Dr Tom Deakin

Senior Research Associate
HPC research group
University of Bristol

Performance Portability across
Diverse Computer Architectures

4K University of
BI]T{ieéSTlt‘S(])()L http://uob-hpc.github.io GW4‘

Recent processor trends in HPC

Many-core CPUs

A T ¢

THUNDER){

\
| —

Elic University of
BRISTOL http://uob-hpc.github.io

GW#

AMD’s Rome showing where mainstream CPUs are heading

From late 2019:
* Up to 64 heavyweight x86 cores per CPU
* Uses 8 chiplets of 8 cores each, plus an I/O chiplet

MONOLITHIC VS. MULTICHIP

MOVING TO A MULTI-DIE APPROACH HAS MANY BENEFITS

Chiplets likely to be an important future trend...

cAKC University of
B%eésTn‘gL http://uob-hpc.github.io GW4‘

Emerging competition from Arm CPU vendors A

Z cAium FU]ITSU AMPERE

_‘/

2 cavn -

'I'HUND-)u. |

\ \/\AAAAA/_\y
-% University of
.. BRISTOL http://uob-hpc.github.io

An example forthcoming Arm-based CPU: Fujitsu’s A64FX
e 48 cores, no hyperthreading

e 2.7 TFLOP/s double precision, 512-bit vectors (SVE)

* 1 TeraByte/s main memory bandwidth W
* 32 GB HBM2 CHG specification

13 cores
L2$ 8MiB

° ~17O Watts Mem 8GiB, 256GB/s
* High speed interconnect

Tofu PCIe

controller controller
W, ‘
| ;
i i HBM2

-% University of 4_\
BRISTOL http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html GW

I
e 8.7B transistors, 7nm

HBM2 \HBMZ '

* Fugaku now installed at RIKEN
* 158,976 A64FX processors

http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html

NEC Aurora Vector Engine sit at technology intersection

* Relatively few cores (8) compared to CPUs (64) and GPUs (80)

* More cores increase FLOPs, but also increase aggregate cache size and
bandwidth

* Hierarchy of large caches like a CPU
* Wide vectors like a GPU (32 VPUs / 256 FP64 vectors)

Uses HBM2 memory technology

e Accelerator form-factor, but traditional programming model

* Reverse offload MPI+OpenMP
e Standard offload an option too

Elic University of
BRISTOL http://uob-hpc.github.io

GW#

Recent architectural trends

6y

A
&

CPUs have evolved to include lots of cores .
and wide vector units

32 core CPUs now common (AMD Naples,
Marvell ThunderX2)

48, 64 core CPUs arrive within the next 12
months (A64fx, Rome)

Chiplet manufacturing processes likely to
be an important future trend

This renewed competition in CPUs is
crucial to the health of the HPC
ecosystem, and for performance per dollar

University of

BRISTOL http://uob-hpc.github.io

GPUs incorporating latest memory
technologies (HBM)

e So do KNL and A64FX CPUs

GPUs have lots of cores and very wide
vector units

Lightweight cores becoming more complex
(caches, specialised accelerators, etc)

Vendor competition increasing (AMD
GPUs in Frontier, Intel GPUs in Aurora,
NVIDIA GPUs pre-Exascale Perlmutter)

GW#

B\ \
A \\
o -

Isambard system specification

10,752 Armv8 cores (168n x 2s x 32¢)
 Marvell ThunderX2 32 core 2.1->2.5GHz
e 256 GB RAM per node, bandwidth >240 GB/s

e Cray XC50 ‘Scout’ form factor
* High-speed Aries interconnect

* Cray HPC optimised software stack
e CCE, Cray MPI, math libraries, CrayPAT, ...

/}\’rfﬁ’ B&T \

= T'.'fv' ",/. KT
- N = = ‘r = % S LN LN
5 P AT\

e

N, e
N s
T SO 2 \
W . 2
=N L A

& W=
=
F NG S
A 3

o

o]
;—vg

)

* Phase 2 (the Arm part): L4
* Installed in November 2018, accepted in 1 week! ot
* Upgraded silicon (to B2), firmware and stack Mar19

e As of June (since increased):
185 registered users, 63 are external

« PRODUCTION SERVICE opened to all users May 2019

* First Arm-based production service in the world!

|

Elic University of
BRISTOL http://gw4.ac.uk/isambard/

Comparing between multiple Arm-based supercomputers

* Bristol is one of the few sites in the world with multiple different Arm-
based supercomputers

 Added an HPE Catalyst system in 1Q2019
* 64-node Apollo70 system, 4,096 cores, ThunderX2 CPUs

* |sambard and Catalyst together enable us to compare across:

* Networks: Cray Aries vs Mellanox IB
e Software stacks: open source vs Cray

* For comparisons see following references:
e Talk from AHUG @ISC’19
* https://doi.org/10.1002/cpe.5110

4K University of
Brlli‘]IeSr'SIlt'gL http://gw4.ac.uk/isambard/ GW4‘

GROMACS (42 million atoms, ARCHER benchmark)

2.5 2.5 120 120
Bl Broadwell 22c
mm Skylake 20c
—_ mmm Skylake 28c 100 - A 100
ﬁ 2.0 1 B TX2 (Isambard) | 2:© \
= BN TX2 (Catalyst) _
2 & 80- 80
S 1.5 - 15 o
i k5
2 £ 60- 60
) ()
2 10 1.0 2
S S a0- 40
© w0
£ —e— Broadwell 22c
£ —— Skylake 20c
G 0.5 0.5 20 4 —— Skylake 28c 20
—e— TX2 (Isambard)
—— TX2 (Catalyst)
0.0 - 0.0 0 T T T T T 0
2 4 8 16 32 2 4 8 16 32
Nodes Nodes
[] [] []
Relative performance Parallel efficiency

UnlverSItY of Scaling Results From the First Generation of Arm-based Supercomputers 4‘
BRISTOL S. McIntosh-Smith, J. Price, A. Poenaru and T. Deakin, CUG 2019, Montreal

Isambard 2 Tier-2 service designed to explore these opportunities

Diverse range of architectures:

e CPUs:

* Arm: Fujitsu, Marvell
e X86: AMD, Intel

* IBM POWER GW4‘

* GPUs:
* NVIDIA
C=RANY

[AM D Met Office THE SUPERCOMPUTER COMPANY
* Intel

4 EPSRC

Elic University of

http://uob-hpc.github.io

BRISTOL

REERRTTT

N

l

EREETTTE T T

mmmmm

Challenges at Exascale

 The coming generation of Exascale
supercomputers will contain a diverse range of
architectures at massive scale

* Perlmutter: AMD EYPC CPUs and NVIDIA GPUs (pre-
Exascale)

* Frontier: AMD EPYC CPUs and Radeon GPUs

e Aurora: Intel Xeon CPUs and Xe GPUs

e El Capitan: AMD EPYC CPUs and Radeon GPUs
e Fugaku: Fujitsu A64fx Arm CPUs

6y

¥ OAK RIDGE
- Natic nal Labor: tory

O fFft‘y JAINCETER
o s S

AMDZ1

Arzonni A
NATIONAL LA JORATORY
) ENERGY

Ositiey, W i
A .
L e e | | ‘l |
“'6’

MD 21 RAT

% University of The Next Platform, Jan 13t 2020: “HPC in 2020: compute engine diversity gets real”
Ay BRISTOI, https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/

I

https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/

Bl University o
BRISTOL

What do we mean by “performance portability?”

“A code is performance portable if it can achieve a similar fraction
of peak hardware performance on a range of different target
architectures.”

Questions:

* Does it have to be a “good” fraction? YES! Within 20% of “best
achievable”, i.e. of hand-optimized OpenMP, CUDA, ...

* How wide is the range of target architectures? Depends on your
goal, but important to allow for future architectural developments

EAC University of
Brlli‘iesrs’-‘l[‘yOOL http://uob-hpc.github.io 14 GW4‘

S.J. Pennycook, J.D. Sewall, V.W i
, V.W. Lee, A metric for performance portability,in:Proceedings of the International Workshop on Perfor
mance

Modeling,BenchmarkingandSimulation,2016.URLhttp://arxiv.org/abs/1611.07409

A Metric for Performance Portability

mally used in computing to refer

PF] 22 Nov 2016

application to previous work.

% Uni ezrsit f
Vv y O
BRISTOL

S
» A

Abstract—The term “performan

generally include: 1) the ability to run one application across
multiple hardware platforms; and 2) achieving some notional
level of performance on these platforms. However, there has ;
been a noticeable lack of consensus on the precise meaning of a shared metric when
of the term, and authors’ conclusions regarding their success
(or failure) to achieve performance portability have thus been
subjective. Comparing one approach to performance portability
with another has generally been marked with vague claims and
verbose, qualitative explanation of the comparison. This paper
presents a concise definition for performance

utility of this metric is then demonstrated with a retroactive

S. J. Pennycook, J. D. Sewall and V. W. Lee
Intel Corporation
Santa Clara, California
{john.pennycook,jason.sewall,victor.w.lee}@intel.com

ce portability” has been infor- and demonstrate its accuracy and utility for quantifying

to a variety of notions which an application’s performance and portability; and

3) We retroactively apply our metric to a number of pub-
lished application studies, thereby highlighting the utility

comparing and contrasting

different approaches to performance portability.

http://uob-hpc.github.io

I1. RELATED WORK

portability, along There have been a number of efforts to develop new program-
with a simple metric that accurately captures the performance ming models, languages and tools that provide users with a
and portability of an application across different platforms. The productive means of achieving performance portability. Some
have proposed the use of domain-specific languages (DSLs),
providing a limited set of high-level abstractions for a spe-

4

Two ways to measure Performance Portability

Definitions from the Pennycook, Sewall and Lee paper:

1. Architectural efficiency:
Achieved performance as a fraction of peak theoretical hardware

performance. This represents the ability of an application to utilize
hardware efficiently;

2. Application efficiency:
Achieved performance as a fraction of best observed performance.

This represents the ability of an application to use the most
appropriate implementation and algorithm for each platform

EAC University of
Brllivlesr'sjlrgL http://uob-hpc.github.io 16 GW4“

A systematic evaluation of Performance Portability

e Studying Performance Portability is hard!

* Have to be rigorous about doing as well as possible across a wide range issues:
architectures, programming languages, algorithms, compilers, ...

|t takes a lot of effort to do this well
* Motivated by our results so far, in Bristol we have initiated a wide-
ranging evaluation of Performance Portability:
e Across many codes
* Across many programming languages
e Across many architectures

* QOur goal is to share these codes and results to further the fundamental
understanding of performance portability

EAC University of
Brllivlesr'sjlrgL http://uob-hpc.github.io 17 GW4“

Codes in the Bristol Performance Portability study

BabelStream:
CloverLeaf:
Tealeaf:
Neutral:
MiniFMM:
SNAP*:
unSNAP*:
MG-CFD*:

Mini-PRECISE:

Elic University of
BRISTOL

simple measure of achievable memory bandwidth
structured grid hydrodynamics

structured grid heat diffusion

Monte Carlo neutral particle transport

fast multipole method

structured grid deterministic neutral particle transport
unstructured grid deterministic neutral particle transport
unstructured grid CFD

combustion code

* = work in progress G 1
http://uob-hpc.github.io 18 W

Parallel programming languages in the Bristol PP study

* OpenMP e CUDA

* OpenMP target * OpenCL

e Kokkos CPU RAJA*

* Kokkos GPU e SYCL*

* OpenACC * Flat MPI*
* =to come

EAC University of
Brllivlesr'sjlrgL http://uob-hpc.github.io 19 GW4“

Target hardware platforms

CPUs: Accelerators:

* Intel Skylake * NEC Aurora

* Intel KNL * NVIDIA Turing
e AMD Naples, Rome* * NVIDIA Volta
 IBM POWER9 * NVIDIA Pascal
 Marvell ThunderX2 * NVIDIA Kepler
 Marvell ThunderX3/4/5% « AMD Radeon VI
* Ampere eMAG FPGAs*

* Fujitsu A64fx* * = to come

EAC University of
Brllivlesr'sjlrgL http://uob-hpc.github.io 20 GW4‘

Peak D.P. 4.0
FLOP/s o

1,400
1,200
1,000

Peak BW o
GB/S 600

400
200

Elic University of
BRISTOL

7.01

4.04
3.50
2.15
1.02 128 1.18
. I 0.21 I 0.37
- [|
S
Q\Qj’ {\3’ Q}Q’ X o{b \QQ '\QQ < '»QQ Q\(\Qo QA\
%tb (\6?4 @Q V\) Q &\) Q/O
&S v é/(, <a~’°b
1,200
1,024

900
732
616
288 288
I I 159 208

&

&

& & O
o(‘b ?SQ (Fg
;(Q $<</ Qg’

http://uob-hpc.github.io

Bristol Performance Portability study

Latest results

EAC University of
BIIHKVIGSI.S’-AI[‘YOOL http://uob-hpc.github.io 29 GW4‘

BabelStream

e BabelStream benchmark written to measure achievable (main) ﬂn\

memory bandwidth

* Based on McCalpin STREAM benchmark, but with a number of lw,:

key differences:
* Arrays allocated on the heap

* Problem size known only at runtime

* Range of programming models to widen support for CPUs and GPUs

e Constructed of simple vector operations:
e cli] = ali] e cli] = ali] + bJi]
e b[i] =scalar * c[i] e ali] = b[i] + scalar * c[i]
e sum += a[i] * bJ[i]

% University of 4‘
BRISTQL https://github.com/UoB-HPC/BabelStream GW

BabelStream
e
Achieved bandwidth (GB/s)

Higher is better

Architectural efficiency
(Fraction of hardware peak)

Higher is better

Skylake i Skylake[80.2% | 68.1% - | 324% | 41.8% |
KNL - KNL} 922% | 62.1% - 90.7% | 58.4% -
Power 9 - - Power 9t 72.8% | 73.6% - 72.5% -
Naples - - - Naplest 65.9% | 62.7% - - -
ThunderX?2 - - - ThunderX2} 85.3% 84.7% - - -
Ampere - - - Amperet 66.4% 57.3% - - -
NEC Aurorat 976 - - - - 1 NEC Aurorat 81.3% - - - -
K20F 144 152 | 150 | - 151 K20t 69.2% | 72.9% | 72.3% - 72.8% -
P100F 553 557 552 552 551 PI0O+ 75.5% | 76.1% | 754% | 753% | 75.3% -
V100 774 828 833 829 839 VIOOF 86.0% | 92.0% | 92.6% | 92.1% | 93.2% -
Turing} 528 554 556 555 554 Turing} 85.7% | 90.0% | 90.2% | 90.1% | 89.9% -
Radeon VII} - - - - 814 Radeon VII} - - - - 79.4% -
OpeﬁMP Kokkos CUDA OpeﬂACC OpeﬁCL OpeﬁMP Kokkos CUDA OpeﬂACC OpeﬁCL
Elic University of

BRISTOL

. GWH

o | 62.1%

8% | 73.6%

St 659% | 62.7%

- e ... Thunderx2 853% | 84.7%

Amperer 66.4% | 57.3%

Performance portabilit

K20} 69.2% | 729% | 72.3% 72.8%
P100} 75.5% | 76.1% | 754% | 153% | 75.3%

- 79.4%
MP Kokkos CUDA OpenACC OpenCL

 Heatmaps can give an intuitive view on performance portability

* Want to be rigorous, so use the Performance Portability metric to quantify the
Intuition

* The challenge is that no language runs successfully on all our
platforms.

 We automatically create platform subsets and compute performance
portability of application efficiency for each subset

e Start with all platforms (PP = 0)

* Remove the platform which is the least supported (the one with the most
missing results)

* |f tied, remove the platform which causes biggest change in L,-norm of
performance portability from current platform subset
Elic University of

BRISTOL http://uob-hpc.github.io - GW4-

Observations on BabelStream Performance Portability

100

80

60

a0t

Performance Portability

20

...

OpenMP
e—e Kokkos
&~ CUDA
*—% OpenACC

~— OpenCL

% University of
A BRISTOL

If we exclude the AMD Radeon GPU, then
OpenMP successfully runs on all the
remaining platforms, with PP =97.5%

Excluding the NEC Aurora, then Kokkos

can run across the remaining set with PP =
89.3%

If we further exclude all non-Intel CPUs,
then OpenCL runs with PP =76.7%
(|H[=8)

* Improves if only consider GPUs due to NUMA

related runtime issues

Also excluding Power 9, AMD Naples and
NVIDIA K20, OpenACC will run with
similar portability to OpenCL.

* Do have Power 9 result, but heuristic chose to
keep K20 where we don’t

http://uob-hpc.github.io 26 < iW‘ i

CloverLeaf o

l[ealeaf S/ R A
Lower is better 8ol] Lower is better 80
Skylake[317 370 - » > Skylaker 376 | 463 - - z
KNLL 191 _ _ = KNL} 250 666 - 698 - %
Power 9} 254 393 - 341 g 60 1 Power 9} 376 544 - 768 - E 60
Naples 348 372 _ _ < Naples| 327 395 - 337 - 2
ThunderX?2 314 439 _ _ E ThunderX2+ 457 772 - - - 5
L 1 £ 40-
Ampere - - g 40 Ampere - - - g
NEC Auroral N N N E NEC Aurorar 323 - - - - g x— OpenMP
K20 12 445 629 ol [OpenmP K20} 9737 592 - 572 s0| & Kokkos
L 1 ~—a CUDA
P100 187 122 153 : EET::S P100F 226 163 139 133 149 «—+ OpenACC
vioo[281 127 81.0 103 ++ OpenACC vieop - 108 | 888 | 901 | 979 ~— OpenCL
: T A i i Turing - 211 213 199 213 0 =
Turing 181 116 139 3 > > ~ > N = : O \9\ /q\ /%\ f\\ ® P <
~ p; 4 Radeon VII - - - - 106 R X X X X X Q\\ ~z~\ Q\ X
: : : ‘ ST L & L &9 : : ; ‘ : RSN N NN X X
OpenMP Kokkos CUDA OpenACC \\\\ fo\\ &\ +\ é)\ é\’\ ‘_\ o OpenMP Kokkos CUDA OpenACC OpenCL 7}\\ \\\\\ @\ & {p, \Q:o Q}C) &
? 3 & < 3 [N @ & S K L K ¥
v°0 Y&Q o(\be '&Q G‘ﬂ\ Q°$ 6000 0‘?\» }?@&V\\o“ 8 of
& < @ & 4
u []
Neutral s MiniFMM
‘ __ Lower is better 80| Lower is better
Skylaket 8.0 13.0 - - - > Skylake f 8.7 12.9 - - >
KNL[2338 28.1 - - - 3 KNL| 114 20.2 - - 2
P 9l 8. . _ - - £ 60 £ 60
ower 9| 8.3 11.1 5 Power 9t 23.6 385 - - g
Naplest 14.5 16.6 - - - o g
o L v
ThunderX2[126 | 135 - - - 5 Naplesp 13.1 205 - - 5
Amperer 37.4 43.3 - - - g “or ThunderX2 21.9 30.6 - - E 40
(= o
NEC Aurorar 2784 - - - - E OpenMP Ampere - - 5
o
ploof - 95 | 44 | 89 | 39 p10ol Kokkos
OpenACC 5.0 4.7 33 4.3 CUDA
V100 - 6.2 3.1 33 33
Turi 93 o 87 e . V100+ 3.1 4.4 2.5 3.8
uring - . o . : : .
Radeon VII} - - - - 3.7 ,/\:D ,/\/\’\ Q\Q\ Q\Q\ %\Q\ /\\Q‘ @ QQ\/Q Q‘\O)\%/;DQ\//Q Turing t 3.2 42 2.3 3.2
K K - . = . %
OpenMP Kokkos CUDA OpenACC OpenCL RN 05 o8 e\/\\ \@\\ Qq\ S OpenMP Kokkos CUDA OpenACC &
P L FEST TG ST
S & & o o 7
& & Q ’ ’
£

-% University of
A BRISTOL

http://uob-hpc.github.io

Performance Portability of OpenMP and Kokkos

: Higher js better : Mean Std. Dev.

OpenMP CPU 98.4% | 100.0% | 100.0% | 100.0% | 100.0% { 99.7 0.6

Heatmap shows PP metric on
chosen platform subsets

Kokkos CPU} 83.0% | 49.8% | 60.7% | 77.6% | 66.1% { 67.5 11.9

Rows indicate how a model fairs

across different applications OpenMP GPUE- 00% | 00% | 00% { 236 370
OpenMP achieving best Kokkos GPU} 99.5% | 643% | 85.7% | 51.1% | 60.4% | 722 17.7
performance on CPUs but OpenMP allt 97.3% [43.6% | 0.0% 0.0% 0.0% | 282 38.5

struggles on GPUs due to support

Kokkos allt 88.5% | 544% | 682% | 65.0% | 63.9% {| 08.0 11.2

Kokkos shows a small overhead on BabelStream Tealeaf CloverLeaf Neutral MiniFMM
CPUs
+ PP metric tells us to expect the * Final row here (Kokkos all) shows performance
abstraction of OpenMP/CUDA to portability is possible
reduce performance by ~15-50% * Mean and standard deviation shows we would

expect Kokkos to achieve 59-79% of best

i University of application performance on average
BRISTOL http://uob-hpc.github.io - GW4‘

Overall Performance Portability observations thus far

Performance portability can be a very mixed bag
* Alanguage may do well on one code, then poorly on the next

OpenMP and Kokkos achieving the best platform coverage
Big differences between compilers for PP (esp. OpenMP target)

Kokkos doing the best in allowing applications to achieve performance
portability across architectures

* Our PP goal was to achieve 20% of best performance, and Kokkos achieves within
32% of best performance on average

OpenACC struggling for coverage on the CPUs (x86. A64fx? TX47?)

* Symptom of vendor controlled, non-open/standardised programming models?
* Hard to talk about performance portability when portability is limited

EAC University of
Brllivlesr'sjlrgL http://uob-hpc.github.io 29 GW4‘

Where next for the Bristol Performance Portability study?

* Eventually aiming for about 10 codes in 8 languages across 14
platforms (980 combinations!)

* Can we achieve performance portability between CPUs and GPUs
using widely supported (by vendors) industry standards?

* |f not, what’s stopping us, and what can we do about it?

 Can we find good examples of codes that work well, and codes
that are inherently hostile to performance portability?

 Want to push improvements in compilers, run-times, libraries, and
even architectures, to improve prospects for PP

-% HIVCI'SI (@)
(AL ERISTtof GWH+

Thoughts on productivity

* Lines of code of each mini-
app/model shows expected 2ol S]
trends in verbosity of some
models

0 0OpenMP /0 OpenMP Target /0 Kokkos CPU B Kokkos GPU BB OpenACCIOCUDA B8 OpenCL

[N}
I
| 1.88
| 1.8
| 1.76
1.8
| 1.84

1.8

| 1.68
| 1.7

| 1.66
1.66

| 1.6

1.6 |

* Original CloverLeaf and Tealeaf
are rather long compared to the
other ports == .

P Ioml mll

e | S p ro g rammer Styl ed fa CtO r h ere ? BabelStream Tealeaf CloverLeaf Neutral MiniFMM

1.36

1.4

LOC normalised to smallest

1.04
1.27
1.13

* More sophisticated productivity
metrics require capturing
information during development

e Hard to quantify for existing
codes/ports

EAC University of
Brllivlesr'sjlrgL http://uob-hpc.github.io 31 GW4‘

* Porting these mini-apps to each programming
model took around 2 weeks

e Lines of Code doesn’t amortize away developer time
saved once the first parallel loop is written

Performance Portability of SYCL (SYCL

* SYCL is a single-source C++ parallel programming model for
heterogenous platforms from Khronos

e Open standard

* Modern C++

 Commercial support from Intel with oneAPI/DPC++ and Codeplay
* Open-source support growing to support wider set of platforms

* One possible option for programming CPUs, GPUs, etcin a
performance portable way

4K University of
Brglesrs’-‘[lt‘yooL http://uob-hpc.github.io GW4‘

Performance Portability of SYCL (SYCL

e Paper at IWOCL explored performance
on Intel CPUs and GPUs from Intel,
AMD and NVIDIA.

* Comparisons with OpenCL, OpenMP,
CUDA and HIP

* Very promising results so far, but more
work to do in the HPC ecosystem

| 89.9-
1 90.2

e}
-}
\

| 86.1

| 80.3
1 80.3
| 80.5

oo
)
\

| 78.8
| 80
| 79.3

-3
(@)

% peak memory bandwidth

— .

AN
N o
©

(o))
@)

I I I
Xeon NUC NVIDIA AMD

* Intel’s OpenCL runtime on CPUs has
known issues which hopefully will
improve as part of oneAPI

Elic University of . 4‘
BRISTOL https://doi.org/10.1145/3388333.3388643 GW

00SYCLUDOpenCLIDOpenMPI0CUDAUDHIP

BabelStream Triad

https://doi.org/10.1145/3388333.3388643

Performance Portability of SYCL <SYCL

e Early work running SYCL on Arm
* First results on ThunderX2 using hipSYCL on top of OpenMP
* Performance close to native OpenMP for BabelStream

* Known limitations of backend hipCPU implementation limit performance on all CPU
platforms (both Intel and Arm) for more involved benchmarks

e Currently exploring other avenues for SYCL on CPUs (Intel, AMD and Arm)

e SYCUs future is looking bright:

e Early view of SYCL-2020 shows lots of new HPC-friendly features
e https://www.iwocl.org/iwocl-2020/conference-program/#panel

* Support for NVIDIA GPUs added to open-source version of DPC++
e Critical part of Argonne National Laboratory path to Exascale with Aurora
* Robust support from/for Arm and AMD the next step

4K University of
BI]?]Ieé’SIlt}(I)OL http://uob-hpc.github.io GW%

https://www.iwocl.org/iwocl-2020/conference-program/

The 8th International Workshop on OpenCL
and the SYCL Developer Conference

Register for free and see the full programme online. Live panel with the OpenCL

and SYCL standards developers on Tuesday April 28" from 4pm BST. Free SYCL tutorials
on Monday April 27t and Wednesday April 29th:

www.iwocl.org

Thanks to our sponsors

KHRCONOS (inted) ©codeplay’ B TUTI [88 hgpuorg

GROUP

o ® (< 0 sycl.tech @

O
‘ SYCL_ Home News Projects Events Videos Careers Research o Communicate T;" o O

: SYCL Acad ff fantastic set of terials and b dtol d
® SYCL Academy cademy offers a fantastic set of open source materials and can be used to learn an Visit Githiub com

teach SYCL™ development.

SYCL v1.2.1 Specification Browse Implementations Conformance Test Suite SYCL Working Group

Click here to read or download the full Click here to find out where to get all the The test suite is open source and hosted Visit the SYCL™ Khronos® working-
Khronos® specification for SYCL™ 1.2.1 available SYCL implementations from. on GitHub. Contributions from the group's home page to learn more about
in PDF format. community to the CTS are welcome. the SYCL technology.

Ray-tracing in a Weekend Aurora Workshop Helps

Which performance portable programming model should | use?

 Want codes to run well everywhere, so how should | write them
and what should | write them in?

* Tried a number of approaches:

* Clone the code to allow study of performance portability
* Multiple versions of the code exist

e Lightweight interfaces to allow specialisation
* Put simple library abstractions into the code
* Portability layers like Kokkos is a grandiose approach to this

* Performance portable standard programming models
* OpenMP and SYCL offer the best hope today, but ecosystem needs support

% University of
BRISTYOL http://uob-hpc.github.io/2020/05/05/choosing-models.html GW4‘

Lessons learned about achieving performance portability

1. Use open (standard) parallel programming languages supported by
multiple vendors across multiple hardware platforms
e E.g.OpenMP, SYCL, Kokkos, Raja, ...?

2. Expose maximal parallelism at all levels of the algorithm and
application

3. Avoid over-optimising for any one platform
 Optimise for at least two different platforms at once

4. Multi-objective autotuning can significantly improve performance

 Autotune for more than one target at once

 See: Exploiting auto-tuning to analyze and improve performance portability
on many-core architectures, J.Price and S. Mclntosh-Smith, PA3MA, ISC’17

EAC University of
Brgleés’jl[‘yooL http://uob-hpc.github.io 38 GW4‘

* High Performance in silico Virtual Drug Screening on Many-Core Processors
S. Mclntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, JHPCA 2014

* On the performance portability of structured grid codes on many-core computer architectures
S.N. MclIntosh-Smith, M. Boulton, D. Curran, & J.R. Price
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1 4

* Assessing the Performance Portability of Modern Parallel Programming Models using Tealeaf
Martineau, M., McIntosh-Smith, S. & Gaudin, W.
Concurrency and Computation: Practice and Experience (Apr 2016)

 GPU-STREAM v2.0: Benchmarking the achievable memory bandwidth of many-core processors
across diverse parallel programming models
Deakin, T. J., Price, J., Martineau, M. J. & McIntosh-Smith, S. N.
First International Workshop on Performance Portable Programming Models for Accelerators
(P3MA), ISC 2016

* The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications

Targeting Intel CPUs, IBM CPUs, and NVIDIA GPUs
M. Martineau and S. Mclntosh-Smith, IWOMP 2017, Stony Brook, USA.

Eg HIVCI'SI O
l ERISTtof GWH+

* Evaluating Attainable Memory Bandwidth of Parallel Programming Models via BabelStream
Deakin, T, Price, J, Martineau, M, and McIntosh-Smith, S
International Journal of Computational Science and Engineering (special issue), vol 17., 2018

* Pragmatic Performance Portability with OpenMP 4.x
Martineau, Matt, Price, James, Mclntosh-Smith, Simon, and Gaudin, Wayne
Proceedings of the 12th International Workshop on OpenMP, 2016

* Performance Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support
Martineau, Matt, Mclntosh-Smith, Simon, Bertolli, Carlo, et al
Proceedings of the International Workshop on Performance Modelling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), 2016, SC’16

* Exploiting auto-tuning to analyze and improve performance portability on many-
core architectures
Price, J. & Mclntosh-Smith, S., PA3MA, ISC High Performance 2017 International Workshops,
Revised Selected Papers. Springer, Cham, p.538-556, vol. 10524 LNCS

Eg HIVCI'SI O
l ERISTtof GWH+

For more information

Bristol HPC group: https://uob-hpc.github.io/

Build & run scripts:
https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019

Twitter: @simonmcs

EAC University of
Brllivlesr'sjlrgL http://uob-hpc.github.io 41 GW4‘

https://uob-hpc.github.io/
https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019

