
Building a Cloud Toolkit
Jay DesLauriers

The Research Centre for Parallel Computing @ UoW

Projects in Distributed Computing, from Grids to Cloud (to Fog/Edge)
Well-funded by EU/UK Research Grants (>£2.5mil since 2015)

– EDGeS: Enabling Desktop Grids for e-Science (2008)
– EDGI: European Desktop Grid Initiative (2010)
– VENUS-C: Virtual multidisciplinary environments using Cloud Infrastructures (2012)
– CloudSME: Cloud based Simulation Platform for Manufacturing & Engineering (2013)
– COLA: Cloud Orchestration at the Level of Application (2017)
– ASCLEPIOS: Advanced Secure Cloud Encrypted Platform for Internationally

Orchestrated Solutions in Healthcare (2018)

Why Cloud?

It’s disruptive. Compute now available “as-a-Service”

No upfront cost for hardware or software licenses

No operating or maintenance cost for local IT infrastructure

On-Premise
Capital expense model

££££

Cloud
Pay-as-you-go model

££

Reality-Check

Take-up still relatively low for research applications & by small business

Vendor lock-in: going multi-cloud is expensive, complex or both

Application-level auto-scaling is limited

Issues of security, privacy and trust

Project COLA

EU Horizon2020 Programme for Research & Innovation

33 months, 14 partners, 6 countries

Secure, cloud agnostic application-level auto-scaling
to encourage cloud uptake

MiCADO
Microservice-based Cloud Application-level Dynamic Orchestrator

ScalingSecurityInterface

Kubernetes PrometheusTerraform

Cloud Orchestration

Image Source: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Infrastructure-as-a-Service (IaaS)
– Provisioning virtual machines from a cloud service provider (CSP)

Manual Cloud Provisioning

Terraform

Infrastructure-as-Code

Terraform

Infrastructure Management

–Provisions
–Maintains
–Destroys

–Scales
–Self-healing

Container Orchestration

Application containers
– Lightweight OS-virtualisation
– Application packaging for portable, reusable software

Image Source: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Container Orchestration

Kubernetes

Kubernetes

Container Management Across a Cluster of Nodes (VMs)

–Deploys
–Maintains
–Destroys

–Auto-scaling
–Self-healing
–Rolling updates and rollbacks CI/CD

Prometheus

A monitoring & alerting system

Pull-style metric collection
– Resource usage of containers / virtual machines (CPU, Memory, etc…)
– Custom data exported by applications (latency, requests served)

Alerting based on those metrics

Terraform, Kubernetes & Prometheus
for Research
Some good things:
– Open-Source
– Community
– Extensions

– Kubernetes (Kubeflow)
– Prometheus Exporters (DBs)
– Terraform Modules (Sagewatch, BigQuery)

Could-be-better things:
– High overall complexity

– Deploying, configuring, integrating
– Vendor lock-in encouraged
– Limited scope for auto-scaling

MiCADO
Microservice-based Cloud Application-level Dynamic Orchestrator

ScalingSecurityInterface

Container
Orchestration

MonitoringCloud
Orchestration

FRESH VM

Ansible

MiCADO MASTER

Declarative configuration management automation framework

Deploys and configures MiCADO microservices

Cloud MonitorContainer

Interface Security Scaling

ansible
playbook

MiCADO

FRESH VMMiCADO MASTER

Cloud MonitorContainer

Interface Security Scaling

Monitoring

Container

MiCADO
WORKER

node
exporter

TOSCA

virtual machines
4cores, 4GB

containers
docker.hub/image

policy
scale at > 75% CPU

Social Media Analytics Use-Case

– Resource intensive services

– Typically CPU/memory –bound apps/services
– Containers & underlying VMs scale to meet demand

Simulation & Modelling Use-Case

– Multi-job, deadline constrained experiments

– Typically batch/parameter sweep jobs
– Containers/VMs scale to complete jobs by deadline

Jobs

Jobs

Jobs

Insert Queue Here

MiCADO
Master

MiCADO Worker

Scale VMs

Scale Containers

Pull Metrics

MiCADO

JobsJobsJobs

Where do we put the jobs?

How do we execute them

Sim.
Software

jQueuer

MiCADO
Master MiCADO Worker X

MiCADO

JobsJobsJobs

Jobs
Agent

.json

MiCADO Worker Y

Master

Asynchronous Distributed Task Queue
– Celery.py

Master Component
– The queue
– Metric Generation
– Frontend for submission

Agent Component
– Runs alongside experiment tool
– Fetches jobs from Master
– Executes jobs in container

– JSON input
– Jobs & Deadline

Sim.
Tool

Deadline-based auto-scaling
Calculates containers/VMs required to complete jobs by deadline

Uses jQueuer metrics:
– Queue length
– Jobs completed
– Jobs remaining
– Time elapsed
– Average job length
– Time to deadline

Cloud resources are scaled up/down by MiCADO

• Agent-based simulation
• Repast Simphony

• Three agents
• Infected
• Susceptible
• Recovered

• Simulate movement & interaction
of agents in an environment to determine effects
of one group on another

THE EXPERIMENT

Calculating a Baseline: Manual allocation

200
jobs

VM 3

Repast
3

1-hour
to complete
all jobs

VM 4

Repast
4

VM 1

Repast
1

VM 2

Repast
2

VM 5

Repast
5

Equal distribution to five virtual
machines running Repast in container

(40 jobs per VM)

Using MiCADO: Dynamic allocation & auto-scaling

.json jQueuer
Manager

MiCADO Worker 1

JQueuer
Agent

Repast
1

MiCADO
Master

200
jobs

MiCADO Worker 2

JQueuer
Agent

Repast
2

MiCADO Worker n

JQueuer
Agent

Repast
n

1-hour
deadline

<this is a recording>

Results

Dynamic allocation of variable length jobs
results in a better use of cloud resources

Manually Allocated Allocated by MiCADO Manually Allocated Allocated by MiCADO

Manual
allocation
(baseline)

Dynamic
allocation
(MiCADO)

5 VMs

3.86 VMs

Cast (in order of appearance)

Terraform terraform.io

Kubernetes kubernetes.io

Prometheus prometheus.io

Ansible ansible.io

MiCADO micado-scale.eu

jQueuer doi.org/10.1016/j.future.2019.05.062

Thanks!
Jay DesLauriers
j.deslauriers@westminster.ac.uk

	Building a Cloud Toolkit���Jay DesLauriers
	The Research Centre for Parallel Computing @ UoW
	Why Cloud?
	Reality-Check
	Project COLA
	MiCADO�Microservice-based Cloud Application-level Dynamic Orchestrator
	Cloud Orchestration
	Manual Cloud Provisioning
	Terraform
	Terraform
	Container Orchestration
	Container Orchestration
	Kubernetes
	Kubernetes
	Prometheus
	Terraform, Kubernetes & Prometheus�for Research
	MiCADO�Microservice-based Cloud Application-level Dynamic Orchestrator
	Ansible
	MiCADO
	Social Media Analytics Use-Case
	Simulation & Modelling Use-Case
	Insert Queue Here
	jQueuer
	Deadline-based auto-scaling
	THE EXPERIMENT
	Calculating a Baseline: Manual allocation
	Using MiCADO: Dynamic allocation & auto-scaling
	Slide Number 28
	Results��Dynamic allocation of variable length jobs�results in a better use of cloud resources�
	Slide Number 30
	Thanks!���Jay DesLauriers�j.deslauriers@westminster.ac.uk�

