UNIVERSITY OF
WESTMINSTERF

Building a Cloud Toolkit

Jay DeslLauriers

UNIVERSITY OF
LEADING

IHE WAY
WESTMINSTERF

The Research Centre for Parallel Computing @ UoW

Projects in Distributed Computing, from Grids to Cloud (to Fog/Edge)
Well-funded by EU/UK Research Grants (>£2.5mil since 2015)

— EDGeS: Enabling Desktop Grids for e-Science (2008)

— EDGI: European Desktop Grid Initiative (2010)

—VENUS-C: Virtual multidisciplinary environments using Cloud Infrastructures (2012)
— CloudSME: Cloud based Simulation Platform for Manufacturing & Engineering (2013)
— COLA: Cloud Orchestration at the Level of Application (2017)

— ASCLEPIOS: Advanced Secure Cloud Encrypted Platform for Internationally
Orchestrated Solutions in Healthcare (2018)

UNIVERSITY OF
LEADING

IHE WAY
WESTMINSTERF

Why Cloud?

It’s disruptive. Compute now available “as-a-Service”
No upfront cost for hardware or software licenses

No operating or maintenance cost for local IT infrastructure

On-Premise Cloud

Capital expense model Pay-as-you-go model
£EEE £E

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Reality-Check

Take-up still relatively low for research applications & by small business
Vendor lock-in: going multi-cloud is expensive, complex or both
Application-level auto-scaling is limited

Issues of security, privacy and trust

UNIVERSITY OF

LEADING
THE WAY
WESTMINSTERF

Project COLA COLA

Cloud Orchestration
at the Level of Application

EU Horizon2020 Programme for Research & Innovation
33 months, 14 partners, 6 countries

Secure, cloud agnostic application-level auto-scaling
to encourage cloud uptake

v ~-) MiCADO

COLA scale

UNIVERSITY OF |
LEADING Re, / ~
THE WAY b &

MiCADO
MICADO

Microservice-based Cloud Application-level Dynamic Orchestrator

W £ Q

N

Terraform Kubernetes

Prometheus

UNIVERSITY OF MTA
WESTMINSTER# 35’“-"5"5 @SZTAKI

Interface Security Scaling

UNIVERSITYOF

LEADING
THE WAY
WESTMINSTERF

aws A\ Azure

& Google Cloud E

Cloud Orchestration openstack.

Infrastructure-as-a-Service (laaS)
- Provisioning virtual machines from a cloud service provider (CSP)

R

App App App
| Opemimesym

Traditional Deployment Virtualized Deployment

Image Source: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Manual Cloud Provisioning

aws Services v Resource Groups v *

Services v *

Resource Groups v 1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group 7.R

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5 Step 2- Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run a

Step 1 . Choose an Amazon MaChine Image (AM I) capacity, and give you the flexibility to choose the appropriate mix of resources for your applications. Learn more about instance types

An AMI is a template that contains the software configuration (operating system, ap
Marketplace,

Services v Resource Groups ~ *

Services v Resource Groups v

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group 7. Revie

Q, Search f 1. Choose AMI 2. Choose Instance Type 3. Configure Instance

Step 6: Configure Security Group

. Step 3: Conflgu re InStance Detal lS A security group is a set of firewall rules that control the traffic for your instance. On this page, you can add rules to allow specific traffic to r
Quick Stz Configure the instance to suit your requirements. You can launch mu

Internet traffic to reach your instance, add rules that allow unrestricted access to the HTTP and HTTPS ports. You can create a new securit

Select an existing key pair or create a new key pair

A key pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMls, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

provider "aws" { TERMINAL > terraform plan
region = "us-west-2" Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will
data "aws ami" "ubuntu® { persisted to local or remote state storage.

most recent = true

}

filter {
el An execution plan has been generated and is shown below.
CENESERRINVALECEEIN BRI Resource actions are indicated with the following symbols:

. _ + create

}
Terraform will perform the following actions:

resource "aws instance" "web" {

ami = "${data.aws ami.ubuntu.id}

aws_instance.web will be created
+ resource "aws_instance" "web" {
tags = { + ami = "ami-0@bacofc47ad@7c5f5"

instance type "t2.micro"

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Terraform
Infrastructure Management
—Provisions

—Maintains

—Destroys

—Scales
—Self-healing

UNIVERSITYOF
LEADING
THE WAY
WESTMINSTERF

Container Orchestration

Application containers
- Lightweight OS-virtualisation
- Application packaging for portable, reusable software

App App App
| Opemimesym

Traditional Deployment Virtualized Deployment Container Deployment

Image Source: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Container Orchestration

TERMINAL > docker run busybox cal -j

December 2019
Su Mo Tu We Th Fr Sa
335 336 337 338 339 340 341
342 343 344 345 346 347 348
349 350 351 352 353 354 355
356 357 358 359 360 361 362
363 364 365

TERMINAL > docker run -d busybox sleep 60
211685b29840d758974795a662b14c1dodf807ec792faed90fc84b@557b84e5b

TERMINAL > docker ps
CONTAINER ID IMAGE COMMAND
68c958637f70 busybox "sleep 60"

apiVersion: vi
kind: Pod
metadata:
name: myapp-pod
labels:
app . myapp
spec.
containers:
- name: myapp-container
image: busybox
command: |

I TERMINAL > vim kube-test.yaml
kubectl apply -f kube-test.yaml

pod/myapp-pod created

TERMINAL > kubectl get po

NAME READY STATUS RESTARTS
myapp-pod 1/1 Running 0
TERMINAL > [

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

5

Kubernetes

Container Management Across a Cluster of Nodes (VMs)

—Deploys
—Maintains
—Destroys

—Auto-scaling
—Self-healing
—Rolling updates and rollbacks CI/CD

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Prometheus

A monitoring & alerting system
Pull-style metric collection
- Resource usage of containers / virtual machines (CPU, Memory, etc...)

- Custom data exported by applications (latency, requests served)

Alerting based on those metrics

Container CPU Usage

o' Grafana

UNIVERSITYOF
LEADING
HEWAY
e Terraform, Kubernetes & Prometheus
for Research
Some good things:
— Open-Source
— Community
— Extensions m
- Kubernetes (Kubeflow)
- Prometheus Exporters (DBs)
- Terraform Modules (Sagewatch, BigQuery) z

Could-be-better things:
— High overall complexity
- Deploying, configuring, integrating
—Vendor lock-in encouraged
— Limited scope for auto-scaling

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Ansible

Declarative configuration management automation framework

Deploys and configures MiCADO microservices

ansible

playbook v MiCADO MASTER

7) A MTA
v e BALASYs@ SZTAKI

UNIVERSITY OF
WESTMINSTERF

Interface Security Scaling

Cloud Container Monitor

UNIVERSITY OF
LEADING
THE WAY ‘

| MiCADO
MICADO

r-—-—-—-=-=-=-=-= I

. |
r _ 1 |
MiCADO MASTER | 'V':)CADO !

| WORKER I

|
| P

|
T A UNIVERSITY OF v/ N
0SC WESTMINSTERF GBALASYS @gﬂz-l.—rp;“(l | ingce)rter | : |
. . .) | |
virtual machines Interface || Security Scaling : 0.0, Iy :
4cores, 4GB | cAdvisor : | I

Monitorin I
containers ..’ * 9 : & | | :
docker.hub/image . , I I
Cloud Container Monitor I & : I
policy . 1,

I Container |,

scale at > 75% CPU

CPU Usage per Container (Stacked)

General Sentiment Number of Feeds

Daily average of Feeds
(. Latest update: 201

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Simulation & Modelling Use-Case
- Multi-job, deadline constrained experiments

- Typically batch/parameter sweep jobs
- Containers/VMs scale to complete jobs by deadline

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Insert Queue Here

Where do we put the jobs?

How do we execute them

ﬂ Jobs

Scale VMs

————————————————————

MiCA[y

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

JQueuer

Asynchronous Distributed Task Queue
- Celery.py

Master Component
- The queue
- Metric Generation
- Frontend for submission

Agent Component

- Runs alongside experiment tool
- Fetches jobs from Master
- Executes jobs in container

- JSON input
- Jobs & Deadline

UNIVERSITY OF
LEADING

THE WAY
WESTMINSTERF

Deadline-based auto-scaling

Calculates containers/VMs required to complete jobs by deadline

Uses JQueuer metrics:
- Queue length
- Jobs completed
- Jobs remaining
- Time elapsed
- Average job length
- Time to deadline

Cloud resources are scaled up/down by MICADO

UNIVERSITY OF
LEADING

WESTMINSTER THE EXPERIMENT

« Agent-based simulation
* Repast Simphony

 Three agents
e |nfected
o Susceptible
 Recovered

« Simulate movement & interaction
of agents in an environment to determine effects
of one group on another

UNIVERSITYOF

LEADING
THE WAY

WESTMINSTERF

Calculating a Baseline: Manual allocation

Repast

g VM 1

Repast

\VM 2 y

Repast

Equal distribution to five virtual

machines running Repast in container

(40 jobs per VM)

Repast

\VM 3 p

VM 4

Repast

\VM 5 py

1-hour

to complete
all jobs

UNIVERSITYOF

LEADING
THE WAY

WESTMINSTERF

Using MICADO: Dynamic allocation & auto-scaling

_

Repast

n

JQueuer
Agent

Mi1CADO Worker n

4 jQueuer)

Manager

b *

J

&

Repast

2

JQueuer
Agent

MiCADO Worker 2

J

-

Repast

1

JQueuer
Agent

MiCADO Worker 1

MiCA
Mast

<

J

MiICADO Grafana Dashboard - Kubernetes Support

Node D worker-node * Hostnames All v Service worker ¥ Top Cont. 1000 ~ Interval 1m~

+ Node & Containers

2 worker nodes 1 containers

<this Is a recording>

jQueuer Total Jobs jQueuer Jobs Accomplished jQueuer Jobs Running

[© Last 1 hour »

+ Resource Usage (per Node/Container)

Memory usage per node Memory Usage per Container (Stacked)
763 MiB

572 MiB
| mis

191 MiB.

400 MB 1545 15:50 1556 1600 1605 1610
15:50 16:00 1610 1620

= 102445149100 = 10.244.53.39700 = 102445439100 = 10.244.5529100 - 10.244.56.4:9100 — 10.244.57.59100

1615 1620

d5f-Bdkgb == worker-5cocfdd4d5i-Bdq7t == worker-Scocfd4dSFOwwk2 = worker-Scccfd4d5f-gidhr

2 s~

UNIVERSITYOF

LEADING
THE WAY
WESTMINSTERF
Results
Dynamic allocation of variable length jobs
results in a better use of cloud resources
1st run Max 10 instances deadline 01:04:55 2nd run Max 10 instances deadline 01:04:55
[0 Manually Allocated [Allocated by MiCADO @ Manually Allocated [Allocated by MiCADO 5 VMS
7 7
FE g Manual
g B allocation
£, g, (baseline)
: . s . 3.86 VMs
E 1 g 1 Dynam1 .c
= DD[:]DD:GCI 00:15:00 00:30:00 00:45:00 01:00:00 B DEE[JD:D[] 00:15:00 00:-30:00 00:45:00 01:00:00 a -L -LO C a t -I O n
Time (hourmin:sec) Time (hourmin:sec) (M 1 CADO)

UNIVERSITY OF
LEADING

IHE WAY
WESTMINSTERF

Cast (In order of appearance)

Terraform terraform.io
Kubernetes kubernetes.io
Prometheus prometheus.io

Ansible ansible.io

MICADO micado-scale.eu

JQueuer doi.org/10.1016/j.future.2019.05.062

UNIVERSITY OF
WESTMINSTERF

Thanks!

Jay DeslLauriers
J-deslauriers@westminster.ac.uk

e

e

	Building a Cloud Toolkit���Jay DesLauriers
	The Research Centre for Parallel Computing @ UoW
	Why Cloud?
	Reality-Check
	Project COLA
	MiCADO�Microservice-based Cloud Application-level Dynamic Orchestrator
	Cloud Orchestration
	Manual Cloud Provisioning
	Terraform
	Terraform
	Container Orchestration
	Container Orchestration
	Kubernetes
	Kubernetes
	Prometheus
	Terraform, Kubernetes & Prometheus�for Research
	MiCADO�Microservice-based Cloud Application-level Dynamic Orchestrator
	Ansible
	MiCADO
	Social Media Analytics Use-Case
	Simulation & Modelling Use-Case
	Insert Queue Here
	jQueuer
	Deadline-based auto-scaling
	THE EXPERIMENT
	Calculating a Baseline: Manual allocation
	Using MiCADO: Dynamic allocation & auto-scaling
	Slide Number 28
	Results��Dynamic allocation of variable length jobs�results in a better use of cloud resources�
	Slide Number 30
	Thanks!���Jay DesLauriers�j.deslauriers@westminster.ac.uk�

