerbout is the Cecil Green Professor Emeritus of Geophysics at Stanford 
University

• He was one of the first scientists to recognize that the reproducibility of his 
geophysics research required access not only to the text of the paper but also to 
the data being analyzed and the software used to do the analysis

• His 1992 Paper 
introduced an
early version of an 
‘executable paper’ 



2012 ICERM Workshop on Reproducibility in 
Computational and Experimental Mathematics

• The workshop participants noted that computational science poses a 
challenge to the usual notions of ‘research reproducibility’

• Experimental scientists are taught to maintain lab books that contain 
details of the experimental design, procedures, equipment, raw data, 
processing and analysis (but …)

• Few computational experiments are documented so carefully: 

 Typically there is no record of the workflow, no listing of the 
software used to generate the data, and inadequate details of the 
computer hardware the code ran on, the parameter settings and any 
compiler flags that were set



Best Practices for Researchers Publishing
Computational Results

From http://wiki.stodden.net

• Data must be available and accessible
o Data needed for others to reproduce the results

• Code and methods must be available and accessible
o Computer scripts and workflow pipelines

• Citation
o DOIs for both data and software

• Copyright and publisher agreements
o Need only give publisher permission to publish – as for US Government

• Supplemental materials
o Need to follow best practices

http://wiki.stodden.net/


Same Physics, Different Programs?

• Different programs written by different researchers can be used to 
explore the physics of the same complex system

• Programs may use different algorithms and/or different numerical 
methods

• Codes are different but the target physics problem is the same 

• Cannot insist on exact numerical agreement

 Computational reproducibility involves finding ‘similar’ quantitative 
results for the key physical parameters of the system being explored



Research Reproducibility at the LHC





The ATLAS Software

• Software written by around 700 postdocs and grad students

• ATLAS software is 6M lines of code – 4.5M in C++ and 1.5M in Python

• Typical reconstruction task has 400 to 500 software modules

• Software system begins with data acquisition of collision events from 
100M readout channels and then reconstructs particle trajectories

• The reconstruction process requires a detailed Monte Carlo 
simulation of the ATLAS detector taking account of the geometries, 
properties and efficiencies of each subsystem of the detector

• Produces values for the energy and momentum of the tracks 
observed in the detector

• Then find Higgs boson 

Thanks to Gordon Watts, UW







ATLAS Software Engineering Methodologies

• Automated integration testing of modules

• Candidate release code versions tested in depth by running long jobs, 
producing ‘standard’ plots, and detailed comparison with reference 
data sets

• ATLAS uses JIRA tool for bug tracking

• Only after observed differences have been investigated and resolved, 
are new versions of the code released to whole ATLAS collaboration

• ATLAS uses Apache Subversion (SVN) version-control system

• With over 2000 software packages to be tracked, ATLAS developed its 
own release management software



Research Reproducibility?

• At the LHC there are the two experiments - ATLAS and CMS - looking for 
new ‘Higgs and beyond’ physics

oThe detectors and the software used by these two experiments are 
very different

oThe two experiments are at different intersection points of the LHC 
and generate different data sets

• Research reproducibility is addressed by having the same physics 
observed in different experiments 

oSee the Higgs boson at the same mass value in both experiments

• Making meaningful data available to the public is difficult 

o New CERN Open Data portal is now making a start …



http://opendata.cern.ch

http://opendata.cern.ch/


Data Scientists in the Future?





Microsoft – advertizing for Data Scientists

DATA & APPLIED SCIENTIST

3 ROLES: 

• DATA SCIENTIST 

• MACHINE LEARNING SCIENTIST

• APPLIED SCIENTIST



What is a Data Scientist?

Data Engineer People who are expert at 
• Operating at low levels close to the data, write code that manipulates
• They may have some machine learning background. 
• Large companies may have teams of them in-house or they may look to third party 

specialists to do the work.

Data Analyst People who explore data through statistical and analytical methods
• They may know programming;  May be an spreadsheet wizard.
• Either way, they can build models based on low-level data.
• They eat and drink numbers; They know which questions to ask of the data. Every 

company will have lots of these.

Data Steward People who think to managing, curating, and preserving data.
• They are information specialists, archivists, librarians and compliance officers.
• This is an important role: if data has value, you want someone to manage it, make it 

discoverable, look after it and make sure it remains usable.

What is a data scientist? Microsoft UK Enterprise Insights Blog, Kenji Takeda
http://blogs.msdn.com/b/microsoftenterpriseinsight/archive/2013/01/31/what-is-a-data-scientist.aspx



Slide thanks to Bryan Lawrence

Scientist career paths? 



The Moore/Sloan Data Science 
Environments Project

Launched late fall 2013

Slide with thanks to Ed Lazowska, UW eScience Institute



Open Science



Vision for a New Era of Research Reporting 

Dynamic
Documents

Reputation
& Influence

Reproducible 
Research

Interactive 
Data

Collaboration

(Thanks to Bill Gates SC05)



Role of Research Libraries?



Institutional Research Repositories



UK Funders Expectations for Data Preservation

• Research organisations will ensure that research data 
is securely preserved for a minimum of 10 years from 
the date that any researcher ‘privileged access’ period 
expires 

• Research organisations will ensure that effective data 
curation is provided throughout the full data lifecycle



Progress in Data Curation in last 10 years?

• Biggest change is funding agency mandate: 
• NSF’s insistence on a Data Management Plan for all proposals 

has made scientists (pretend?) to take data curation seriously.

• There are better curated databases and metadata now …
• … but not sure that the quality fraction is increasing!

• Frew’s laws of metadata:
• First law: scientists don’t write metadata
• Second law: any scientist can be forced to write bad metadata
 Should automate creation of metadata as far as possible
 Scientists need to work with metadata specialists with 

domain knowledge a.k.a. science librarians

With thanks to Jim Frew, UCSB



Three final comments on Open Science
Paul Ginsparg, creator of arXiv, on the open access revolution:

‘Ironically, it is also possible that the technology of the 21st century will allow 
the traditional players from a century ago, namely the professional societies 
and institutional libraries, to return to their dominant role in support of the 
research Enterprise.’

Someone praising Helen Berman, Head of the Protein Data Bank PDB:

‘One of the remarkable things about Helen is that her life has been devoted to 
service within science rather than, as some might call it, doing real science.’

Michael Lesk on Just-in-time instead of Just-in-case? 

‘Most of the cost of archiving is spent at the start, before we know whether 
the articles will be read or the data used. With data, with no emotional 
investment in peer review, it might be easier to do a simpler form of deposit, 
where as much as possible is postponed till the data are called for. ‘ 



Jim Gray’s Vision: All Scientific Data Online

• Many disciplines overlap and use data 
from other sciences. 

• Internet can unify all literature and 
data

• Go from literature to computation to 
data back to literature. 

• Information at your fingertips –
For everyone, everywhere

• Increase Scientific Information 
Velocity

• Huge increase in Science Productivity

(From Jim Gray’s last talk)

Literature

Derived and 
recombined data

Raw Data


