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SCFMO calculations have been made on the F centre states of LiF using a
crystal fragment whose potential closely approximates that of the full crystal.
The effect of including electrons of up to third neighbours has been studied.
The most extensive calculation gives a binding energy for the 2S state in the
unrelaxed lattice of 5:25eV and a 2S—2P transition energy of 46 eV. Lattice
relaxation has been calculated in a model appropriate to all lithium halides in
which only nearest neighbour electrons are considered. For LiF an outward
displacement of nearest neighbour ions by 2-5 per cent of the lattice parameter
has been calculated. For the other halides the predicted displacements are
smaller.

1. INTRODUCTION

The optical properties of F centres in alkali halides have been the subject of much
theoretical work. Early model based calculations were made by Inui and Uemura [1],
Kojima [2], Gourary and Adrian [3], and Wood and Joy [4]. Variational calculations
have since been performed by Martino [5], Bartram et al. [6] and Wood and Opik
[7, 8]. However, none of these are full ab initio as they all employ model or pseudo
potentials for the ions surrounding the vacancy. The agreement with experimental
data that is reached in these calculations may be due to the. excellence of the
wavefunctions or to a fortunate choice of potential. In fact by the present standards
of molecular calculations the variational wave functions were all quite modest.

A more recent calculation by Chaney and Lin [9] used a LCAO variational
scheme with a large basis. However, no basis functions were specifically optimized
for the defect. More seriously the Slater exchange approximation was used and only
a single iteration in a self-consistent-field cycle was performed. As this single
iteration changes the binding energy of the ground state by —0-089 E,, (2-4eV) it is
impossible to estimate accurately the converged SCF energies.

Most studies of the F' centre have assumed that the ions surrounding the vacancy
are at the sites of the perfect lattice. However, it is clear that the optical transition
energies are sensitive to the geometrical parameters of the lattice; the large difference
between the F-centre absorption and emission energies is explained by lattice
relaxation [10]. Kojima [2] in an early calculation deduced that in the F-centre
ground state of LiF the nearest neighbour cations were displaced inwards by 7-4 per
cent of the lattice parameter. Wood and Korringa [11] calculated an outward
displacement of 1 per cent for LiCl and Bartram et al. [6] calculated an inward
displacement for most alkali halides but LiF was an exception with a small outward
displacement of approximately 1 per cent.
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In this paper we use a standard molecular ab initio SCFMO program to calculate
the energy levels of the F centre of LiF and to determine the ground state nearest-
neighbour relaxation. Such programsare generally established with a maximum size
to the basis (V) and to the number of charge centres (C). The program we used,
ATMOL3 [12], was originally established with N=127, C=50, but during the
course of the present work these were increased to N=254 and C=100. (A
preliminary report on the early calculations was given in [12a].) Although these
numbers might appear large the restriction on N would prevent the achievement of
Hartree—Fock accuracy for clusters of heavy ions, Computational time increases very
rapidly with basis size and it would be difficult to justify calculations with more than
about 150 functions. For this reason our calculations have been made on LiF in order
to explore the variational limit most fully, although some deductions about other
lithium halides can be made in a first neighbour approximation. Computational time
is relatively insensitive to the number of centres but although the restriction of
C =100 allows us to represent up to eighth neighbours in the LiF lattice as point
charges this gives a cluster whose radius is only three lattice spacings.

We can justify the validity of a cluster model for the ground state and first excited
state of the F centre vacancy electron by the fact that these energies are well above the
occupied band energies of the perfect crystal and below the conduction band.
However, it is clear that these energies will be sensitive to the Coulomb potential of
the crystal and hence the cluster must reproduce this accurately. The first section of
the paper is concerned with this problem.

2. THE CRYSTAL POTENTIAL

Table 1 specifies the structure of the crystal local to the vacancy. The ith shell has
n; equivalent ions at distance aD; from the centre where a is the lattice parameter.

Our initial studies were made with the program having C =50 and were therefore
restricted to only four shells of ions. Due to the very slow convergence of the
Madelung expansion of the potential the Coulomb potential in the vacancy is very
poorly represented by net charges of + 1 on the lattice sites. We can achieve a correct
potential at the vacancy centre by taking an effective charge on the fourth neighbours
of —0:1286 (which is independent of lattice parameter). However, this potential,
which we call model 1, is too attractive for electrons away from the centre as can be
seen from table 2. The potential at a/2 (towards nearest neighbours) is in error by
only 0-07 per cent, but at 3a/2 the error is 24 per cent.

With the limit C=100 we were able to take up the eighth neighbours and it was
now possible to obtain a Coulomb potential, model 2, which was correct at the centre

Table 1. Structure of the crystal lattice local to the defect. There are N, equivalent ith
neighbours at distances D;a from the centre. The net charges refer to the two models
described in the text.

i 1 2 3 4 5 6 7 8
N; 6 12 8 6 24 24 12 6
D? 1 2 3 4 5 6 8 9

Net charges
Model 1 +1 -1 +1 —0-1286 0 0 0 0
Model 2 +1 -1 +1 -1 +1 —1 +0-5170 —0-2574
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Table2. Comparison of the exact and model electrostatic potentials V(r) and V(r) + !a — rl -t
at distance » from the centre along the line to the nearest neighbours (the [100]
direction). All potentials are to be divided by a the lattice parameter.

Exact Model 1 Model 2
r V(r) V(r)—|—|a—r|_1 Vi(r) V(r)+|a—1'|_1 Vi(r) V(r)-i—]a—ﬂ*‘1
0 1-7476 07476 1-7477 0-7477 1:7476 0-7476
a/2 2 0 2:0015 0-0015 2-:0001 0-0001
a o0 —07476 0 —0-7099 o0 —07476
3a/2 0-6667 —1-3333 0-8252 = —1-1748 0-6498 —1-3502

and at nearest neighbours by choosing eflective charges on the seventh and eighth
neighbours equal to 0:5170 and —0:2574 respectively. Table 2 shows that the
potential is in error by only 2-5 per cent at 3a/2.

3. Basis seTs

Calculations were made with contracted gaussian functions. For the fluorine
atom van Duijneveldt [13] has derived an (8s, 4p) basis contracted to (3s, 2p); this
symbolism stands for three s and two p gaussian functions. This double-zeta basis was
used for the central anion vacancy. A further contraction to (2s, 1p) was made with
coeflicients derived from a calculation on F~. For Li* we took the van Duijneveldt
[13] (8s) contracted to (3s) plus a (4p) contracted to (2p) given by Williams and
Streitwieser [14]. This (3s, 2p) basis was used in some calculations for the nearest
neighbours but for most calculations a further contraction to (2s, 1p) was employed.
This was based upon a Li* calculation, the occupied and first two virtual orbitals
being selected.

In addition to the F(3s, 2p) functions at the vacancy centre we added diffuse s and
p gaussian. functions whose exponents were optimized in model 1 calculations in
which nearest neighbour electrons were explicitly considered but only in a minimal
basis representation. The diffuse s functions are a set of even tempered [15]
gaussians, with exponents a, of and af?. We found no significant improvement in
using such a set for the p functions vver a single function optimized at each value of
the lattice parameter a. Table 3 defines these bases.

Calculations on diatomic LiF gave the results shown in table 4. These are
compared with Hartree—Fock and experimental values in the same table. It can be
seen that both the double-zeta and minimal bases give satisfactory results but it
should be mentioned that a minimal basis optimized for neutral atoms rather than
ions gives very poor results.

4. RESULTS FOR THE UNRELAXED LATTICE

Initial calculations were made to investigate the dependence on basis functions
most closely localized to the defect, i.e. the defect centre and nearest neighbour ions.
Table 5 shows the binding energies of the first two states of the F centre obtained by
separate SCF calculations. These states have different symmetries and can be
designated 28 and %P; a symmetry equivalencing procedure was followed for the 2P
state [18]. The binding energies are relative to the vacancy without an electron
(usually called the F, centre) and the total SCF energy of this is given. Calculations
were made only in model 1 with all sites except nearest neighbours represented by
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Table 3. Minimal basis functions and defect centre functions used in this paper. The double
zeta functions for F and Li are given in {13, 14].

Contraction Contraction
Symmetry Exponent coefficient Exponent coeflicient
Li* ¥ »

s 0-6306 0-3388 7-6089 0-3649

19212 04718 22-2218 0-4624

6:1767 0-2469 69-4023 02252

22:0827 0-0775 2462363 0-0659

97-1551 0-0162 1082-6764 0-0134

647-0636 0-0213 7213-1380 0-0018

s 0:0281 0-6206 04012 0-6881

00725 0-4450 1-3570 04167

b 0-0240 0-5089 05330 0-3481

0-2750 0-1389 1-3512 03172

0-5002 0-8348 49935 0-1467

1-5343 0-0228 22:7476 00279

Defect

s 01370 1-0
s 0-1849 1-0
s 0-2496 1-0
pla=3-80ay) 0-0166 10
pla=486ay) 0-0104 1-0
pla=520a,) 0-0102 10
pla=567ay) 0-0101 1-0-

Table 4. Calculated equilibrium bond length and dissociation energy (to ions) of diatomic
LiF. ay=75292x 10*' m, E,=2721eV is equivalent to 2626 k] mol ™!

Basis 7eo/aqg D./E,
Minimal 3-05 0-290
Double zeta 299 0321
Hartree—Fock [16] 2:96 0-296
Expt. [17] 2-96 0-290

Table 5. Calculated total energy of the F, centre and binding energies of the %S and 2P
F centre states. All calculations are for the unrelaxed lattice with lattice parameter
a=37%6a,. Min.=minimal basis, DZ=valence double zeta basis, dif. =diffuse
functions at defect centre.

Basis Energies/E, AE,,/eV
Nearest Defect
neighbours centre F, S 2p
Min. F™DZ —485862 0-1536 00353 32
Min. F~DZ+dif. —485862 0-2001 0-0945 29
DZ F DZ . —48-5864 0-1885 01022 23

DZ F™DZ +dif. —485864 02022 0-1007 2-8
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the point charges specified in table 1. Both minimal and double zeta bases were used
for nearest neighbour electrons as described in the table.

The energy of the E state (six Li* in the Coulomb field of point charges) is largely
unaffected by the basis. The energies of both the %S and 2P states are lowered
significantly by using DZ rather than minimal basis for the Li* when no diffuse
functions are included at the defect centre. However, with diffuse functions there is
little improvement on using the DZ basis. In other words a minimal basis at the first
neighbours and DZ plus diffuse functions at the centre appears to be nearly
saturated. FFor this reason, and with reasonable computational economy, we shall
adopt this basis for the more extensive calculations which we shall describe.

Table 6 shows calculations of the 2S and P binding energies in models 1 and 2
with successive inclusion of the neighbouring ion electrons. The'first calculations in
the table correspond to the point charge model of Gourary and Adrian [3] as no
neighbour ion electrons are explicitly considered in the SCF calculations. However,
the first neighbour lithium 2s and 2p basis functions were included to give added
flexibility to the wavefunctions. The relatively high binding energy, similar to that
obtained by Gourary and Adrian, reflects the lack of orthogonality to the Li* 1s
orbitals.

Table 6. Calculated binding energy (E,) of the 2.5 and 2P states and the resulting excitation
energy. L is the number of shells neighbouring the defect whose electrons have been
explicitly included in the SCF calculations. The experimental value of AE, is 5:08eV

[221.
) Model 1 Model 2
L s p AE,,[eV s 2p AE,,[eV
0 0-299 0130 46 0-299 0-129 46
1 0202 0-101 2-8 0-199 0-068 36
2 0186 0-088 2-7 0-195 0052 39
3 0-180 0062 3-2 0193 0-023 46

The most extensive calculations included first, second and third neighbour
electrons and, to economize, the lithium 2s and 2p functions on third neighbours
were omitted from the basis. The binding energy of the 2S state appears to converge
quite quickly with L and there is little difference between the results of the two
models. There is a wide variation in previous calculation of this binding energy and
In many instances it is considerably overestimated. For example, a recent SCF X,
calculation gives a binding energy of —1:16 E;, [19]. Photoelectron ejection studies
have not been made on LiF but for RbI [20] they indicate that the 2 state is bound
by approximately 0-11 E, and the 2P state is only just bound. Our results are
consistent with this view.

The convergence of the 2P state with L is slower than that of the 2.5 state and the
difference between the two models is significant when measured against the 2S—2P
transition energy. The 2P state is much more diffuse than the 25 and the model 1
potential becomes progressively too attractive as the distance from the defect centre
increases. For this reason we believe that the results of model 2 are more reliable. A
Mulliken population analysis of our best wavefunctions {(model 2 with L= 3) gives
2 x 107 % in each third neighbour L1+(1s) orbital for the 25 state but 74 x 10~ in each
orbital (symmetry equivalent) for the 2P state.
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From this wavefunction of the 2S state we have calculated the spin densities
at the first and third neighbour Li nuclei and find the values 6:0x 1072 g5 3 and
2:6x 107 % a5 respectively. These numbers are both dominated by the Li* (1s)
contributions to the wavefunction. We have not calculated the second neighbour
fluorine spin density because we expect its absolute value to be inaccurate and
we can make no comparison of relative values for different shells. From ENDOR
studies on LiF, Holton and Blum [21] deduce spin densities of 2:3 x 1072 a5 3 and
29x10"%a;5?at firstand third neighbour Li*, values which are in reasonable agree-
ment with our calculations.

The experimental absorption band associated with the 2S5 —2P transition is broad
and structureless and for LiF has its maximum at 5-:08 eV at 5 K {22]. By the Franck—-
Condon principle this maximum should correspond to the vertical excitation energy
at the equilibrium geometry of the 2S state. None of our calculations gives a value as
high as experiment but our best calculation only differs by 0:5 eV, an amount which
might be expected in a molecular calculation at this level of treatment. However, we
have not yet examined the relaxation of the lattice.

Examination of the virtual levels of the F, state suggests that other excited states
of the F centre might be bound. When second neighbour electrons are included in
the calculation a second s virtual level is found to be close in energy to the first p level.
Third neighbour electrons raise the energy of this orbital slightly. .

For model 2 with L = 3 the first three virtual levels of the F, state are at —0-185(s),
—0:023(p) and +0-012(s). As is seen from table 6 the first two are very close to the
binding energies of the 2S and 2P states. Hence we deduce that an excited 25 state lies
close to the ionization continuum.

Because 2S—2S transitions are symmetry forbidden, any absorption band
associated with the second excited state is difficult to see. A second 2§ state has,
however, been observed in potassium halides by use of an electric field to lower the
symmetry (the Stark effect) [23] and is found to be just above the 2P state.

5. LLATTICE DISTORTION

A complete treatment of the lattice relaxation around an F centre is a lengthy
problem. Firstly, ioni¢ displacements around a vacancy are not confined to the
nearest neighbours, and secondly for the 2P state they are not totally symmetric, as
the 2P state is subject to a Jahn-Teller distortion. In this study we consider only
totally symmetric displacements of the nearest neighbour ions. The potentials are
therefore calculated as a function of a parameter &, which is the displacement
outwards of a nearest neighbour Li* ion. Calculations were made in the first
neighbour approximation (L = 1) using model 1 for the F,, 25 and 2P states. For the
I, state we can make an independent estimate of the potential curve from empirical
functions and this allows us to test the reliability of the molecular SCF calculations.

In this approximation, in which only the defect basis functions and nearest
neighbour Li* functions are used, it is possible to calculate the relaxation in all the
lithium halides by using appropriate values for the lattice parameters. Table 3 gives
the diffuse p functions optimized at the four lattice parameters relevant to LiF¥, Cl, Br
and I respectively. The figure shows the results of these calculations. We note that
for lattices except LiF the 2 state potential is very flat and in all cases the potential
curves for the F, and %P states are nearly parallel.
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The potential curves arise from a balance between an outward force on the Li*
ions from the Coulomb potential of the lattice and an inward force arising from the
electron. For the F, state only the Coulomb force is present and as the odd electron
in the 2P state is only weakly bound the inward force in this case is also small.

We can see from table 2 that model 1 underestimates the Coulomb potential at the
nearest neighbour sites and this deficiency becomes worse as the distance from the
centre increases. However, this error is partly compensated by the absence of
exchange repulsion between the Li* ions and their neighbouring anions. A
consequence of this omission is that the outward displacement of the Li* in the F,
state would continue until there is coincidence with an anion centre. Thus
calculations with only nearest neighbours included in the SCF procedure will not
give a correct equilibrium position for the F, state. The important question,
however, is whether the potential is correct for small displacements from the

undistorted lattice.
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SCF energies of F([7), 2S(Q) and 2P(A) states calculated for model 1, L=1, as a function of
the outward displacement & of nearest neighbour Li* ions. Calculations have been

made for lattice spacings appropriate to each lithium halide crystal.

Empirical pair potentials give a good representation of the properties of perfect
crystals. It is possible to use these to calculate the relaxation in the F, state, assuming
that the pair potential is unchanged by the formation of the defect. We used the pair
potential first suggested by Huggins and Mayer [24] which separates Coulombic and
exponential repulsive terms. The repulsive term for a separation r is written

bC;jexp [(r;+7;—7)/pl, E):

where 7; and 7; are the effective radii of the two ions, and C; is the so-called Pauling
coeflicient [25] which depends on the charge and number of outer electrons of the
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Table 7. Parameters for the Huggins—Mayer repulsive potential (1}, as deduced by Fumi
and Tosi [26].

Li* F~ cl- Br~ I
rilag 1727 2:566 3039 3-281 3636
b=0-00583 E, p=06414q,

two ions. The parameters b and p have been optimized for the alkali halides and in
table 7 we give values deduced by Fumi and Tosi [26]. We have investigated the use
of other published parameters but they made little difference to the final results.

To determine the Coulomb energy for the F, state we start with the potential
experienced by one ion within its Wigner—Seitz cell which arises from the rest of the
perfect crystal. At the cell centre the potential is +1-7476/a; the sign depending on
the charge of the ion. The problem of calculating the summed contribution from all
ions in a NaCl lattice at a general point within the cell has been solved by Hajj [27].
This potential, written M{(q)/a is a slowly varying function of ¢ near the site centre
(g=0) and for small values it can be approximated by

M(g)= +[1-7476 + 3-6¢]. 2

In the relaxed lattice we are considering six Li* ions moving simultaneously;
hence we must subtract from (2) the contribution from the other five Li* ions and
replace it by the full Coulomb potential of the cluster of six. We must also remove the
contribution from the anion which is missing at the centre. The full expression for
the Coulomb potential of the defect for a relaxation % is

B 7 (COT S (S U 4 RYARI ;
a atk \2a+k (a*+(@+kD)?) *\2a+2k " [2a+k) )

plus terms independent of A. .

The total energies of the F, state which are obtained from the empirical potential
and the SCF calculation cannot be compared because they refer to different sized
fragments. However, the relevant quantity for determining the equilibrium position
is the slope of the potential. In this respect we find almost exact agreement between
the empirical and SCF calculations, the two being indistinguishable on the scale of
the figure. This perhaps implies that we have a fortuitous cancellation of errors
between our model Coulomb potential and the Li*—X~ exchange repulsion terms.
We therefore assumed that the corrections which should be made to the SCF curves
for the %S and 2P states are negligible compared with other errors in our calculations.

Our calculations predict an outward displacement of the Li* ions (k positive) of
0:09 a, in LiF. This is 2:5 per cent of the lattice parameter. Because the S state
potentials are so flat for the other halides our predicted movements are subject to
large uncertainties in view of the approximations of our model. There is a small
movement outward (0-02¢a,) for LiCl and inward for LiBr (0:024,) and Lil
(—0-04 a4). Kojima calculated a much larger displacement for LiF of the opposite
sign. Our results are, however, in reasonable agreement with those of Korringa [11]
and Bartram et al. [6].
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6. CONCLUSIONS

T'o obtain variationally accurate results on the LiF F centre has proved to require
a rather heavy calculation by molecular standards. Only model 2 with L =3 gives a
good excitation energy but it can be seen from table 6 that it is the 2P state which is
slow to converge. As we have underestimated the excitation energy any variational
improvement would have to be more in the %S than the 2P state; perhaps
reoptimization of the diffuse orbitals in the model 2, L =3 calculation.

It is generally expected that electron correlation (beyond the SCF level) has a
small effect on the difference in energy between states which have the same number
of electron pairs. Recent calculations [28] on the *IT and 2 states of HCN™ show
that configuration interaction stabilizes the 2Z more than the 2I1 by 0-3eV. For
HNCT, however the 2X is stabilized by 1-3 eV. We can therefore expect errors of up
to ~1eV in our calculations due to neglect of correlation and in that respect our
25 —2P excitation energy must be considered quite satisfactory.

The authors thank Dr. P. D. Townsend for stimulating discussions on this topic.
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