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SCFMO calculations have been made on the F centre states of LiF using a 
crystal fragment whose potential closely approximates that of the full crystal. 
The effect of including electrons of up to third neighbours has been studied. 
The most extensive calculation gives a binding energy for the 2S state in the 
unrelaxed lattice of 5"25 eV and a 2S~2p transition energy of 4"6 eV. Lattice 
relaxation has been calculated in a model appropriate to all lithium halides in 
which only nearest neighbour electrons are considered. For LiF an outward 
displacement of nearest neighbour ions by 2"5 per cent of the lattice parameter 
has been calculated. For the other halides the predicted displacements are 
smaller. 

1. INTRODUCTION 

The optical properties o f F  centres in alkali halides have been the subject of much 
theoretical work. Early model based calculations were made by Inui and Uemura [1], 
Kojima [2], Gourary and Adrian [3], and Wood and Joy [4]. Variational calculations 
have since been performed by Martino [5], Bartram et al. [6] and Wood and Opik 
[7, 8]. However, none of these are full ab initio as they all employ model or pseudo 
potentials for the ions surrounding the vacancy. The agreement with experimental 
data that is reached in these calculations may be due to the excellence of the 
wavefunctions or to a fortunate choice of potential. In fact by the present standards 
of molecular calculations the variational wave functions were all quite modest. 

A more recent calculation by Chaney and Lin [9] used a LCAO variational 
scheme with a large basis. However, no basis functions were specifically optimized 
for the defect. More seriously the Slater exchange approximation was used and only 
a single iteration in a self-consistent-field cycle was performed. As this single 
iteration changes the binding energy of the ground state by - 0'089 E h (2"4 eV) it is 
impossible to estimate accurately the converged SCF energies. 

Most studies of the F centre have assumed that the ions surrounding the vacancy 
are at the sites of the perfect lattice. However, it is clear that the optical transition 
energies are sensitive to the geometrical parameters of the lattice; the large difference 
between the F-centre absorption and emission energies is explained by lattice 
relaxation [10]. Kojima [2] in an early calculation deduced that in the F-centre 
ground state of  LiF the nearest neighbour cations were displaced inwards by 7'4 per 
cent of the lattice parameter. Wood and Korringa [11] calculated an outward 
displacement of 1 per cent for LiC1 and Bartram et al. [6] calculated an inward 
displacement for most alkali halides but LiF was an exception with a small outward 
displacement of approximately 1 per cent. 

0026-8976/81/4202 0297 $02"00�9 1981 Taylor & Francis Ltd 



298 J. T e n n y s o n  and  J. N.  M u r r e l l  

I n  th is  p a p e r  we use  a s t a n d a r d  mo lecu la r  ab initio S C F M O  p r o g r a m  to calculate  
the  ene rgy  levels o f  the  F cen t re  o f  L i F  and to d e t e r m i n e  the g r o u n d  s tate  nea re s t -  
n e i g h b o u r  re laxat ion .  Such  p r o g r a m s  are genera l ly  es tab l i shed  wi th  a m a x i m u m  size 
to the  bas is  (N) and to the  n u m b e r  of  charge  cent res  (C).  T h e  p r o g r a m  we used,  
A T M O L 3  [12], was or ig ina l ly  es tab l i shed  wi th  N = 1 2 7 ,  C = 5 0 ,  b u t  d u r i n g  the 
course  o f  the  p re sen t  work  these were increased to N = 2 5 4  and C = 1 0 0 .  (A 
p r e l i m i n a r y  r epo r t  on the  ear ly  ca lcu la t ions  was given in [12a].)  A l t h o u g h  these  

n u m b e r s  m i g h t  appear  large the  res t r ic t ion  on N wou ld  p r e v e n t  the  ach ievemen t  of  
H a r t r e e - F o c k  accuracy  for c lus ters  o f  heavy  ions. C o m p u t a t i o n a l  t ime  increases  ve ry  
r ap id ly  wi th  basis  size and  i t  w o u l d  be  diff icult  to jus t i fy  ca lcula t ions  wi th  m o r e  than  
abou t  150 funct ions .  F o r  th is  reason our  ca lcula t ions  have been  m a d e  on L i F  in o rde r  
to exp lo re  the  var ia t iona l  l im i t  m o s t  fully, a l though  some de duc t i ons  abou t  o the r  
l i t h ium ha l ides  can be  m a d e  in a first  n e i g h b o u r  a p p r o x i m a t i o n .  C o m p u t a t i o n a l  t ime  
is re la t ive ly  insens i t ive  to the  n u m b e r  of  centres  b u t  a l t hough  the  res t r i c t ion  o f  
C = 100 al lows us to r e p r e s e n t  up  to e ighth  ne ighbou r s  in the  L i F  lat t ice as p o i n t  
charges  th is  gives  a c lus te r  whose  rad ius  is only  th ree  la t t ice  spacings .  

W e  can jus t i fy  the  va l id i ty  o f  a c lus ter  m o d e l  for the  g r o u n d  state and  first  exc i ted  
state of  the  F cen t re  vacancy  e lec t ron  by  the fact tha t  these energies  are wel l  above  the  
occup ied  b a n d  energies  o f  the  per fec t  crysta l  and be low the  c onduc t i on  band .  
H o w e v e r ,  it  is clear  tha t  these  energies  will  be  sensi t ive to the  C o u l o m b  po ten t i a l  o f  
the  crys ta l  and  hence  the  c lus te r  m u s t  r ep roduce  this  accura te ly .  T h e  first  sect ion of  
the  p a p e r  is conce rned  wi th  th is  p r o b l e m .  

2. THE CRYSTAL POTENTIAL 

T a b l e  1 specifies the  s t ruc tu re  o f  the crysta l  local to the  vacancy.  T h e  i th shell  has 
n i equ iva len t  ions at d i s tance  aD i f rom the cent re  where  a is the  la t t ice  pa rame te r .  

O u r  ini t ia l  s tudies  were  m a d e  wi th  the  p r o g r a m  hav ing  C = 50 and  were  the re fo re  
r e s t r i c t ed  to on ly  four  shel ls  o f  ions.  D u e  to the  ve ry  slow convergence  o f  the  
M a d e l u n g  expans ion  o f  the  po ten t i a l  the  C o u l o m b  po ten t i a l  in the  vacancy  is ve ry  
p o o r l y  r e p r e s e n t e d  b y  ne t  charges  o f  _ 1 on the lat t ice sites. W e  can achieve a cor rec t  
po ten t i a l  at  the  vacancy  cen t re  b y  tak ing  an effective charge  on the four th  n e i g h b o u r s  
o f  - 0 " 1 2 8 6  (which  is i n d e p e n d e n t  of  la t t ice pa rame te r ) .  Howeve r ,  th is  po ten t ia l ,  
wh ich  we call m o d e l  1, is too a t t rac t ive  for e lec t rons  away  f rom the  cen t re  as can be  
seen f rom table  2. T h e  po ten t i a l  at  a/2 ( towards  neares t  ne ighbour s )  is in e r ro r  b y  
on ly  0"07 p e r  cent,  b u t  at 3a/2 the  e r ror  is 24 per  cent .  

W i t h  the  l imi t  C = 100 we were  able to take up  the e igh th  n e i g h b o u r s  and i t  was 
now poss ib le  to ob ta in  a C o u l o m b  potent ia l ,  m o d e l  2, wh ich  was cor rec t  at the  cen t re  

Table 1. Structure of the crystal lattice local to the defect. There are N i equivalent ith 
neighbours at distances Dfa from the centre. The net charges refer to the two models 
described in the text. 

i 1 2 3 4 5 6 7 8 
N i 6 12 8 6 24 24 12 6 
D~ 1 2 3 4 5 6 8 9 

Net charges 
Model 1 +1 - 1  +1 -0 '1286 0 0 0 0 
Model 2 +1 --1 +1 - 1  +1 - 1  +0.5170 -0"2574 
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Table 2. Comparison of the exact and model electrostatic potentials V(r) and V(r) + [a- r[- 1 
at distance r from the centre along the line to the nearest neighbours (the [100] 
direction). All potentials are to be divided by a the lattice parameter. 

Exact Model 1 Model 2 

r r ( r )  g(r)  + I a -  r 1-1 V(r) g(r) + I a -  r I - '  g(r) g(r) + I a-~[=l 
0 1-7476 0'7476 1-7477 0.7477 1'74.76 0-7476 

a/2 2 0 2'0015 0"0015 2'0001 0"0001 
a o~ -0"7476 co -0 '7099  co -0-7476 

3a/2 0"6667 -1"3333 0'8252 -1"1748 0"6498 -1"3502 

and at nea re s t  n e i g h b o u r s  b y  choos ing  effective charges  on the seventh  and e igh th  
n e i g h b o u r s  equa l  to 0'5170 and - 0 " 2 5 7 4  respec t ive ly .  T a b l e  2 shows tha t  the  
po ten t i a l  is in e r ro r  by  on ly  2'5 pe r  cent  at 3a/2. 

3. BAsis SETS 

Ca lcu la t ions  were  m a d e  wi th  con t rac ted  gauss ian  funct ions .  F o r  the  f luorine 
a tom van D u i j n e v e l d t  [13] has der ived  an (8s, 4p) bas is  con t rac ted  to (3s, 2:0); this  
symbol ism stands for three s and two p gaussian functions. This  double-zeta basis was 
used  for the  cent ra l  anion vacancy.  A fu r the r  con t rac t ion  to (2s, lp )  was m a d e  with  
coeff ic ients  de r ived  f rom a calculat ion on F - .  F o r  L i  § we took the van D u i j n e v e l d t  
[13] (8s) con t r ac t ed  to (3s) p lus  a (4p) con t rac ted  to (2p) given by  W i l l i a m s  and 
S t r e i tw iese r  [14]. T h i s  (3s, 2p) basis  was used  in some calcula t ions  for the  neares t  
n e i g h b o u r s  b u t  for mos t  ca lcula t ions  a fu r the r  con t r ac t ion  to (2s, lp)  waS e m p l o y e d .  
T h i s  was b a s e d  u p o n  a L i  + calculat ion,  the  occup ied  and first  two v i r tua l  o rb i ta l s  
b e i n g  se lec ted .  

I n  a d d i t i o n  to the  F(3s, 2p) funct ions  at the  vacancy  cen t re  we a d d e d  diffuse s and 
p gaussiari~ func t ions  whose  exponen t s  were  o p t i m i z e d  in m o d e l  1 ca lcula t ions  in 
which  nea re s t  n e i g h b o u r  e lec t rons  were expl ic i t ly  cons ide red  b u t  on ly  in a m i n i m a l  
bas is  r ep r e sen t a t i on .  T h e  diffuse s func t ions  are a set of  even t e m p e r e d  [15] 
gauss ians ,  w i th  exponen t s  c~, c~/~ and c~/? 2. W e  found  no  s ignif icant  i m p r o v e m e n t  in 
us ing  such  a set for the  p funct ions  over  a single func t ion  op t imized  at each value of  
the  la t t ice  p a r a m e t e r  a. T a b l e  3 defines these  bases .  

Ca lcu la t ions  on d i a tomic  L i F  gave the  resul t s  shown in table  4. T h e s e  are 
c o m p a r e d  wi th  H a r t r e e - F o c k  and expe r i me n t a l  va lues  in the  same table .  I t  can be 
seen tha t  b o t h  the  doub le - ze t a  and m i n i m a l  bases  give sa t i s fac tory  resul ts  b u t  it 
shou ld  be  m e n t i o n e d  tha t  a m in ima l  basis  o p t i m i z e d  for neu t ra l  a toms  ra the r  than  
ions gives v e r y  poo r  resul ts .  

4. RESULTS FOR THE UNRELAXED LATTICE 

In i t i a l  ca lcu la t ions  were  made  to inves t iga te  the  d e p e n d e n c e  on bas is  func t ions  
m o s t  c lose ly  local ized to the  defect ,  i.e. the  defec t  cen t re  and neares t  n e i g h b o u r  ions.  
T a b l e  5 shows  the  b i n d i n g  energies  o f  the  first  two s ta tes  o f  the  F cent re  ob ta ined  b y  
separa te  S C F  calcula t ions .  T h e s e  s tates  have d i f fe ren t  symme t r i e s  and  can be  
des igna t ed  2S and  2p; a s y m m e t r y  equ iva lenc ing  p r o c e d u r e  was fo l lowed for t h e  2p  
state [18]. T h e  b i n d i n g  energies  are re la t ive  to the  vacancy  w i thou t  an e lec t ron  
(usua l ly  ca l led  the  F~ centre)  and  the to ta l  S C F  ene rgy  of  this  is given.  Ca lcu la t ions  
were  m a d e  on ly  in m o d e l  1 wi th  all si tes excep t  nea res t  n e i g h b o u r s  r ep re sen ted  by  
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Minimal  basis functions and defect centre functions used in this paper. T h e  double 
zeta functions for F and Li are given in [13, 14]. 

Symmet ry  
Contraction Contraction 

Exponent  coefficient Exponent  coefficient 
Li  § F -  

"S 0'6306 0'3388 7"6089 0"3649 
1"9212 0'4718 22-2218 0-4624 
6"1767 0"2469 69'4023 0"2252 

22"0827 0-0775 246'2363 0"0659 
97"1551 0'0162 1082'6764 0"0134 

647-0636 0"0213 7213'1380 0-0018 

0'0281 0'6206 0"4012 0"6881 
0'0725 0'4450 1"3570 0'4167 

0-0240 0-5089 0'5330 0"3481 
0'2750 0'1389 1"3512 0'3172 
0"5002 0'8348 4'9935 0'1467 
1"5343 0'0228 22"7476 0'0279 

Defect  
s 0'1370 1'0 
s 0"1849 1.0 
s 0.2496 1'0 

p(a= 3"80 ao) 0-0166 1"0 
p ( a = 4 ' 8 6  ao) 0'0104 1"0 
p(a = 5'20 ao) 0'0102 1'0 
p(a = 5.67 ao) 0.0101 1 '0 

Table  4. Calculated eciuilibrium bond length and dissociation energy (to ions) of  diatomic 
L iF .  a 0 = 5-292 x 1011 m, E h = 27"21 eV is equivalent  to 2626 kJ mol  -~ 

Basis r Ja o De/E h 

Minimal  3-05 0-290 
Double  zeta 2"99 0'321 
Har t r ee -Fock  [16] 2'96 0-296 
Expt.  [17] 2"96 0"290 

Tab le  5. Calculated total energy of the F~ centre and b inding energies of the 28 and 2p 
F centre states. All calculations are for the unrelaxed lattice with lattice parameter 
a = 3 ' 7 9 6 a  0. M i n . = m i n i m a l  basis, D Z = v a l e n c e  double zeta basis, d i f .=di f fuse  
functions at defect centre. 

Basis Energies /E h AE~JeV 
Nearest  Defect  

neighbours  centre F~ 2S 2p 

Min.  F - D Z  -48 ' 5862  0'1536 0'0353 3-2 
Min.  F - D Z + d i f .  - 48 ' 5862  0'2001 0'0945 2"9 
D Z  F - D Z  - 4 8 ' 5 8 6 4  0"1885 0'1022 2-3 
D Z  F - D Z + d i f .  -48"5864 0'2022 0'1007 2"8 
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the point charges specified in table 1. Both minimal and double zeta bases were used 
for nearest neighbour electrons as described in the table. 

The  energy of the F, state (six Li + in the Coulomb field of point charges) is largely 
unaffected by the basis. The energies of both the zS and 2p states are lowered 
significantly by using DZ rather than minimal basis for the Li § when no diffuse 
functions are included at the defect centre. However, with diffuse functions there is 
little improvement on using the DZ basis. In other words a minimal basis at the first 
neighbours and DZ plus diffuse functions at the centre appears to be nearly 
saturated. For this reason, and with reasonable computational economy, we shall 
adopt this basis for the more extensive calculations which we shall describe. 

Table 6 shows calculations of the 23 and 2p binding energies in models 1 and 2 
with successive inclusion of the neighbouring ion electrons. Thefirs t  calculations in 
the table correspond to the point charge model of Gourary and Adrian [3] as no 
neighbour ion electrons are explicitly considered in the SCF calculations. However, 
the first neighbour lithium 2s and 2p basis functions were included to give added 
flexibility to the wavefunctions. The relatively high binding energy, similar to that 
obtained by Gourary and Adrian, reflects the lack of orthogonality to the Li § ls 
orbitals. 

Table 6. Calculated binding energy (Eh)'Ofthe 2S and 2p states and the resulting excitation 
energy. L is the number of shells neighbouring the defect whose electrons have been 
explicitly included in the SCF calculations. The experimental value of AE~p is 5'08 eV 
[22]. 

Model 1 Model 2 
L "2 S 2p AE~p/eV 2S 2p AE~p/eV 

0 0.299 0.130 4.6 0-299 0-129 4-6 
1 0'202 0"101 2"8 0'199 0;068 3-6 
2 0.186 0"088 2.7 0"195 0"052 3.9 
3 0.180 0.062 3.2 0"193 0"023 4"6 

The  most extensive calculations included first, second and third neighbour 
electrons and, to economize, the lithium 2s and 2/0 functions on third neighbours 
were omitted from the basis. The binding energy of the 2S state appears to converge 
quite quickly with L and there is little difference between the results of the two 
models. There is a wide variation in previous calculation of this binding energy and 
in many instances it is considerably overestimated. For example, a recent SCF X~ 
calculation gives a binding energy of - 1"16 E h [19]. Photoelectron ejection studies 
have not been made on LiF but for RbI [20] they indicate that the 2S state is bound 
by approximately 0"11 E h and the 2p state is only just bound. Our results are 
consistent with this view. 

The  convergence of the 2p state with L is slower than that of the 2S state and the 
difference between the two models is significant when measured against the 2 S ~ 2 p  
transition energy. The 2p state is much more diffuse than the 2S and the model 1 
potential becomes progressively too attractive as the distance from the defect centre 
increases. For this reason we believe that the results of model 2 are more reliable. A 
Mulliken population analysis of our best wavefunctions (model 2 with L = 3) gives 
2 x 10-  6 in each third neighbour Li + (1 s) orbital for the 2S state but 74 x 10-6 in each 
orbital (symmetry equivalent) for the 2p state. 
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F r o m  this wavefunction of the 2S state we have calculated the spin densities 
at the first and third neighbour Li  nuclei and find the values 6'0 x 10 -2 ao 3 and 
2"6 x 10 -4  ao 3 respectively. These  numbers  are both dominated by the Li + (ls) 
contr ibut ions  to the wavefunction. We have not calculated the second neighbour  
fluorine spin density because we expect its absolute value to be inaccurate and 
we can make no comparison of relative values for different shells. F rom E N D O R  
studies on LiF ,  Holton and Blum [21] deduce spin densities of 2"3 x 10-2 ao 3 and 
2"9 x 10-  4 ao 3 at first and third neighbour  Li + , values which are in reasonable agree- 
ment  with our calculations. 

T h e  experimental  absorption band associated with the 2S--,2P transit ion is broad 
and structureless  and for L i F  has its maximum at 5"08 eV at 5 K [22]. By the F r a n c k -  
Condon pr inciple  this max imum should correspond to the vertical excitation energy 
at the equi l ib r ium geometry of the 2S state. None of our calculations gives a value as 
high as exper iment  but  our best  calculation only differs by 0"5 eV, an amount  which 
might  be expected in a molecular calculation at this level of treatment.  However,  we 
have not  yet  examined the relaxation of the lattice. 

Examinat ion of the virtual levels of the F~ state suggests that other excited states 
of the F centre might  be bound.  When  second neighbour  electrons are included in 
the calculation a second s virtual level is found to be close in energy to the f irstp level. 
T h i r d  ne ighbour  electrons raise the energy of this orbital  slightly. 

For  model  2 with L = 3 the first three virtual levels of the F~ state are at - 0" 185 (s), 
-0"023(p)  and +0"012(s). As is seen from table 6 the first two are very close to the 
b ind ing  energies of the 2S and 2p states. Hence we deduce that an excited 2S state lies 
close to the ionization continuum. 

Because 2S-42S transitions are symmetry  forbidden, any absorpt ion band 
associated with the second excited state is difficult to see. A second 2S state has, 
however,  been observed in potassium halides by use of an electric field to lower the 
symmet ry  (the Stark effect) [23] and is found to be just  above the 2p state. 

5. LATTICE DISTORTION 

A complete  t reatment  of the lattice relaxation around an F centre is a lengthy 
problem.  First ly,  ionic displacements around a vacancy are not confined to the 
nearest  neighbours,  and secondly for the 2p state they are not totally symmetric ,  as 
the 2p state is subject to a Jahn-Te l l e r  distort ion.  In this study we consider only 
total ly symmetr ic  displacements of the nearest ne ighbour  ions. The  potentials  are 
therefore calculated as a function of a parameter  k, which is the displacement  
outwards of a nearest neighbour  Li  + ion. Calculations were made in the first 
ne ighbour  approximat ion (L = 1) using model  1 for the F~, 2S and 2p states. For  the 
F~ state we can make an independent  estimate of the potential  curve from empirical  
functions and this allows us to test the reliabil i ty of the molecular S C F  calculations. 

In  this approximation,  in which only the defect basis functions and nearest 
ne ighbour  Li + functions are used, it is possible to calculate the relaxation in all the 
l i th ium halides by using appropriate  values for the lattice parameters,  Table  3 gives 
the diffuse p functions optimized at the four lattice parameters  relevant to LiF ,  C1, Br 
and I respectively.  The  figure shows the results of these calculations. We note that  
for lattices except L i F  the 2S state potential  is very flat and in all cases the potential  
curves for the F~ and 2p states are nearly parallel.  
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The potential curves arise from a balance between an outward force on the Li + 
ions from the Coulomb potential of the lattice and an inward force arising from the 
electron. For the F~ state only the Coulomb force is present and as the odd electron 
in the 2p state is only weakly bound the inward force in this case is also small. 

We can see from table 2 that model 1 underestimates the Coulomb potential at the 
nearest neighbour sites and this deficiency becomes worse as the distance from the 
centre increases. However, this error is partly compensated by the absence of 
exchange repulsion between the Li § ions and their neighbouring anions. A 
consequence of this omission is that the outward displacement of the Li § in the F~ 
state would continue until there is coincidence with an anion centre. Thus  
calculations with only nearest neighbours included in the SCF procedure will not 
give a correct equilibrium position for the F~ state. The important question, 
however, is whether the potential is correct for small displacements from the 
undistorted lattice. 

0.0 

LiF  LiCI  L iBr  L i l  

- (  1 

] 
0:, o:o -o:, -o:i o:, o:o -o:, k / x  o:, o:o -o:, oh o:o -o:, 

SCF energies of F~([[]), 2S(C)) and 2P(A) states calculated for model 1, L = 1, as a function of 
the outward displacement k of nearest neighbour Li + ions. Calculations have been 
made for lattice spacings appropriate to each lithium halide crystal. 

Empirical pair potentials give a good representation of the properties of  perfect 
crystals. I t  is possible to use these to calculate the relaxation in the F~ state, assuming 
that the pair potential is unchanged by the formation of the defect. We used the pair 
potential first suggested by Huggins and Mayer [24] which separates Coulombic and 
exponential repulsive terms. The repulsive term for a separation r is written 

b.Cij exp [(r i -[- r j - r) /p] ,  (1)  

where r i and r i are the effective radii of the two ions, and Cij  is the so-called Pauling 
coefficient [25] which depends on the charge and number of outer electrons of the 



304 

Table 7. 

J. Tennyson and J. N. Murrell 

Parameters for the Huggins-Mayer repulsive potential (1), as deduced by Fumi 
and Tosi [26]. 

Li + F-  C1- Br- I 

rJa o 1"727 2"566 3-039 3"281 3"636 
b =0"00583 En P=0"6414ao 

two ions. The parameters b and p have been optimized for the alkali halides and in 
table 7 we give values deduced by Fumi and Tosi [26]. We have investigated the use 
of  other published parameters but they made little difference to the final results. 

To determine the Coulomb energy for the F~ state we start with the potential 
experienced by one ion within its Wigner-Seitz cell which arises from the rest of the 
perfect crystal. At the cell centre the potential is _+ 1"7476/a; the sign depending on 
the charge of the ion. The  problem of calculating the summed contribution from all 
ions in a NaC1 lattice at a general point within the cell has been solved by Hajj [27]. 
This potential, written M(q)/a is a slowly varying function of q near the site centre 
(q=0) and for small values it can be approximated by 

M(q) = ___ [1"7476 + 3-6q4]. (2) 

In the relaxed lattice we are considering six Li + ions moving simultaneously; 
hence we must subtract from (2) the contribution from the other five Li + ions and 
replace it by the full Coulomb potential of the cluster o f six. We must also remove the 
contribution from the anion which is missing at the centre. The full expression for 
the Coulomb potential of  the defect for a relaxation k is 

4 4 ) 1  
a ~-~+k-  q (a2+(a+k)2) 1/2- +~ + ~ 2 ( a + k )  (3) 

plus terms independent of k. 
The total energies of the F= state which are obtained from the empirical potential 

and the SCF calculation cannot be compared because they refer to different sized 
fragments. However, the relevant quantity for determining the equilibrium position 
is the slope of the potential. In this respect we find almost exact agreement between 
the empirical and SCF calculations, the two being indistinguishable on the scale of 
the figure. This perhaps implies that we have a fortuitous cancellation of errors 
between our model Coulomb potential and the L i + - X  - exchange repulsion terms. 
We therefore assumed that the corrections which should be made to the SCF curves 
for the 2,9 and 2p states are negligible compared with other errors in our calculations. 

Our calculations predict an outward displacement of the Li § ions (k positive) of 
0'09 a 0 in LiF. This is 2"5 per cent of the lattice parameter. Because the 2S state 
potentials are so flat for the other halides our predicted movements are subject to 
large uncertainties in view of the approximations of our model. There is a small 
movement outward (0'02a0) for LiC1 and inward for LiBr (0'02a0) and LiI 
( -0"04  a0). Kojima calculated a much larger displacement for LiF of the opposite 
sign. Our results are, however, in reasonable agreement with those of Korringa [11] 
and Bartram et al. [6]. 
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6. CONCLUSIONS 

T o  obtain variationally accurate results on the L iF  F centre has proved to require 
a rather heavy calculation by molecular standards. Only model 2 with L = 3 gives a 
good excitation energy but  it can be seen from table 6 that it is the 2p state which is 
slow to converge. As we have underest imated the excitation energy any variational 
improvement  would have to be more in the 28 than the 2p state; perhaps 
reoptimization of the diffuse orbitals in the model 2, L = 3 calculation. 

I t  is generally expected that electron correlation (beyond the SCF  level) has a 
small effect on the difference in energy between states which have the same number  
of electron pairs. Recent calculations [28] on the 21-I and 2E states of  H C N  + show 
that configuration interaction stabilizes the 2E more than the 2FI by 0"3 eV. For 
H N C  +, however the 2E is stabilized by 1"3 eV. We can therefore expect errors of up 
to ~ 1 eV in our calculations due to neglect of  correlation and in that respect our 
2S--*2P excitation energy must  be considered quite satisfactory. 

The  authors thank Dr .  P. D.  Townsend for stimulating discussions on this topic. 
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