
Performance Portability across
Diverse Computer Architectures

Dr Tom Deakin
Senior Research Associate
HPC research group
University of Bristol

http://uob-hpc.github.io

Recent processor trends in HPC

http://uob-hpc.github.io

FPGAs

GPUs/accelerators

Many-core CPUs

AMD’s Rome showing where mainstream CPUs are heading

From late 2019:
• Up to 64 heavyweight x86 cores per CPU
• Uses 8 chiplets of 8 cores each, plus an I/O chiplet

http://uob-hpc.github.io

Chiplets likely to be an important future trend…

http://uob-hpc.github.io

Emerging competition from Arm CPU vendors

An example forthcoming Arm-based CPU: Fujitsu’s A64FX
• 48 cores, no hyperthreading
• 2.7 TFLOP/s double precision, 512-bit vectors (SVE)
• 1 TeraByte/s main memory bandwidth
• 32 GB HBM2

• ~170 Watts
• High speed interconnect
• 8.7B transistors, 7nm
• Fugaku now installed at RIKEN
• 158,976 A64FX processors

http://uob-hpc.github.iohttp://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html

http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html

NEC Aurora Vector Engine sit at technology intersection

• Relatively few cores (8) compared to CPUs (64) and GPUs (80)
• More cores increase FLOPs, but also increase aggregate cache size and

bandwidth
• Hierarchy of large caches like a CPU
• Wide vectors like a GPU (32 VPUs / 256 FP64 vectors)
• Uses HBM2 memory technology
• Accelerator form-factor, but traditional programming model
• Reverse offload MPI+OpenMP
• Standard offload an option too

http://uob-hpc.github.io

• CPUs have evolved to include lots of cores
and wide vector units

• 32 core CPUs now common (AMD Naples,
Marvell ThunderX2)

• 48, 64 core CPUs arrive within the next 12
months (A64fx, Rome)

• Chiplet manufacturing processes likely to
be an important future trend

• This renewed competition in CPUs is
crucial to the health of the HPC
ecosystem, and for performance per dollar

• GPUs incorporating latest memory
technologies (HBM)
• So do KNL and A64FX CPUs

• GPUs have lots of cores and very wide
vector units

• Lightweight cores becoming more complex
(caches, specialised accelerators, etc)

• Vendor competition increasing (AMD
GPUs in Frontier, Intel GPUs in Aurora,
NVIDIA GPUs pre-Exascale Perlmutter)

http://uob-hpc.github.io

Recent architectural trends

Isambard system specification
• 10,752 Armv8 cores (168n x 2s x 32c)

• Marvell ThunderX2 32 core 2.1à2.5GHz
• 256 GB RAM per node, bandwidth >240 GB/s

• Cray XC50 ‘Scout’ form factor
• High-speed Aries interconnect
• Cray HPC optimised software stack

• CCE, Cray MPI, math libraries, CrayPAT, …
• Phase 2 (the Arm part):

• Installed in November 2018, accepted in 1 week!
• Upgraded silicon (to B2), firmware and stack Mar19
• As of June (since increased):

185 registered users, 63 are external
• PRODUCTION SERVICE opened to all users May 2019

• First Arm-based production service in the world!

http://gw4.ac.uk/isambard/

Comparing between multiple Arm-based supercomputers
• Bristol is one of the few sites in the world with multiple different Arm-

based supercomputers
• Added an HPE Catalyst system in 1Q2019

• 64-node Apollo70 system, 4,096 cores, ThunderX2 CPUs

• Isambard and Catalyst together enable us to compare across:
• Networks: Cray Aries vs Mellanox IB
• Software stacks: open source vs Cray

• For comparisons see following references:
• Talk from AHUG @ISC’19
• https://doi.org/10.1002/cpe.5110

http://gw4.ac.uk/isambard/

GROMACS (42 million atoms, ARCHER benchmark)

http://gw4.ac.uk/isambard/

Parallel efficiencyRelative performance

Scaling Results From the First Generation of Arm-based Supercomputers
S. McIntosh-Smith, J. Price, A. Poenaru and T. Deakin, CUG 2019, Montreal

8 S. McIntosh-Smith et al

handwrite vectorised code using compiler intrinsics in order to ensure an optimal sequence of these operations15. For each supported platform,
computation is packed so that it saturates the native vector length of the platform, e.g. 256 bits for AVX2, 512 bits for AVX-512, and so on. For
this study, we used a 42 million atom test case from the ARCHER benchmark suite16, running for 800 timesteps. On the ThunderX2 processors,
we used the 128-bit ARM_NEON_ASIMD vector implementation, which is the closest match for the underlying Armv8.1-A architecture. We note that,
within GROMACS, this NEON SIMD implementation is not as mature as the SIMD implementations targeting x86.

FIGURE 6 GROMACS scaling results up to 32 nodes

(a) Relative performance (b) Scaling e�ciency

Figure 6 a shows that at low node counts, GROMACS performance for this benchmark correlates to �oating-point throughput and L1 cache
bandwidth. At two nodes, Skylake Platinum is 1.62⇥ faster than Broadwell, while Isambard is 1.22⇥ slower. The Catalyst system is even slower
again, due to the lower clock speeds delivering less cache bandwidth and lower FLOP/s. As the node count increases, the performance becomes
increasingly a�ected by communication costs. Figure 6 b shows that the scaling e�ciency drops to below 60% for Skylake Platinum at 32 nodes,
with MPI communications accounting for 72% of the total runtime. Since the node-level performance is lower, Isambard is able to achieve a scaling
e�ciency of 90% for 32 nodes, and Catalyst reaches close to 100%. As a result of this, Isambard achieves performance almost on par with the
Skylake Gold SKU at 64 nodes, making up for the lower �oating-point throughput and cache bandwidth.

4.3.2 OpenFOAM
OpenFOAM was originally developed as an alternative to early simulation engines written in Fortran, and is a modular C++ framework aiming to
simplify writing custom computational �uid dynamics (CFD) solvers17. In this paper, we use the simpleFoam solver for incompressible, turbulent
�ow from version 1712 of OpenFOAM7, the most recent release at the time we began benchmarking the Isambard system. The input case is
based on the RANS DrivAer generic car model, which is a representative case of real aerodynamics simulation and thus should provide meaningful
insight of the benchmarked platforms’ performance18. The decomposed grid consists of approximately 64 million cells. OpenFOAM is memory
bandwidth–bound, at least at low node counts.

The OpenFOAM results shown in Figure 7 a start o� following the STREAM behaviour of the three platforms closely, con�rming that memory
bandwidth is the main factor that in�uences performance at low node counts. With its eight memory channels, ThunderX2 yields the fastest result,
at 1.83⇥ the Broadwell performance on four nodes, compared to 1.57⇥ and 1.59⇥ on Skylake 20c and 28c, respectively. At higher node counts,
other factors come into play, where in Figure 7 b we see Broadwell scaling the best of all the platforms, Skylake also maintaining good scaling, and
the ThunderX2 systems scaling the least well, with parallel e�ciency dropping to below 85%. We suspect that, as with TeaLeaf, the lower cache
bandwidths on the ThunderX2 processors limit their ability to realise a super-linear speed-up for kernels that begin to work out of cache, impacting
overall scalability compared to the x86 systems.

7https://www.openfoam.com/download/install-source.php

Isambard 2 Tier-2 service designed to explore these opportunities

Diverse range of architectures:
• CPUs:
• Arm: Fujitsu, Marvell
• X86: AMD, Intel
• IBM POWER

• GPUs:
• NVIDIA
• AMD
• Intel

http://uob-hpc.github.io

Challenges at Exascale
• The coming generation of Exascale

supercomputers will contain a diverse range of
architectures at massive scale

• Perlmutter: AMD EYPC CPUs and NVIDIA GPUs (pre-
Exascale)

• Frontier: AMD EPYC CPUs and Radeon GPUs
• Aurora: Intel Xeon CPUs and Xe GPUs
• El Capitan: AMD EPYC CPUs and Radeon GPUs
• Fugaku: Fujitsu A64fx Arm CPUs

http://uob-hpc.github.io
The Next Platform, Jan 13th 2020: “HPC in 2020: compute engine diversity gets real”
https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/

https://www.nextplatform.com/2020/01/13/hpc-in-2020-compute-engine-diversity-gets-real/

http://uob-hpc.github.io 13

https://uob-hpc.github.io/publications/

What do we mean by “performance portability?”
“A code is performance portable if it can achieve a similar fraction
of peak hardware performance on a range of different target
architectures.”

Questions:
• Does it have to be a “good” fraction? YES! Within 20% of “best

achievable”, i.e. of hand-optimized OpenMP, CUDA, …
• How wide is the range of target architectures? Depends on your

goal, but important to allow for future architectural developments

http://uob-hpc.github.io 14

http://uob-hpc.github.io 15

S.J. Pennycook, J.D. Sewall, V.W. Lee, A metric for performance portability,in:Proceedings of the International Workshop on Performance
Modeling,BenchmarkingandSimulation,2016.URLhttp://arxiv.org/abs/1611.07409.

Two ways to measure Performance Portability
Definitions from the Pennycook, Sewall and Lee paper:

1. Architectural efficiency:
Achieved performance as a fraction of peak theoretical hardware
performance. This represents the ability of an application to utilize
hardware efficiently;

2. Application efficiency:
Achieved performance as a fraction of best observed performance.
This represents the ability of an application to use the most
appropriate implementation and algorithm for each platform

http://uob-hpc.github.io 16

A systematic evaluation of Performance Portability
• Studying Performance Portability is hard!
• Have to be rigorous about doing as well as possible across a wide range issues:

architectures, programming languages, algorithms, compilers, …
• It takes a lot of effort to do this well
• Motivated by our results so far, in Bristol we have initiated a wide-

ranging evaluation of Performance Portability:
• Across many codes
• Across many programming languages
• Across many architectures

• Our goal is to share these codes and results to further the fundamental
understanding of performance portability

http://uob-hpc.github.io 17

Codes in the Bristol Performance Portability study

BabelStream: simple measure of achievable memory bandwidth
CloverLeaf: structured grid hydrodynamics
TeaLeaf: structured grid heat diffusion
Neutral: Monte Carlo neutral particle transport
MiniFMM: fast multipole method
SNAP*: structured grid deterministic neutral particle transport
unSNAP*: unstructured grid deterministic neutral particle transport
MG-CFD*: unstructured grid CFD
Mini-PRECISE: combustion code

http://uob-hpc.github.io
* = work in progress

18

• OpenMP
• OpenMP target
• Kokkos CPU
• Kokkos GPU
• OpenACC

• CUDA
• OpenCL
• RAJA*
• SYCL*
• Flat MPI*

http://uob-hpc.github.io

Parallel programming languages in the Bristol PP study

* = to come

19

CPUs:
• Intel Skylake
• Intel KNL
• AMD Naples, Rome*
• IBM POWER9
• Marvell ThunderX2
• Marvell ThunderX3/4/5*
• Ampere eMAG
• Fujitsu A64fx*

Accelerators:
• NEC Aurora
• NVIDIA Turing
• NVIDIA Volta
• NVIDIA Pascal
• NVIDIA Kepler
• AMD Radeon VII
• FPGAs*

http://uob-hpc.github.io

Target hardware platforms

* = to come

20

3.76

2.66

1.02 1.02 1.28

0.21

2.15

1.18

4.04

7.01

0.37

3.50

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Skyl
ake KNL

Power 9

Nap
les

ThunderX2

Ampere

NEC Aurora K20
P100

V100
Turin

g

Rad
eon VII

http://uob-hpc.github.io

Peak D.P.
FLOP/s

Peak BW
GB/s

256

490
340 288 288

159

1,200

208

732

900

616

1,024

0

200

400

600

800

1,000

1,200

1,400

Skyl
ake KNL

Power 9

Nap
les

ThunderX2

Ampere

NEC Aurora K20
P100

V100
Turin

g

Rad
eon VII

Bristol Performance Portability study
Latest results

http://uob-hpc.github.io 22

BabelStream
• BabelStream benchmark written to measure achievable (main)

memory bandwidth
• Based on McCalpin STREAM benchmark, but with a number of

key differences:
• Arrays allocated on the heap
• Problem size known only at runtime
• Range of programming models to widen support for CPUs and GPUs

• Constructed of simple vector operations:
• c[i] = a[i]
• b[i] = scalar * c[i]

https://github.com/UoB-HPC/BabelStream

• c[i] = a[i] + b[i]
• a[i] = b[i] + scalar * c[i]
• sum += a[i] * b[i]

BabelStream

Achieved bandwidth (GB/s)

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

205
452
248
190
246
106
976
144
553
774
528

-

174
304
250
181
244
91.1

-
152
557
828
554

-

-
-
-
-
-
-
-

150
552
833
556

-

83.0
444
247

-
-
-
-
-

552
829
555

-

107
286

-
-
-
-
-

151
551
839
554
814

Higher is better

Architectural efficiency
(Fraction of hardware peak)

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

80.2%
92.2%
72.8%
65.9%
85.3%
66.4%
81.3%
69.2%
75.5%
86.0%
85.7%

-

68.1%
62.1%
73.6%
62.7%
84.7%
57.3%

-
72.9%
76.1%
92.0%
90.0%

-

-
-
-
-
-
-
-

72.3%
75.4%
92.6%
90.2%

-

32.4%
90.7%
72.5%

-
-
-
-
-

75.3%
92.1%
90.1%

-

41.8%
58.4%

-
-
-
-
-

72.8%
75.3%
93.2%
89.9%
79.4%

Higher is better

24

Performance portability

• Heatmaps can give an intuitive view on performance portability
• Want to be rigorous, so use the Performance Portability metric to quantify the

intuition
• The challenge is that no language runs successfully on all our

platforms.
• We automatically create platform subsets and compute performance

portability of application efficiency for each subset
• Start with all platforms (PP = 0)
• Remove the platform which is the least supported (the one with the most

missing results)
• If tied, remove the platform which causes biggest change in L2-norm of

performance portability from current platform subset

http://uob-hpc.github.io 25

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

80.2%
92.2%
72.8%
65.9%
85.3%
66.4%
81.3%
69.2%
75.5%
86.0%
85.7%

-

68.1%
62.1%
73.6%
62.7%
84.7%
57.3%

-
72.9%
76.1%
92.0%
90.0%

-

-
-
-
-
-
-
-

72.3%
75.4%
92.6%
90.2%

-

32.4%
90.7%
72.5%

-
-
-
-
-

75.3%
92.1%
90.1%

-

41.8%
58.4%

-
-
-
-
-

72.8%
75.3%
93.2%
89.9%
79.4%

Higher is better

Observations on BabelStream Performance Portability
• If we exclude the AMD Radeon GPU, then

OpenMP successfully runs on all the
remaining platforms, with PP = 97.5%

• Excluding the NEC Aurora, then Kokkos
can run across the remaining set with PP =
89.3%

• If we further exclude all non-Intel CPUs,
then OpenCL runs with PP = 76.7%
(|H|=8)
• Improves if only consider GPUs due to NUMA

related runtime issues
• Also excluding Power 9, AMD Naples and

NVIDIA K20, OpenACC will run with
similar portability to OpenCL.
• Do have Power 9 result, but heuristic chose to

keep K20 where we don’t
http://uob-hpc.github.io 26

http://uob-hpc.github.io 27

TeaLeaf

OpenMP Kokkos CUDA OpenACC

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing

317
191
254
348
314
793
79.1
1605
190
281
962

370
885
393
372
439
892

-
712
187
127
181

-
-
-
-
-
-
-

445
122
81.0
116

-
-

341
-
-
-
-

629
153
103
139

Lower is better

CloverLeaf

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

376
250
376
327
457
1309
323

226
-
-
-

463
666
544
395
772
1452

-
1297
163
108
211

-

-
-
-
-
-
-
-

592
139
88.8
213

-

877
698
768
337

-
-
-
-

133
90.1
199

-

-
-
-
-
-
-
-

572
149
97.9
213
106

9737

Lower is better

Neutral

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake
KNL

Power 9
Naples

ThunderX2
Ampere

NEC Aurora
K20

P100
V100

Turing
Radeon VII

8.0
23.8
8.3
14.5
12.6
37.4

-
-
-
-
-

13.0
28.1
11.1
16.6
13.5
43.3

-
52.7
9.5
6.2
9.3
-

-
-
-
-
-
-
-

41.6
4.4
3.1
6.9
-

-
-
-
-
-
-
-

92.5
8.9
3.3
8.7
-

-
-
-
-
-
-
-

29.7
3.9
3.3
6.7
3.7

2784

Lower is better

MiniFMM

OpenMP Kokkos CUDA OpenACC

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

K20

P100

V100

Turing

8.7

11.4

23.6

13.1

21.9

116

56.7

5.0

3.1

3.2

12.9

20.2

38.5

20.5

30.6

127

28.2

4.7

4.4

4.2

-

-

-

-

-

-

17.3

3.5

2.5

2.3

-

-

-

-

-

-

-

4.3

3.8

3.2

Lower is better

Performance Portability of OpenMP and Kokkos

http://uob-hpc.github.io 28

• Heatmap shows PP metric on
chosen platform subsets

• Rows indicate how a model fairs
across different applications

• OpenMP achieving best
performance on CPUs but
struggles on GPUs due to support

• Kokkos shows a small overhead on
CPUs
• PP metric tells us to expect the

abstraction of OpenMP/CUDA to
reduce performance by ~15-50%

BabelStreamTeaLeaf CloverLeaf Neutral MiniFMM

OpenMP CPU

Kokkos CPU

OpenMP GPU

Kokkos GPU

OpenMP all

Kokkos all

98.4%

83.0%

95.5%

99.5%

97.3%

88.5%

100.0%

49.8%

22.5%

64.3%

43.6%

54.4%

100.0%

60.7%

0.0%

85.7%

0.0%

68.2%

100.0%

77.6%

0.0%

51.1%

0.0%

65.0%

100.0%

66.1%

0.0%

60.4%

0.0%

63.9%

Mean Std. Dev.
99.7 0.6

67.5 11.9

23.6 37.0

72.2 17.7

28.2 38.5

68.0 11.2

Higher is better

• Final row here (Kokkos all) shows performance
portability is possible
• Mean and standard deviation shows we would

expect Kokkos to achieve 59-79% of best
application performance on average

Overall Performance Portability observations thus far
• Performance portability can be a very mixed bag
• A language may do well on one code, then poorly on the next

• OpenMP and Kokkos achieving the best platform coverage
• Big differences between compilers for PP (esp. OpenMP target)
• Kokkos doing the best in allowing applications to achieve performance

portability across architectures
• Our PP goal was to achieve 20% of best performance, and Kokkos achieves within

32% of best performance on average
• OpenACC struggling for coverage on the CPUs (x86. A64fx? TX4?)
• Symptom of vendor controlled, non-open/standardised programming models?
• Hard to talk about performance portability when portability is limited

http://uob-hpc.github.io 29

Where next for the Bristol Performance Portability study?

• Eventually aiming for about 10 codes in 8 languages across 14
platforms (980 combinations!)

• Can we achieve performance portability between CPUs and GPUs
using widely supported (by vendors) industry standards?

• If not, what’s stopping us, and what can we do about it?
• Can we find good examples of codes that work well, and codes

that are inherently hostile to performance portability?
• Want to push improvements in compilers, run-times, libraries, and

even architectures, to improve prospects for PP

http://uob-hpc.github.io 30

Thoughts on productivity

• Porting these mini-apps to each programming
model took around 2 weeks
• Lines of Code doesn’t amortize away developer time

saved once the first parallel loop is written

http://uob-hpc.github.io

BabelStream TeaLeaf CloverLeaf Neutral MiniFMM

1

1.2

1.4

1.6

1.8

2

2.2

1

1.
88

1.
27

1.
08

1

1.
36

1.
03

1.
7

1.
19

1.
76

1.
08

1 1

1.
27

1.
66

1.
08

1 1

1.
24

1.
66

1.
1

1.
04 1.

13 1.
2

1.
8

1.
68

1.
8

1.
6

1

1.
84

2.
2

1.
6

1.
45

LO
C

no
rm

al
is

ed
to

sm
al

le
st

OpenMP OpenMP Target Kokkos CPU Kokkos GPU OpenACC CUDA OpenCL

Fig. 12. Normalised lines of code for each implementation of each mini-app

of processors and programming models. The performance
portability metric, originally proposed by Pennycook et al [1],
was used to rigorously analyse the performance data and
provide empirical evidence for how performance portable an
application may be. A key part of our work was to analyse the
performance portability of a range of applications written in
OpenMP and Kokkos as well as a range of architectures. Our
results show that as of today, it is possible to achieve perfor-
mance portability in some cases, however in other instances
we see quite variable results. Some programming models may
do well on some platforms but perform poorly on others. Often
this is a result of the compiler producing large differences in
runtime, particularly in the case of OpenMP target. Both
Kokkos and OpenMP do well in coverage of platforms to
provide at least portability. The non-open and non-standard
programming models, such as OpenACC, worked only on a
very limited set of platforms.

We saw that Kokkos does well in allowing applications to
achieve portable performance across the greatest range of both
applications and architectures. The definition of performance
portability presented in Section I asks for 20% of best per-
formance; we found that Kokkos fared best and got close to
our goal, achieving within 32% of the best performance on
average.

Our results here, combined with our previous work de-
scribed in Section I-A, show that a number of lessons can be
learnt in how best to approach writing a performance portable
code:

• Use open (standard) programming models supported by
multiple vendors across multiple hardware platforms.

• Expose maximal parallelism at all levels of the algorithm
and application, and thus allowing the programming

model to map the work to appropriate hardware resources.
• Avoid over-optimising for any one platform, and develop

and improve codes on multiple platforms simultaneously
so as to demand portable performance.

• Although not discussed in this study, multi-objective
auto-tuning can help find suitable parameters in a flexible
code base to achieve good performance on all plat-
forms [19].

Such techniques will allows us as a community to improve
on the current state of performance portability. It is important
to mandate performance portability when developing appli-
cations, and require that a minimum level of performance
portability is maintained. This paper addressed the systematic
measurement performance portability, and demonstrates a way
to quantify the performance portability of a suite of codes.

This study will form the basis of our future work in this area,
where we plan to increase our coverage by including additional
mini-apps in this study from our partners. Additionally, when
new architectures become available, such as the Arm-based
Fujitsu A64FX and AMD Rome CPUs, we hope to add such
results to our existing analysis. Also, the development of
open standard programming models, such as OpenMP 5.0
and SYCL, provide new opportunities for developing portable
codes. As the community continues to develop ways to analyse
programmer productivity, in particular with an existing source
code, we hope to apply such techniques to our performance
portability study in the future.

ACKNOWLEDGMENT

Many thanks to Matt Martineau (NVIDIA) for his as-
sistance with this study. This work used the Isambard UK
National Tier-2 HPC Service (http://gw4.ac.uk/isambard/) op-

• Lines of code of each mini-
app/model shows expected
trends in verbosity of some
models

• Original CloverLeaf and TeaLeaf
are rather long compared to the
other ports
• Is programmer style a factor here?

• More sophisticated productivity
metrics require capturing
information during development
• Hard to quantify for existing

codes/ports

31

Performance Portability of SYCL

• SYCL is a single-source C++ parallel programming model for
heterogenous platforms from Khronos
• Open standard
• Modern C++
• Commercial support from Intel with oneAPI/DPC++ and Codeplay
• Open-source support growing to support wider set of platforms

• One possible option for programming CPUs, GPUs, etc in a
performance portable way

http://uob-hpc.github.io

Performance Portability of SYCL
• Paper at IWOCL explored performance

on Intel CPUs and GPUs from Intel,
AMD and NVIDIA.
• Comparisons with OpenCL, OpenMP,

CUDA and HIP
• Very promising results so far, but more

work to do in the HPC ecosystem
• Intel’s OpenCL runtime on CPUs has

known issues which hopefully will
improve as part of oneAPI

Xeon NUC NVIDIA AMD

60

70

80

90

62
.1

62
.7

89
.9

8080
.3

90
.2

79
.3

80
.3

80
.5

86
.1

78
.8

%
p
ea
k
m
em

or
y
b
an

d
w
id
th

SYCL OpenCL OpenMP CUDA HIP

BabelStream Triad

https://doi.org/10.1145/3388333.3388643

https://doi.org/10.1145/3388333.3388643

Performance Portability of SYCL
• Early work running SYCL on Arm
• First results on ThunderX2 using hipSYCL on top of OpenMP
• Performance close to native OpenMP for BabelStream
• Known limitations of backend hipCPU implementation limit performance on all CPU

platforms (both Intel and Arm) for more involved benchmarks
• Currently exploring other avenues for SYCL on CPUs (Intel, AMD and Arm)

• SYCL’s future is looking bright:
• Early view of SYCL-2020 shows lots of new HPC-friendly features

• https://www.iwocl.org/iwocl-2020/conference-program/#panel
• Support for NVIDIA GPUs added to open-source version of DPC++
• Critical part of Argonne National Laboratory path to Exascale with Aurora
• Robust support from/for Arm and AMD the next step

http://uob-hpc.github.io

https://www.iwocl.org/iwocl-2020/conference-program/

http://uob-hpc.github.io

Which performance portable programming model should I use?

• Want codes to run well everywhere, so how should I write them
and what should I write them in?

• Tried a number of approaches:
• Clone the code to allow study of performance portability
• Multiple versions of the code exist

• Lightweight interfaces to allow specialisation
• Put simple library abstractions into the code
• Portability layers like Kokkos is a grandiose approach to this

• Performance portable standard programming models
• OpenMP and SYCL offer the best hope today, but ecosystem needs support

http://uob-hpc.github.io/2020/05/05/choosing-models.html

Lessons learned about achieving performance portability
1. Use open (standard) parallel programming languages supported by

multiple vendors across multiple hardware platforms
• E.g. OpenMP, SYCL, Kokkos, Raja, …?

2. Expose maximal parallelism at all levels of the algorithm and
application

3. Avoid over-optimising for any one platform
• Optimise for at least two different platforms at once

4. Multi-objective autotuning can significantly improve performance
• Autotune for more than one target at once
• See: Exploiting auto-tuning to analyze and improve performance portability

on many-core architectures, J.Price and S. McIntosh-Smith, P^3MA, ISC’17

http://uob-hpc.github.io 38

• High Performance in silico Virtual Drug Screening on Many-Core Processors
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014

• On the performance portability of structured grid codes on many-core computer architectures
S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

• Assessing the Performance Portability of Modern Parallel Programming Models using TeaLeaf
Martineau, M., McIntosh-Smith, S. & Gaudin, W.
Concurrency and Computation: Practice and Experience (Apr 2016)

• GPU-STREAM v2.0: Benchmarking the achievable memory bandwidth of many-core processors
across diverse parallel programming models
Deakin, T. J., Price, J., Martineau, M. J. & McIntosh-Smith, S. N.
First International Workshop on Performance Portable Programming Models for Accelerators
(P3MA), ISC 2016

• The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications
Targeting Intel CPUs, IBM CPUs, and NVIDIA GPUs
M. Martineau and S. McIntosh-Smith, IWOMP 2017, Stony Brook, USA.

http://uob-hpc.github.io 39

• Evaluating Attainable Memory Bandwidth of Parallel Programming Models via BabelStream
Deakin, T, Price, J, Martineau, M, and McIntosh-Smith, S
International Journal of Computational Science and Engineering (special issue), vol 17., 2018

• Pragmatic Performance Portability with OpenMP 4.x
Martineau, Matt, Price, James, McIntosh-Smith, Simon, and Gaudin, Wayne
Proceedings of the 12th International Workshop on OpenMP, 2016

• Performance Analysis and Optimization of Clang’s OpenMP 4.5 GPU Support
Martineau, Matt, McIntosh-Smith, Simon, Bertolli, Carlo, et al
Proceedings of the International Workshop on Performance Modelling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), 2016, SC’16

• Exploiting auto-tuning to analyze and improve performance portability on many-
core architectures
Price, J. & McIntosh-Smith, S., P^3MA, ISC High Performance 2017 International Workshops,
Revised Selected Papers. Springer, Cham, p.538-556, vol. 10524 LNCS

http://uob-hpc.github.io 40

For more information

Bristol HPC group: https://uob-hpc.github.io/

Build & run scripts:

https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019

Twitter: @simonmcs

http://uob-hpc.github.io 41

https://uob-hpc.github.io/
https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019

