
CARDIAC ELECTROPHYSIOLOGY 
WEB LAB
A technical tour

Jonathan Cooper
UCL Research Software Development Group

Previously: Computational Biology Group, CS Dept, Oxford



Different literature structures for IKr (cardiac ion current)

C = closed
O = open
I  = inactivated



Different models, different predictions

(some of this variation is to be expected… but which model should the FDA use?)

INPUTS

PREDICTIONS



A vision of the future…
• Knowledge about mechanisms is 

captured in quantitative models

• Best experiments to do are 
therefore the ones that best [select 
and] parameterise the model

• Provide these to experimentalists

• Automate model development

• Deploy in the Virtual Physiological 
Human!



Motivation



What does the Web Lab enable?

https://chaste.cs.ox.ac.uk/WebLab



Key features summary
• Consistent application of a protocol to any model

• Interface described at the level of biophysical concepts
(ontology annotation)

• Units conversions are all handled automatically

• Specify model inputs and outputs
• Simulator works out which equations it needs for that simulation

• Replace components
• For example encode your own stimulus protocol, or apply voltage 

clamps

• Includes all the post-processing and plotting instructions
(array-based functional language)

• Able to do complex parameter sweeps, analysis, etc.



Demo

https://chaste.cs.ox.ac.uk/WebLab



View of experiments run



Results of an experiment



Comparing experiments – drug block



Some of the technologies involved
• CellML & Combine Archive
• Python

• Pyparsing, Amara, RDFLib
• Numpy, pytables, numexpr

• Cython & CVODE
• Original backend in C++

• Tomcat & JSP
• Celery & RabbitMQ
• MySQL
• Javascript & jQuery

• rdfQuery
• Flot, Highcharts



Cython: ODE solves as fast as C
• Electrophysiology cell models are moderately complex 

ordinary differential equations
• Right-hand side coded in Python => far too slow!

• “The Cython language is a superset of the Python
language that additionally supports calling C functions
and declaring C types on variables and class attributes. 
This allows the compiler to generate very efficient C 
code from Cython code.”

• CVODE is a best-of-breed adaptive ODE solver written in 
C



Wrapping a C library with Cython
.pxd file:
cdef extern from "nvector/nvector_serial.h":

cdef N_Vector N_VMake_Serial(long int vec_length,
realtype *v_data)

cdef struct _N_VectorContent_Serial:
long int length
realtype *data

ctypedef _N_VectorContent_Serial *N_VectorContent_Serial

cdef extern from "cvode/cvode.h":
int CV_ADAMS

ctypedef int (*CVRhsFn)(realtype t, N_Vector y,
N_Vector ydot, void *user_data)

void *CVodeCreate(int lmm, int iter)
int CVode(void *cvode_mem, realtype tout, N_Vector yout,

realtype *tret, int itask)



A Cython ODE model: .pxd file
cimport numpy as np

cdef class CvodeSolver:
cdef void* cvode_mem # CVODE solver 'object'
cdef N_Vector _state # The state vector of the model
cdef public np.ndarray state # Numpy view of the state
cdef public object model # The model being simulated

cpdef Simulate(self, realtype endPoint)



A Cython ODE model: .pyx file
cimport numpy as np
import numpy as np
cimport fc.sundials.sundials as _lib

cdef extern from "Python.h":
object PyBuffer_FromReadWriteMemory(void *ptr, Py_ssize_t size)

cdef object NumpyView(N_Vector v):
"""Create a Numpy array giving a view on the CVODE vector passed in."""
cdef _lib.N_VectorContent_Serial v_content =

<_lib.N_VectorContent_Serial>(v.content)
ret = np.empty(v_content.length, dtype=np_dtype)
ret.data = PyBuffer_FromReadWriteMemory(v_content.data, ret.nbytes)
return ret

self._state = _lib.N_VMake_Serial(self._state_size,
<realtype*>(<np.ndarray>self.state).data)

flag = _lib.CVodeInit(self.cvode_mem, _RhsWrapper, 0.0, self._state)



Numexpr: Post-proc faster than C++
• “Numexpr is a fast numerical expression evaluator for 

NumPy. With it, expressions that operate on arrays (like 
"3*a+4*b") are accelerated and use less memory than 
doing the same calculation in Python.”
• No intermediates
• Good cache utilization
• Multi-threaded
• Can also use the Intel Vector Math Library

• So very quick at mapping calculations over one or more 
n-d arrays



Timing results
Test case ICaL Protocol S1S2 Protocol

Original C++ 197 (95) 201 (35)

Original Python 792 279

First Cython
attempt

614 (583) 117 (54)

Optimised Cython 152 (125) 118 (27)

Final C++ 266 (162) 204 (36)

• All times are in seconds
• Time just for simulation portion of protocol in ()



Web app: Tomcat
• Open source stack for Java-based web applications

• Java Servlet, JavaServer Pages (JSP), etc.
• Would have been more logical to use a Python framework 

given the rest of the project, but this was what the intern 
that first developed the web interface knew!
• So was able to get something working quickly

• Talks to:
• MySQL database for metadata, user info, etc.
• File system for model, protocol & result files
• Celery via CGI
• Javascript with AJAX + JSON



Task processing with Celery
• “Celery is an asynchronous task queue/job queue based 

on distributed message passing. It is focused on real-time 
operation, but supports scheduling as well.”

• Uses RabbitMQ broker (written in Erlang) for messaging,
but tasks written in Python

• Aimed at handling large numbers of quick tasks;
Web Lab uses it for distributing long-running experiments 
across workers
• And extracting protocol interface info

• Nice extras, like live monitoring on the web with Flower



Celery usage in the Web Lab
• Messages should be small

• Pass URLs for models & protocols; experiment task downloads & 
unpacks these on the worker

• Also passed a callback URL for POSTing results files
• Callbacks are auto-retried in case front-end is busy

• Our tasks are long
• Workers don’t reserve extra tasks
• Allow tasks to be revoked mid-run (by user action)
• Track ‘pending’ and ‘running’ states
• Return partial results if exceed time limit

• Optionally different workers for different users
• At present needs manual setup

• Fairest scheduling for users still an open question



Celery code snippets
In __init__.py:
def ScheduleExperiment(callbackUrl, signature, modelUrl, protoUrl,

user='', isAdmin=False):
"""Schedule a new experiment for execution."""
from .tasks import CheckExperiment
# Submit the job
result = CheckExperiment.apply_async(

(callbackUrl, signature, modelUrl, protoUrl),
queue=GetQueue(user, isAdmin))

# Tell web interface that the call was successful
print signature, "succ", result.task_id

In tasks.py:
app = celery.Celery('fcws.tasks')
app.config_from_object(celeryconfig)

@app.task(name="fcws.tasks.CheckExperiment")
def CheckExperiment(callbackUrl, signature, modelUrl, protocolUrl):

…



Visualization: Flot
• A pure Javascript plotting library integrated with jQuery
• Focus on simplicity & interactivity

• But still many options!
• Chosen because a colleague had used it previously
• Data series passed as JS arrays

• Parsed from CSV files created by experiment runs
• For many features you have to use plugins, or even add 

in yourself (copied from examples)
• Graph legend with ability to turn traces on & off
• Zoom & pan with ‘reset’ button
• Hover over point for details tooltip



Visualization: Highcharts
• Commercial product but free for non-commercial use, and 

open source
• Wanted to find something that required less customisation

• Has built-in hover, legend & zoom, for instance
• May be harder to customise if you want to though!
• API is similar to Flot, but various minor differences in 

naming & options structure



Data & Metadata in Javascript
• Currently serve CSV to the front-end
• Would like to move to HDF5, but no Javascript library?
• We use down-sampling for plots to speed up rendering

• Metadata encoded in RDF/XML within models
• Created a Javascript drag & drop model annotator
• Javascript RDF/XML support is patchy!



The future of Web Lab



Final thoughts
• It’s fun to have a complex project on which you can try out 

different technologies J

• Balance between choosing a ‘best’ solution and going 
with something you can get working in a reasonable time
• Particularly for web apps, which framework is ‘best’ changes 

rapidly!

• Sometimes it’s best to throw away what you have and 
start afresh – learn from your prototype’s mistakes

• Comparing different implementations of numerical code is 
(very) hard



Acknowledgments
Gary Mirams, University of Nottingham

• Additional development work by:
• Martin Scharm – 2020 intern – initial Web Lab
• Aidan Daly – DPhil student & 2020 intern – fitting & electrochemistry
• Erich Kerekes – summer student

• Ideas and inspiration:
• Dagmar Waltemath
• Jon Olav Vik
• Steven Niederer
• Alan Garny
• David Gavaghan
• Denis & Penny Noble


