;’;7‘;\ UNIVERSITY OF
“2) OXFORD

CARDIAC ELECTROPHYSIOLOGY
WEB LAB

A technical tour

Jonathan Cooper
UCL Research Software Development Group

Previously: Computational Biology Group, CS Dept, Oxford

Different literature structures for |, (cardiac ion current)

Model A | Model B (Model C [

/1 | |

Cs+—C+—C;+—0 Cy+—C,——C,——0 C,——C,;+——0

Model D Model E Model F NG I,

IC,—— | IC,——I1C,— | ICé =“|_;// H

D S
Model G IC;——1,——1,

4 | | C=closed
(S,——5,——5,) —Co—C, —— 0,—0, O = open

| = inactivated

Different models, different predictions

i) i) INPUTS ii)
: , 50 . . . 50
20 t 1
S Or
I] !
E 2t 0
(0]
8 407 | .50
S 60 t l -50 ¢ 1
= 8o H . . i . . :
0 5000 10000 0 100 200 300 0 100 200 300 400 500
PREDICTIONS
50 : - . 50
= 30| 40 t 1 40t
s [
5 fl 30 + 30 t
O 20 \
2 [LN 20 r 20 ¢ [
E ! b\
% 10 AN \ 10 r 10f & <
0 b N N_ = 0 NS . N ——— 0 —)\ . \\J) ‘\
0 5000 10000 0 100 200 300 0 100 200 300 400 500
Time (ms) Time (ms) Time (ms)

(some of this variation is to be expected... but which model should the FDA use?)

A vision of the future...

- Knowledge about mechanisms is
captured in quantitative models

- Best experiments to do are
therefore the ones that best [select
and] parameterise the model

- Provide these to experimentalists
- Automate model development

- Deploy in the Virtual Physiological
Human!

Motivation

EMBL-EBI

i A

v/‘§

BioModels Database

4

You are here: Home / Physiome Repository

Physiome Repository

eI

biology. math. data. knowledge.

SML

":J L:‘

— — . Current simulations

Model
repository

Model

\What does the Web Lab enable?

| — — - Current simulations - — -~ |—— — — — — With reusable virtual experiments |
I

| |

I MOde.l ! Model Domain-specific |

| repository Model || repository ~ ontology annotations |

| Model ! | ,

| |

| Madel pd l I Model Protocg] |-------- % |

| Model *Il | I Madel L Protaco] / |
|

I . %l Model - Prot 1 &= ; |

Single |} I

I hard-(i)lded { : | Model : Protocol <=~ |

I

| protocel I Protocol |
[_ protocol |

: Ll repository JSiiiEie |

| || |

| || |

https://chaste.cs.ox.ac.uk/WebLab

Key features summary

- Consistent application of a protocol to any model

- Interface described at the level of biophysical concepts
(ontology annotation)

- Units conversions are all handled automatically
- Specify model inputs and outputs

- Simulator works out which equations it needs for that simulation
- Replace components

- For example encode your own stimulus protocol, or apply voltage
clamps

- Includes all the post-processing and plotting instructions
(array-based functional language)

- Able to do complex parameter sweeps, analysis, etc.

Demo

https://chaste.cs.ox.ac.uk/\WeblLab

UNIVERSITY OF

OXFORD

View of experiments run

c
L2
=
T guuwwc
= T £ £ £ £ 'O
S caTJU'GTJg
g g g) ¢ ¢ § &2 3 8 8 8 2
2 X ~ s ~ v x 5 NOONOONN
a”:u:ugu:3=3§£11x1§
@ O 2 3 88 3 & 3 £ 3 L g g = N m. 9
3 S D @ o e} @ g v & o o @
- = 2 L > 2 a2 e & & & = =
? T = § 3. 8 8 § '3
gu—lx._¥ vazm o B %
»—“—x-i‘-x-z a8 9w G W own
s v} ® = = ~ 4 > 2 222
- /- © © © ©
= m ® ® @
D 2 & g g g @
A T T . 4
2 G Vv ow v a v
bt
%=
w

Aslanidi atrial model 2009
Aslanidi Purkinje model 2009
Beeler-Reuter 1977
Benson 2008

Bernus 2002
Bondarenko 2004 Apical
Decker 2009
DiFrancesco Noble 1985
Earm Noble 1990
Grandi 2010

Li 2010

Luo Rudy 1991

Mahajan 2008
Matsuoka 2003

Noble 1998

O'Hara 2011

Priebe 1998

Shannon 2004

ten Tusscher 2006 Epi
tenTusscher 2004 Epi
Winslow 99

Action Potential Duration 90% (ms)

310

300

290

280

270

260

250

240

230

200 400 600 800 1000 1200 1400 1600
Diastolic Interval (ms)

Comparing experiments — drug block

275

250

225 /

200
g
S 175
5

150

125

/ e
100 —— .
75
0 10 20 30 40 50 60 70 80 90 100
IKr Block (%)

¥ Carro 2011 Endo Carro 2011 Epi B Fink 2008
§ Grandi 2010 Endo B Grandi 2010 Epi B lyer 04

W lyer 07
J Priebe 1998
[ten Tusscher 2006 Endo

l O'Hara 2011 Endo
ten Tusscher 2004 Endo
[ten Tusscher 2006 Epi

V] g O'Hara 2011 Epi
ten Tusscher 2004 Epi

Some of the technologies involved

- CellML & Combine Archive

- Python
- Pyparsing, Amara, RDFLIib
- Numpy, pytables, numexpr

- Cython & CVODE

- Original backend in C++
- Tomcat & JSP
- Celery & RabbitMQ
- MySQL
- Javascript & jQuery
- rdfQuery

- Flot, Highcharts

Cython: ODE solves as fast as C

- Electrophysiology cell models are moderately complex
ordinary differential equations
- Right-hand side coded in Python => far too slow!

- “The Cython language is a superset of the Python
language that additionally supports calling C functions
and declaring C types on variables and class attributes.
This allows the compiler to generate very efficient C
code from Cython code.”

- CVODE is a best-of-breed adaptive ODE solver written in
C

Wrapping a C library with Cython

pxd file:
cdef extern from "nvector/nvector_serial.h":

cdef N_Vector N_VMake_Serial(long int vec_length,
realtype *v_data)

cdef struct _N_VectorContent_Serial:
long int length
realtype *data
ctypedef _N_VectorContent_Serial *N_VectorContent_Serial

cdef extern from "cvode/cvode.h":
int CV_ADAMS

ctypedef int (*CVRhsFn)(realtype t, N_Vector vy,
N_Vector ydot, void *user_data)
void *CVodeCreate(int 1mm, int iter)
int CVode(void *cvode_mem, realtype tout, N_Vector yout,
realtype *tret, int itask)

A Cython ODE model: .pxd file

cimport numpy as np

cdef class CvodeSolver:
cdef void* cvode_mem
cdef N_Vector _state
cdef public np.ndarray state
cdef public object model

cpdef Simulate(self, realtype endPoint)

NIVERSITY OF

A Cython ODE model: .pyx file

cimport numpy as np
import numpy as np
cimport fc.sundials.sundials as _lib

cdef extern from "Python.h":
object PyBuffer_FromReadWriteMemory(void *ptr, Py_ssize_t size)

cdef object NumpyView(N_Vector v):

"""Create a Numpy array giving a view on the CVODE vector passed in."""
cdef _lib.N_VectorContent_Serial v_content =
<_lib.N_VectorContent_Serial>(v.content)

ret = np.empty(v_content.length, dtype=np_dtype)
ret.data = PyBuffer_FromReadWriteMemory(v_content.data, ret.nbytes)
return ret

self._state = _lib.N_VMake_Serial(self._state_size,
<realtype*>(<np.ndarray>self.state).data)
flag = _1ib.CVodeInit(self.cvode_mem, _RhsWrapper, 0.0, self._state)

% OXFORD

Numexpr: Post-proc faster than C++

- “Numexpr is a fast numerical expression evaluator for
NumPy. With it, expressions that operate on arrays (like
"3*a+4*b") are accelerated and use less memory than
doing the same calculation in Python.”

- No intermediates

- Good cache utilization

- Multi-threaded

- Can also use the Intel Vector Math Library

- S0 very quick at mapping calculations over one or more
n-d arrays

2020 SCIENCE

Timing results

ICaL Protocol S1S2 Protocol

Original C++ 197 (95) 201 (35)
Original Python 792 279
First Cython 614 (583) 117 (54)
attempt

Optimised Cython 152 (125) 118 (27)
Final C++ 266 (162) 204 (36)

« All times are in seconds
« Time just for simulation portion of protocol in ()

Web app: Tomcat

- Open source stack for Java-based web applications
- Java Servlet, JavaServer Pages (JSP), etc.

- Would have been more logical to use a Python framework
given the rest of the project, but this was what the intern
that first developed the web interface knew!

- S0 was able to get something working quickly

- Talks to:
- MySQL database for metadata, user info, etc.
- File system for model, protocol & result files

- Celery via CGl
- Javascript with AJAX + JSON

Task processing with Celery

- “Celery is an asynchronous task queue/job queue based
on distributed message passing. It is focused on real-time
operation, but supports scheduling as well.”

- Uses RabbitMQ broker (written in Erlang) for messaging,
but tasks written in Python

- Aimed at handling large numbers of quick tasks;
Web Lab uses it for distributing long-running experiments
across workers
- And extracting protocol interface info

- Nice extras, like live monitoring on the web with Flower

Celery usage in the Web Lab

- Messages should be small

- Pass URLs for models & protocols; experiment task downloads &
unpacks these on the worker

- Also passed a callback URL for POSTing results files
- Callbacks are auto-retried in case front-end is busy
- Our tasks are long
- Workers don’t reserve extra tasks
- Allow tasks to be revoked mid-run (by user action)
- Track ‘pending’ and ‘running’ states
- Return partial results if exceed time limit

- Optionally different workers for different users
- At present needs manual setup
- Fairest scheduling for users still an open question

NIVERSITY OF

Celery code snippets

In __init__ .py:

def ScheduleExperiment(callbackUrl, signature, modelUrl, protoUrl,
user="", isAdmin=False):

"""Schedule a new experiment for execution.
from .tasks import CheckExperiment

result = CheckExperiment.apply_async(
(callbackUrl, signature, modelUrl, protoUrl),

queue=GetQueue(user, isAdmin))

print signature, "succ", result.task_id

In tasks.py:

app = celery.Celery('fcws.tasks")
app.config_from_object(celeryconfig)

@app . task(name="fcws.tasks.CheckExperiment")
def CheckExperiment(callbackUrl, signature, modelUrl, protocolUrl):

Visualization: Flot

- A pure Javascript plotting library integrated with jQuery

- Focus on simplicity & interactivity
- But still many options!

- Chosen because a colleague had used it previously

- Data series passed as JS arrays
- Parsed from CSV files created by experiment runs

- For many features you have to use plugins, or even add
in yourself (copied from examples)
- Graph legend with ability to turn traces on & off
- Zoom & pan with ‘reset’ button
- Hover over point for details tooltip

Visualization: Highcharts

- Commercial product but free for non-commercial use, and
open source

- Wanted to find something that required less customisation
- Has built-in hover, legend & zoom, for instance
- May be harder to customise if you want to though!

- APl is similar to Flot, but various minor differences in
naming & options structure

Data & Metadata in Javascript

- Currently serve CSV to the front-end
- Would like to move to HDF5, but no Javascript library?
- We use down-sampling for plots to speed up rendering

- Metadata encoded in RDF/XML within models
- Created a Javascript drag & drop model annotator
- Javascript RDF/XML support is patchy!

The future of Web Lab

—————— With reusable virtual experiments — — — — —

Model Domain-specific
ontology annotations

repository

Library of
Protocol protocol

repository [t

% OXFORD

Final thoughts

- It's fun to have a complex project on which you can try out
different technologies ©

- Balance between choosing a ‘best’ solution and going
with something you can get working in a reasonable time

- Particularly for web apps, which framework is ‘best’ changes
rapidly!

- Sometimes it's best to throw away what you have and
start afresh — learn from your prototype’s mistakes

- Comparing different implementations of numerical code is
(very) hard

Acknowledgments

Gary Mirams, University of Nottingham

- Additional development work by:
- Martin Scharm — 2020 intern — initial Web Lab
- Aidan Daly — DPhil student & 2020 intern — fitting & electrochemistry
- Erich Kerekes — summer student

- ldeas and inspiration: ,T
- Dagmar Waltemath (— ' h t
- Jon Olav Vik | a S e
- Steven Niederer

. Alan Garny 2020 SCIENCE

- David Gavaghan

. i Do~ Engi ing and Physical Sciences
Denis & Penny Noble EPSRC gesearch Council

