
Introduction Building a container Preparing for deployment Running the software Conclusions

Running Scientific Applications on HPC
Infrastructure Using Singularity: A Case Study

Jeremy Cohen
Imperial College London

18th July 2018

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Introduction

Singularity1 is a container platform that is gaining traction in
the scientific community, particularly for use in HPC
environments

https://www.sylabs.io/

I have no connection with the Singularity team

This presentation gives my take on Singularity from the
perspective of an end-user discovering and learning how to use
the tool

1
Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS

ONE 12(5): e0177459. https://doi.org/10.1371/journal.pone.0177459

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

https://www.sylabs.io/

Introduction Building a container Preparing for deployment Running the software Conclusions

Introduction

In this talk I will:

Provide some background and motivation on my use of
Singularity

Give a brief overview of the software providing the use case –
the Nektar++ spectral/hp element framework

Explain how to build a singularity container in a standard
Linux desktop/server environment

Show how to use this container to run parallel MPI jobs in an
HPC cluster environment

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Introduction

Containers enable packaging of a complete software
environment, base OS, libraries, applications, etc.

Simplified transfer/deployment of applications/app. stacks

Container-type platforms have been around for some time
with systems like Solaris Zones, Linux Containers, etc.

Docker (www.docker.com) is probably the best known recent
container platform

Docker provides many features in addition to the underlying
container technology offering simplified container access,
management, deployment and a range of other capabilities.

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

www.docker.com

Introduction Building a container Preparing for deployment Running the software Conclusions

Introduction

Docker is generally not available on HPC clusters

Sysadmins reluctant to offer it due to potential security issues
This is ultimately a result of docker’s architecture with a privileged daemon and

the need to be able to interact with the daemon to run/manage containers

Singularity provides a different approach running as a
user-space application rather than using a daemon

This makes Singularity better placed for use on HPC platforms

Many discussions/explanations about this online, e.g. 2

2https://www.reddit.com/r/docker/comments/7y2yp2/why_is_

singularity_used_as_opposed_to_docker_in/

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

https://www.reddit.com/r/docker/comments/7y2yp2/why_is_singularity_used_as_opposed_to_docker_in/
https://www.reddit.com/r/docker/comments/7y2yp2/why_is_singularity_used_as_opposed_to_docker_in/

Introduction Building a container Preparing for deployment Running the software Conclusions

Motivation

Fair bit of experience working with Docker/containers

Working with the Nektar++ spectral/hp element framework,
including undertaking parallel MPI runs on HPC infrastructure

Using Nektar++ on the local HPC cluster either requires

a time-consuming and sometimes challenging build of the
software by each user in their local user space, or
support from the sysadmins in packaging each new release

Containers seem ideal here...but Docker not available

Since the HPC cluster has Singularity available, I set out to
try and use Singularity to simplify undertaking parallel runs of
Nektar++ on the cluster

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Nektar++

Nektar++ (http://www.nektar.info) is a spectral/hp element framework for
undertaking high-order simulation of fluid and air flow problems across 2 and
3-dimensional meshes

Use cases in a wide range of scientific, engineering and medical fields including
automotive and aeronautical engineering and cardiac electrophysiology

Figure: Mesh of a 2D cylindrical
obstruction in a flow. Generated using
Gmsh (http://gmsh.info)

Figure: Visualising simulation of the
flow of an incompressible fluid around
the obstruction using Nektar++’s
incompressible Navier-Stokes solver

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

http://www.nektar.info
http://gmsh.info

Introduction Building a container Preparing for deployment Running the software Conclusions

Nektar++

Nektar++ is an advanced C++ code with many dependencies

Some dependencies optional and can improve performance in
specific calculations

Mature CMake-based build system that has improved greatly
over the last few years

Many third-party dependencies can be automatically built by
build system

Building on an HPC platform can, however, be time
consuming and challenging - different compilers, versions of
dependencies, etc.

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Building a Singularity container

Singularity can now use Docker containers but I opted to
build my own container using Singularity

Containers can be started by a non-root user without any
special permissions or group membership

When in a container shell or running commands in a container,
you retain your current user details from the host system

I investigated different approaches to building a container and
opted to go for a writable sandbox directory container

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Building a Singularity container

https://singularity.lbl.gov/docs-build-container

provides a good overview of the different approaches to
building a container

For the initial container build process requiring many stages
that will need to be determined as things progress, a writeable
sandbox is a practical option

Using Singularity’s Ubuntu base image (14.04) to start from
(but could equally use a docker Ubuntu image...)

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

https://singularity.lbl.gov/docs-build-container

Introduction Building a container Preparing for deployment Running the software Conclusions

Building a Singularity container: Getting started

We could simply pull the singularity container:
singularity pull --name nektar.img shub://singularityhub/ubuntu

...and then open a shell in the container:
singularity shell [--writeable] nektar.img

BUT this gives us non-root, read-only access to the
downloaded container

In order to start building our new container, we instead create
a writable sandbox directory from the base container:
sudo singularity build --sandbox nektar-singularity/

shub://singularityhub/ubuntu

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Installing/configuring software

Open a shell in your container, specifying the writable flag to
ensure that the contents of the container can be changed:
sudo singularity shell --writable nektar-singularity

Depending on the configuration of your Singularity
deployment, various directories from your host system may be
bound to and visible in the container shell (see
http://singularity.lbl.gov/docs-mount)

You should, for example, have access to your home directory
from the host system within your container
NOTE: this will be the root user’s home directory if you’ve used sudo to access
the container

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

http://singularity.lbl.gov/docs-mount

Introduction Building a container Preparing for deployment Running the software Conclusions

Installing/configuring software

Now we need to undertake any installation/configuration of
software within the container

We will also create a directory that we can use to place
output data into during our job runs (more on this later...):
mkdir /data

chmod 777 /data

Ultimately we should use a recipe file
(http://singularity.lbl.gov/docs-recipes)

will help provide a reproducible, more manageable build that can be more
easily automated, e.g. as part of a build system
could then run: sudo singularity build nektar.simg nektar.recipe

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

http://singularity.lbl.gov/docs-recipes

Introduction Building a container Preparing for deployment Running the software Conclusions

Simplified Nektar++ Singularity recipe file example

Bootstrap: shub

From: singularityhub/ubuntu

%help

This container includes Nektar++ 4.5.0 build against MPICH.

%labels

Maintainer jcohen

Version v0.6

%post

apt-get update && apt-get dist-upgrade

apt-get install -y git-core mpich libmpich-dev build-essential cmake flex bison liblapack-dev libz-dev

mkdir -p /usr/src && cd /usr/src

git clone https://gitlab.nektar.info/nektar/nektar.git && cd nektar

mkdir build && cd build

cmake -DNEKTAR_USE_MPI:BOOL=ON -DCMAKE_INSTALL_PREFIX="/usr/local/nektar" ..

make

make install

mkdir /data

chmod 777 /data

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Working with MPI codes

If you’re building/installing a parallel MPI code, there are
various considerations to make

It’s important to understand how Singularity operates in
parallel environments with MPI

Some useful information is provided by Singularity at:
http://singularity.lbl.gov/docs-hpc#integration-with-mpi

As part of a proposal on container versioning,
https://github.com/open-mpi/ompi/wiki/Container-Versioning

provides a nice overview of different MPI deployment
scenarios for containers in an OpenMPI context

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

http://singularity.lbl.gov/docs-hpc#integration-with-mpi
https://github.com/open-mpi/ompi/wiki/Container-Versioning

Introduction Building a container Preparing for deployment Running the software Conclusions

Working with MPI codes

Singularity has integrated support within OpenMPI (2.1.x+?)

Nonetheless, other MPI versions can be used

My target platform provides Intel MPI, given ABI
Compatibility (https://www.mpich.org/abi/) I should then
be able to build my code using MPICH but still run it on a
platform that offers Intel MPI

This is the approach I have tested and the reason for building
my target application with MPICH

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

https://www.mpich.org/abi/

Introduction Building a container Preparing for deployment Running the software Conclusions

Bundling your container

Once all the software is installed in your sandbox container
directory, you are ready to package it for deployment

Ensure permissions are correct for non-root user access

Make any other final configuration changes required

Exit the container and then convert it into a read-only
Singularity squashfs container image file:
sudo singularity build nektar.simg nektar-singularity/

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Container deployment

You can now deploy your container image to your target
platform(s)

You can publish your image to Singularity Hub
(https://singularity-hub.org/)

In my case I only wanted to run my test container on local
HPC infrastructure so it was placed on a local server for
download via HTTP(S)

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

https://singularity-hub.org/

Introduction Building a container Preparing for deployment Running the software Conclusions

Imperial College Research Computing Service

Using HPC infrastructure provided by the Imperial College
Research Computing Service
(http://doi.org/10.14469/hpc/2232)

Group of systems available to Imperial researchers/academics

I’m working with the CX1 general purpose compute cluster
which is accessed via the PBS job scheduler

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

http://doi.org/10.14469/hpc/2232

Introduction Building a container Preparing for deployment Running the software Conclusions

Running Nektar++ sequentially

We can simply open a shell in our container (on the node
where we built it) and run a Nektar++ solver from there

Starting with the 2D cylinder mesh shown in slide 7, in the file
Cyl.xml
singularity shell ./nektar.simg

> /usr/local/nektar/bin/IncNavierStokesSolver ./Cyl.xml

Alternatively, you can run the solver directly from inside the
container using singularity exec:
singularity exec nektar.simg \
/usr/local/nektar/bin/IncNavierStokesSolver ./Cyl.xml

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Running in parallel with MPI

Setting things up for undertaking parallel runs of the code
using MPI

Target platform is one of Imperial’s HPC clusters:

uses PBS for job submission
provides Singularity as a system module
provides Intel MPI runtime that we’ll need to run our
simulations

Our executables within the container are linked against the
MPICH libraries within the container

These libraries will be available to the system when running
the target executable within the container context

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Running in parallel with MPI

The description at
https://github.com/open-mpi/ompi/wiki/Container-Versioning#

scenario-1-containers-for-application-only highlights the general
setup being used here

In order to run our simulation via Singularity, we now need:

A copy of our singularity image, accessible to all compute
nodes in our cluster

Our input data file(s)

A PBS script that will initiate the job run

The Singularity image is pulled via HTTP(S) and stored to a
location on the cluster where compute nodes can access it

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

https://github.com/open-mpi/ompi/wiki/Container-Versioning#scenario-1-containers-for-application-only
https://github.com/open-mpi/ompi/wiki/Container-Versioning#scenario-1-containers-for-application-only

Introduction Building a container Preparing for deployment Running the software Conclusions

Run configuration: Binding the output directory

NOTE: The target cluster being used here provides a local temporary directory on
each compute node (not a shared directory) which should be used for input/output for
running jobs. This significantly assists with performance over use of a shared file store.
This directory will be referred to as $TMPDIR

$TMPDIR is not within our home directory (it is on local disk
space on each compute node)

When we run our container and are in the container context,
we are unable to see this directory by default

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Run configuration: Binding the output directory

We therefore need to bind $TMPDIR into a directory in our
container - we’ll use /data that we created earlier

The directory is bound by specifying the -B switch when
running the singularity executable, e.g.

-B $TMPDIR:/data

Any files placed in $TMPDIR on the host will now be visible in /data in
the container (and vice versa)

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Running on the cluster

We’ll now look at some examples of running jobs on our target
cluster. We’re using the following files:

Singularity container file: netkar.simg

Nektar++ solver: /usr/local/nektar/bin/IncNavierStokesSolver

Input data file: Cyl.xml (2D flow around cylinder example)

module load singularity must be run on the cluster to access singularity

Example 1: Running sequentially on a compute node - show
baseline performance (in interactive session)

Copy Cyl.xml input file to $TMPDIR

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Running on the cluster

Run:
singularity exec -B $TMPDIR:/data \
$WORK/singularity/nektar.simg \
/usr/local/nektar/bin/IncNavierStokesSolver /data/Cyl.xml

Some example output from the sequential computation:

Writing: "/data/Cyl 0.chk" (0.0110159s, XML)

Writing: "/data/Cyl 1.chk" (0.0219893s, XML)

Writing: "/data/Cyl 2.chk" (0.0221715s, XML)

Writing: "/data/Cyl 3.chk" (0.0218782s, XML)

Writing: "/data/Cyl 4.chk" (0.0218389s, XML)

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Running on the cluster

Example 2: Running in parallel on a single compute node (in
interactive session)

Copy Cyl.xml input file to $TMPDIR

Run:
mpiexec singularity exec -B $TMPDIR:/data \
$WORK/singularity/nektar.simg \
/usr/local/nektar/bin/IncNavierStokesSolver /data/Cyl.xml

Some example output from the sequential computation:

Writing: "/data/Cyl 0.chk" (0.00601912s, XML)

Writing: "/data/Cyl 1.chk" (0.00399995s, XML)

Writing: "/data/Cyl 2.chk" (0.00594401s, XML)

Writing: "/data/Cyl 3.chk" (0.00383973s, XML)

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Running on the cluster

Example 3: Running in parallel across multiple cluster compute
nodes)

Here we prepare a full job submission with a qsub script that
we can submit to the PBS scheduler.

Our script needs to carry out the following tasks:

Setup required
job parameters

Load required
modules

(e.g. module load singularity)

Retrieve Singularity
container

(if it’s not already present)

Container

H
TT

P

Copy input files to
compute nodesRun the job

Copy output
files back from
compute nodes

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Using Singularity in an HPC environment

Some key things to note about how singularity is used in a cluster
environment:

mpirun/mpiexec is used to call the singularity executable

We are using the host system’s MPI executable/daemon to spawn the
singularity processes

The MPI libraries within the container, which are loaded when our
executable runs, are communicating with the MPI daemon on the host
system
[http://singularity.lbl.gov/docs-hpc#integration-with-mpi]

Without a Singularity-aware MPI implementation, MPI is opening the
container for every process. A Singularity-aware MPI implementation
(currently OpenMPI 2.1.x+) can reduce overhead by running processes
from only one instance of the container for each physical node
[https://groups.google.com/a/lbl.gov/d/msg/singularity/
I9v5-14A8W8/b5FcuuJzKgAJ]

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

http://singularity.lbl.gov/docs-hpc#integration-with-mpi
https://groups.google.com/a/lbl.gov/d/msg/singularity/I9v5-14A8W8/b5FcuuJzKgAJ
https://groups.google.com/a/lbl.gov/d/msg/singularity/I9v5-14A8W8/b5FcuuJzKgAJ

Introduction Building a container Preparing for deployment Running the software Conclusions

Conclusions I

Demonstrated a basic example of building and using a
Singularity container for an HPC code

Provides a great way for simplifying the building and running
of codes in an HPC environment

Singularity’s compatibility with Docker containers is a further
benefit

Possible questions around performance (e.g. when building
against MPI libraries on one system to run on another)

No concrete performance tests undertaken yet, may not be a
significant issue

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Conclusions II

Taking advantage of specialist networking
hardware/interconnects more complex when building on
separate external platform

Going forward, I’m keen to undertake some performance tests
to understand more about some of these points

If you have access to an HPC cluster that provides Singularity,
it can offer a great way to simplify your HPC workflow and
the deployment of new versions of your code

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

Introduction Building a container Preparing for deployment Running the software Conclusions

Thank you

Questions?

jeremy.cohen@imperial.ac.uk

Acknowledgements:

The Imperial College Research Computing Service:
http://doi.org/10.14469/hpc/2232

Chris Cantwell and the Nektar++ team (http://www.nektar.info)

JC acknowledges support from EPSRC under RSE Fellowship grant
EP/R025460/1

Jeremy Cohen, Imperial College London

Running Scientific Applications on HPC Infrastructure Using Singularity: A Case Study

http://doi.org/10.14469/hpc/2232
http://www.nektar.info

	Introduction
	Building a container
	Preparing for deployment
	Running the software
	Conclusions

