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Different models, different predictions
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(some of this variation is to be expected... but which model should the FDA use?)



A vision of the future...

- Knowledge about mechanisms is
captured in quantitative models

- Best experiments to do are
therefore the ones that best [select
and] parameterise the model

- Provide these to experimentalists
- Automate model development

- Deploy in the Virtual Physiological
Human!
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\What does the Web Lab enable?
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Key features summary

- Consistent application of a protocol to any model

- Interface described at the level of biophysical concepts
(ontology annotation)

- Units conversions are all handled automatically
- Specify model inputs and outputs

- Simulator works out which equations it needs for that simulation
- Replace components

- For example encode your own stimulus protocol, or apply voltage
clamps

- Includes all the post-processing and plotting instructions
(array-based functional language)

- Able to do complex parameter sweeps, analysis, etc.



Demo

https://chaste.cs.ox.ac.uk/\WeblLab
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View of experiments run
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Comparing experiments — drug block
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Some of the technologies involved

- CellML & Combine Archive

- Python
- Pyparsing, Amara, RDFLIib
- Numpy, pytables, numexpr

- Cython & CVODE

- Original backend in C++
- Tomcat & JSP
- Celery & RabbitMQ
- MySQL
- Javascript & jQuery
- rdfQuery

- Flot, Highcharts



Cython: ODE solves as fast as C

- Electrophysiology cell models are moderately complex
ordinary differential equations
- Right-hand side coded in Python => far too slow!

- “The Cython language is a superset of the Python
language that additionally supports calling C functions
and declaring C types on variables and class attributes.
This allows the compiler to generate very efficient C
code from Cython code.”

- CVODE is a best-of-breed adaptive ODE solver written in
C



Wrapping a C library with Cython

pxd file:
cdef extern from "nvector/nvector_serial.h":

cdef N_Vector N_VMake_Serial(long int vec_length,
realtype *v_data)

cdef struct _N_VectorContent_Serial:
long int length
realtype *data
ctypedef _N_VectorContent_Serial *N_VectorContent_Serial

cdef extern from "cvode/cvode.h":
int CV_ADAMS

ctypedef int (*CVRhsFn)(realtype t, N_Vector vy,
N_Vector ydot, void *user_data)
void *CVodeCreate(int 1mm, int iter)
int CVode(void *cvode_mem, realtype tout, N_Vector yout,
realtype *tret, int itask)



A Cython ODE model: .pxd file

cimport numpy as np

cdef class CvodeSolver:
cdef void* cvode_mem
cdef N_Vector _state
cdef public np.ndarray state
cdef public object model

cpdef Simulate(self, realtype endPoint)
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A Cython ODE model: .pyx file

cimport numpy as np
import numpy as np
cimport fc.sundials.sundials as _lib

cdef extern from "Python.h":
object PyBuffer_FromReadWriteMemory(void *ptr, Py_ssize_t size)

cdef object NumpyView(N_Vector v):

"""Create a Numpy array giving a view on the CVODE vector passed in."""
cdef _lib.N_VectorContent_Serial v_content =
<_lib.N_VectorContent_Serial>(v.content)

ret = np.empty(v_content.length, dtype=np_dtype)
ret.data = PyBuffer_FromReadWriteMemory(v_content.data, ret.nbytes)
return ret

self._state = _lib.N_VMake_Serial(self._state_size,
<realtype*>(<np.ndarray>self.state).data)
flag = _1ib.CVodeInit(self.cvode_mem, _RhsWrapper, 0.0, self._state)
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Numexpr: Post-proc faster than C++

- “Numexpr is a fast numerical expression evaluator for
NumPy. With it, expressions that operate on arrays (like
"3*a+4*b") are accelerated and use less memory than
doing the same calculation in Python.”

- No intermediates

- Good cache utilization

- Multi-threaded

- Can also use the Intel Vector Math Library

- S0 very quick at mapping calculations over one or more
n-d arrays
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Timing results

ICaL Protocol S1S2 Protocol

Original C++ 197 (95) 201 (35)
Original Python 792 279
First Cython 614 (583) 117 (54)
attempt

Optimised Cython 152 (125) 118 (27)
Final C++ 266 (162) 204 (36)

« All times are in seconds
« Time just for simulation portion of protocol in ()



Web app: Tomcat

- Open source stack for Java-based web applications
- Java Servlet, JavaServer Pages (JSP), etc.

- Would have been more logical to use a Python framework
given the rest of the project, but this was what the intern
that first developed the web interface knew!

- S0 was able to get something working quickly

- Talks to:
- MySQL database for metadata, user info, etc.
- File system for model, protocol & result files

- Celery via CGl
- Javascript with AJAX + JSON



Task processing with Celery

- “Celery is an asynchronous task queue/job queue based
on distributed message passing. It is focused on real-time
operation, but supports scheduling as well.”

- Uses RabbitMQ broker (written in Erlang) for messaging,
but tasks written in Python

- Aimed at handling large numbers of quick tasks;
Web Lab uses it for distributing long-running experiments
across workers
- And extracting protocol interface info

- Nice extras, like live monitoring on the web with Flower



Celery usage in the Web Lab

- Messages should be small

- Pass URLs for models & protocols; experiment task downloads &
unpacks these on the worker

- Also passed a callback URL for POSTing results files
- Callbacks are auto-retried in case front-end is busy
- Our tasks are long
- Workers don’t reserve extra tasks
- Allow tasks to be revoked mid-run (by user action)
- Track ‘pending’ and ‘running’ states
- Return partial results if exceed time limit

- Optionally different workers for different users
- At present needs manual setup
- Fairest scheduling for users still an open question
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Celery code snippets

In __init__ .py:

def ScheduleExperiment(callbackUrl, signature, modelUrl, protoUrl,
user="", isAdmin=False):

"""Schedule a new experiment for execution.
from .tasks import CheckExperiment

result = CheckExperiment.apply_async(
(callbackUrl, signature, modelUrl, protoUrl),

queue=GetQueue(user, isAdmin))

print signature, "succ", result.task_id

In tasks.py:

app = celery.Celery('fcws.tasks")
app.config_from_object(celeryconfig)

@app . task(name="fcws.tasks.CheckExperiment")
def CheckExperiment(callbackUrl, signature, modelUrl, protocolUrl):



Visualization: Flot

- A pure Javascript plotting library integrated with jQuery

- Focus on simplicity & interactivity
- But still many options!

- Chosen because a colleague had used it previously

- Data series passed as JS arrays
- Parsed from CSV files created by experiment runs

- For many features you have to use plugins, or even add
in yourself (copied from examples)
- Graph legend with ability to turn traces on & off
- Zoom & pan with ‘reset’ button
- Hover over point for details tooltip



Visualization: Highcharts

- Commercial product but free for non-commercial use, and
open source

- Wanted to find something that required less customisation
- Has built-in hover, legend & zoom, for instance
- May be harder to customise if you want to though!

- APl is similar to Flot, but various minor differences in
naming & options structure



Data & Metadata in Javascript

- Currently serve CSV to the front-end
- Would like to move to HDF5, but no Javascript library?
- We use down-sampling for plots to speed up rendering

- Metadata encoded in RDF/XML within models
- Created a Javascript drag & drop model annotator
- Javascript RDF/XML support is patchy!



The future of Web Lab
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Final thoughts

- It's fun to have a complex project on which you can try out
different technologies ©

- Balance between choosing a ‘best’ solution and going
with something you can get working in a reasonable time

- Particularly for web apps, which framework is ‘best’ changes
rapidly!

- Sometimes it's best to throw away what you have and
start afresh — learn from your prototype’s mistakes

- Comparing different implementations of numerical code is
(very) hard
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