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A study of the bound states of the Hi molecular ion at zero total angular momentum is 
presented. Wave functions are shown for the accurate ab initio Meyer-Botschwina-Burton 
potential energy surface and the more approximate diatomics in molecules (DIM) surface. 
The qualitative behavior is similar for the two potentials. The analytic form of the DIM surface 
enables a study that reaches energies as high as the dissociation threshold. Quantum states are 
found to localize regularly around the horseshoe periodic orbits found in previous classical 
studies. There is good agreement between a semiclassical periodic orbit quantization formula 
and the exact quantum energies. The antisymmetric stretch frequency with respect to the orbit 
is estimated classically and quantum mechanically and found to be in agreement with a 
previous estimate. A three-dimensional stability analysis of the horseshoe orbit is presented 
and used as a basis for the semiclassical theory. The implications on the assignment of the 
coarse grained photodissociation spectrum measured by Carrington and Kennedy are 
discussed. 

I. INTRODUCTION 

The past few years have seen a significant advance in the 
experimental determination of spectra of highly excited mo­
lecular systems. The stimulated emission pumping tech­
nique has opened up a window into the dynamics of highly 
excited rovibrational states of small polyatomic molecules. 
Examples are acetylene I and the Na3 cluster.2 Using a very 
different method, Carrington and Kennedy have deter­
mined, in great detail, the photodissociation spectrum of the 
H3+ molecular ion.3 The high-resolution UV absorption 
spectrum of 0 3 has also been measured only recently.4 The 
common ground of these experiments is that upon coarse 
graining, the very detailed and seemingly unassignable spec­
tra become quite simple, leading to a small number of fre­
quencies and correlation times. 

Because of the complexity and high dimensionality of 
these molecules, theoretical interpretation has been largely 
limited to classical trajectory studies. Invariably, one finds a 
subspace in which classical motion is regular and leads to the 
correlation times observed in the experiment. Thus, for the 
Na3 system, for example, S the subspace has two degrees of 
freedom and the coarse-grained spectrum has been assigned 
in terms of the modes exhibiting regular motion in the C2v 

subspace. A detailed classical study of the ozone system has 
shown that coarse-grained correlation times may be identi­
fied with well-defined orbits.6 The coarse-grained spectrum 
ofH3+ has also been interpreted in terms of a two degree of 
freedom subspa~the family of rotating horseshoe or­
bits.7,s 

A quantum theory which bridges between the classical 
mechanical observations and the experiments has been for­
mulated by Taylor and co-workers.9 They suggested that the 
regular classical motion identifies a relatively decoupled re-
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gion of classical phase space in which one can construct a 
local basis set. The local basis set defines a P subspace of 
resonance states, using the Feshbach terminology. The rest 
of the space serves as a background and the coupling broad­
ens the spectral peaks associated with the resonant states. 

The existence of these resonance states has been demon­
strated by Taylor and co-workers,9 using a stabilization 
method. They found stabilized resonance wave functions, 
which are localized in the classically decoupled regions. Ap­
plication to the reduced dimension C2v subspace of H3+ 
clearly showed the horseshoe structure. In a recent paper, 10 

we computed all the quantum bound states of C2v H3+ and 
also found strong localization around the horseshoe orbit. 
Moreover, a semiclassical periodic orbit quantization meth­
od II accurately predicted all quantum states that localize 
around the orbit. 

These studies were restricted to the two degree of free­
dom C2v subspace. Extensive three-dimensional (3D) com­
putations for the Hi system have been reported in recent 
years. Whitnell and Lightl2 have used the discrete variable 
representation (DVR) method J3 to compute converged 
bound states up to the region of the collinear threshold. 
Tennyson and Henderson l4 adapted the DVR method in 
conjunction with an optimized spherical and Morse oscilla­
tor basis set and so managed to obtain convergence up to 
energies well above the collinear threshold. They observed, 
for the first time, localization around the horseshoe orbit in 
3D. 

The purpose of the present paper is twofold: (a) to pres­
ent in more detail the 3D quantum results, paying special 
attention to localization around the horseshoe mode, and 
(b) to show that the quantum states localized around the 
orbit can be assigned and the energies predicted using the 
periodic orbit quantization method for the full 3D problem, 

In Sec. II, we briefly review the elements of the quantal 
computation and present converged results for two potential 
energy surfaces. The ab initio Meyer-Botschwina-Burton 
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(MBB) surfacelS is well defined only up to an energy of 
- 25 000 cm - I so that further insight is obtained by study­
ing the states of the less accurate diatomics in molecules 
(DIM) potential energy surface,16 which is well defined for 
all energies. 

Application of the periodic orbit quantization method 
for the full 3D case involves three technical problems which 
are solved in this paper with novel techniques. 

(a) It is necessary to perform a Liapunov stability anal­
ysis of the orbit in 3D. In previous attempts, we have encoun­
tered difficulties due to numerical instability, when the 
horseshoe orbit goes through the collinear configuration. 
Here we removed the instability by performing the analysis 
in a space-fixed coordinate system. The price to pay is that 
the dimension of the monodromy matrix to be evaluated is 
12 X 12 instead of the usual 6 X 6 dimension in the body-fixed 
frame. The method and the results are described in Sec. III. 
We find, in agreement with the qualitative conclusions pre­
sented in Ref. 8(b), that the stability of the orbit changes 
with energy. Interestingly, even in the region where the orbit 
is unstable, one finds quantum states which are localized 
around it. 

(b) The quantum localization around an unstable orbit 
implies that the orbit is stable in an adiabatic sense, as dem­
onstrated recently in Ref. 17. In the unstable region, it is 
necessary to estimate the adiabatic stability frequencyl8 of 
the orbit. As described in Sec. III, we find that when the 
instability ofthe orbit is not too large, it is possible to obtain a 
well defined and quantitative estimate of the adiabatic fre­
quency. This is achieved by studying the short time power 
spectra of trajectories localized around the orbit. 

(c) The necessary input for the periodic orbit quantiza­
tion method is not the Liapunov exponent which is defined 
mod(21T), but the absolute stability frequency. In a two de­
gree of freedom problem this is relatively easy to obtain. 10, II 

The problematics involved in the 3D case and their solution 
are also described in this section. 

All these results are used to assign the quantum states 
localized along the horseshoe orbit. The implications of this 
study on our understanding of the coarse-grained photodis­
sociation spectrum ofH3+ are discussed in Sec. IV. 

II. QUANTUM CALCULATIONS 

A. Preliminaries 

The calculations presented here parallel those of Ten ny­
son and Henderson. 14 Working in Jacobi (or atom-diatom 
scattering) coordinates, the angular coordinate () is trans­
formed to a DVR based on Legendre polynomials. The an­
gular terms in the resulting Hamiltonian are diagonal in the 
potential, but off-diagonal in the kinetic energy. The 3D en­
ergies and wave functions were found by first solving the 
two-dimensional (2D) radial Hamiltonians at each DVR 
point. The lowest solutions of these reduced problems were 
then used as a basis to expand the eigenfunctions of the full 
problem. The radial motions were represented by 23 Morse 
oscillator-like functions for the r(H-H) coordinate and 31 
spherical oscillator functions for the R(H-H2 ) coordinate. 
This is the basis we used previously to converge all the bound 
states in the C2v «() = 90·) H3+ problem. 1O These radial cal-

culations were repeated at the 18 unique DVR points from a 
DVR based on a 36 point Gauss-Legendre quadrature. Our 
final calculation used the lowest 2800 of the 12 006 solutions 
of the radial problems to diagonalize the full Hamiltonian. 

Test calculations on the MBB potentiallS showed that 
this basis is sufficient to converge all the physically signifi­
cant states of this potential to within 10 cm - I. The conver­
gence for the lower states is much better. Tests on the DIM 
potential16 suggested that the convergence is slower. This is 
in line with our previous observation 10 that the states of this 
potential are less regular. 

The coordinates used in this work do not possess the full 
symmetry of the H3+ system. For zero total angular momen­
tum, the H3+ vibrational states occur with A I , A2 , and E 
symmetry. In Jacobi coordinates, Al and Ee states are sym­
metric about () = 90· and A2 and Eo states are antisymme­
tric. In a fully converged calculation it is possible to identify 
E states by the presence of degeneracies between odd and 
even symmetry calculations. In this work we also probe 
high-energy regions for which the computations are not fully 
converged so that unambiguous assignments are not always 
possible. For this reason we employ separate numbering 
schemes for states which result from separately solving the 
even and odd problems. 

B. MBB potential 

The MBB potential is an accurate ab initio surface for 
the ground electronic state of the H3+ molecular ion. Its 
main disadvantage is that the fitted form of the potential is 
well defined only up to - 2/3 of the dissociation energy into 
H2 + H + . The experiments of Carrington and Kennedy are 
at higher energies, in the vicinity of the dissociation thresh­
old. It is still of interest to study the states of the MBB poten­
tial to verify that the results found on the more approximate 
DIM potential are not a peCUliarity ofthat surface. It is also 
to be hoped that states of H3+ with intermediate energies of 
20 000 cm - I will be measured experimentally in the near 
future. 

The eigenvalues of the bound states of the MBB poten­
tial for J = 0, in the energy range where the surface is well 
defined, have been given in Table II of Ref. 14. Altogether 
180 states were found. Most of the 162 states with energy 
above the collinear threshold cannot be assigned with any 
simple zero-order Hamiltonian. The notable exceptions are 
the states that localize around the horseshoe orbit whose 
motion is an extreme bending of the proton. The quantum 
number for this bending motion is therefore denoted as V 2 • 

The symmetric stretching motion with respect to the orbit is 
designated as VI' and the antisymmetric stretch as V3' It 
should be stressed that although we are using a standard 
spectroscopic notation, the motion of the horseshoe orbit 
has a large amplitude and the usual normal mode coordi­
nates appropriate for the low-energy states do not give a 
good description of the "horseshoe modes." 

In Fig. 1 we plot the wave functions of all even states 
which may be assigned as (0,v2 ,0) for7<v2 <12. These plots 
show cuts through the wave functions at () = 90·. At this 
angle, odd functions (with respect to () have zero ampli­
tude, so we are restricted to plotting only even functions. The 
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FIG. 1. 3D quantum mechanical horseshoe states on the MBB surface. The 
coordinates are mass weighted Jacobi coordinates, defined as r = ar, 
R = R la, a = (3/4) 114. R,rare thex,y coordinates, respectively. Each tic 
mark on the figures is 1 a.u. The numbers in parentheses denote the quan­
tum numbers (v, ,v2 ), respectively. V3 = 0 for all states. The heavy solid 
lines show the quantized horseshoe periodic orbits for each state. 

value of V 2 is defined as the number of nodes of any given 
state along the horseshoe mode for positive values of the 
Jacobi coordinate R. 

In Fig. 2 we plot the even wave functions of all states 
which have one or more excitations along the symmetric 
stretch. Although excited states can be assigned, it is clear 
that they become fewer as the VI quantum number increases. 
This is reminiscent of a similar analysis of resonances in the 
reactive scattering ofH + H2 (Ref. 19), where the number 

FIG. 2. Symmetric stretch excitations of 3D quantum mechanical horse­
shoe states of the MBB potential. Other notation is as in Fig. 1. 

of observed excitations along the bending mode of the reso­
nance is limited. The energies of all states shown in Figs. 1 
and 2 are given in Table I. 

By analyzing the states along the angle of 90·, one does 
not gain any information on the "antisymmetric stretch" 
quantum number V3 associated with these states. One only 
knows that it must be an even number. More information 
may be obtained by studying cuts of the wave functions at 
different values of 8, as shown in Fig. 3, for the (0,12,0) state 
on the DIM potential energy surface. The striking result is 
that the basic structure of the states in Fig. 3 is unchanged, 
indicating that all these states may indeed be assigned as 
V3 = O. We were not able to identify states with V3 >2. 

Having established the assignment, we note from Figs. 1 
and 2 that it is not single valued. More than one eigenstate 
can seemingly be assigned by the same set of quantum 
numbers. This ambiguousness can stem from two sources. 
The threefold permutation symmetry of the system can re­
sult in three (unsymmetrical) states with the same approxi­
mate quantum numbers. This seems, though, not to be a 
sufficient explanation for the five "horseshoe states" as­
signed as (0,17,0) (see Fig. 4). This result may be interpret­
ed within the framework of the Feshbach resonance theory. 
The horseshoe orbit identifies a region of space which is rela­
tively decoupled. This leads to a local set of states. However, 
this local set interacts with the background so that a given 
local state may have a prominent amplitUde in more than 
one exact eigenstate. The range of energy spanned by all 
"degenerate" states assigned with the same set of quantum 
numbers can be interpreted as the width of the localized state 
as would be found in a stabilization computation. Thus, this 
energy range gives an indication of the time scale for intra­
molecular vibrational redistribution associated with the lo­
cal mode. We believe that the relatively large width is crucial 
in understanding the coarse-grained spectrum of H3+ . This 

TABLE I. Properties of assigned horseshoe states of the MBB potential. 
Energies are relative to the bottom of the well. 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 
1 
1 
2 
2 

7 
8 
8 
9 
9 
10 
11 
11 
11 
12 
12 
12 
7 
7 
8 
9 
10 
11 
8 
9 

18069.5 
19425.5 
19467.3 
21059.1 
21076.7 
22796.6 
24541.1 
24574.5 
24604.7 
26483.3 
26539.6 
26569.7 
20559.1 
20607.3 
22109.8 
23442.9 
25217.8 
26980.5 
24454.0 
25992.8 

16821.2 
18429.7 
18429.7 
20184.5 
20184.5 
22056.8 
23962.3 
23962.3 
23962.3 
25917.9 
25917.9 
25917.9 
19443.6 
19443.6 
21001.6 
22716.2 
24514.2 
26428.1 
23525.2 

1248.3 
995.8 

1037.6 
874.6 
892.2 
739.8 
578.8 
612.2 
642.4 
565.4 
621.7 
651.8 

1115.5 
1163.7 
1108.2 
726.7 
703.6 
552.4 
928.8 
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FIG. 3. Angular dependence ofa 3D horseshoe state. The state is (0,12,0) 
on the DIM potential energy surface. Both states having this assignment are 
shown. The number in each panel denotes the angle (in degrees). 

will be further discussed in Sec. IV. 
The observation that all states are in the ground anti­

symmetric stretch mode makes it possible to use the assign­
ment to estimate a zero point energy associated with this 
motion. In Ref. lOwe gave a detailed list of all C2v states that 
are odd with respect to reflection (in the reduced space) 
around R = O. When normalized such that 

f f drdR ItPc2Y = 1, 

FIG. 4. 3D quantum mechanical horseshoe states on the DIM potential. All 
notation is as in Fig. 1. 

these states have a nodal line at R = O. Note that all 3D 
states shown in Figs. 1-5 have noda1lines at R = O. In the 
3D case, the square root of the Jacobian factor R 2 has been 
included in the 3D wave functions so that these cuts may be 
compared directly with the similar plots obtained in the re­
duced dimension computations. As a result, the difference 
between the energy E(v1 ,v2 ,0) ofa 3D state and the energy 
E( VI' V2 ) of the odd reduced dimension state is a measure of 
the zero point energy for the antisymmetric stretch mode. In 
Table I we give the relevant quantitative estimates. These 
will be compared in Sec. III with values obtained from a 
stability analysis of the horseshoe orbits. 

In the reduced dimension computation one also finds 
states that are even with respect to reflection about R = O. 
The numerical results of the 3D computation show that 
these states are disallowed at J = O. In this paper we restrict­
ed ourselves to the J = 0 case since convergence at J = 1 was 
much more difficult, especially for the highly excited states. 

c. DIM potential 

The basis set used is large but not sufficient for converg­
ing all states ofthe DIM potential with spectroscopic accu­
racy. Altogether we studied 500 bound states. The energy of 
the 500th state is 36 684.4 cm - I relative to the bottom of the 
H3+ well. This is 3028.7 cm - 1 below the classical dissocia­
tion threshold into H + + H 2 • The number 500 is only a 
lower bound to the true number of bound states up to this 
energy because of the poor convergence at high energies. 
Only the first 12 states are below the collinear threshold 
energy. For states lying below 25 000 cm -I an accuracy of 
10 cm - I is obtained but we did not attempt to estimate the 
error in higher lying states. However, the basis set we are 
using covers the horseshoe region of the potential rather 
well, even at "high" energy. The spatial extent of horseshoe 
periodic orbits does not change dramatically with energy. It 
is plausible therefore to assume that even though many states 
are not converged at high energy, especially those with sub­
stantial amplitUde leading to the asymptotic region, those 
states which can be characterized as horseshoe states will 
still remain reasonably well converged. This situation is 

FIG. 5. Symmetric stretch excitations of 3D quantum mechanical horse­
shoe states of the DIM potential. 
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analogous to a stabilization calculation where one expects a 
change in the stabilization parameter to change the energies 
of spurious states only. Here, an increase in the basis set will 
mostly affect the background states but not the localized 
ones. A partial test of this assumption will be given in the 
next section where we show that the energies of the high 
lying localized states are in agreement with predictions of the 
periodic orbit quantization method. 

All horseshoe states found with energy below the disso­
ciation threshold, assigned as (0,v2 ,0) are shown in Fig. 4. 
Apart from the extention to much higher energies, this fig­
ure is very similar to Fig. 1 obtained for the MBB surface. As 
noted in previous classical8 and quantal lO studies, the horse­
shoe mode is quite insensitive to the details of the potential 
energy surface. The energies of all these states are given in 
Table II. Estimates for the antisymmetric stretch zero point 
energy, also given in the table, are based on the reduced di­
mension computations of Ref. 10 and estimated as described 
above for the MBB potential. Note that the incomplete con­
vergence of the higher lying 3D states implies that these esti-

TABLE II. Properties of assigned horseshoe states of the DIM potential. 
Energies are relative to the bottom of the well. 

Em 
VI V 2 

(em-I) 

0 8 18 148.5 
0 9 19850.2 
0 10 21564.0 
0 10 21570.2 
0 11 23380.0 
0 11 23409.7 
0 12 25428.2 
0 12 25443.7 
0 13 27289.5 
0 13 27321.5 
0 13 27342.5 
0 14 29232.2 
0 14 29316.2 
0 14 29362.0 
0 15 31374.5 
0 16 33306.8 
0 16 33458.8 
0 16 33550.6 
0 17 35364.4 
0 17 35406.0 
0 17 35432.9 
0 17 35476.7 
0 17 35 541.6 
1 8 20700.9 
1 8 21013.5 
1 10 24133.2 
1 10 24202.7 
1 11 25905.4 
1 11 25945.5 
1 11 26053.0 
1 12 27851.6 
1 12 28 113.5 
1 13 29947.1 
1 14 31778.1 
1 14 32097.1 
1 15 34006.8 
2 14 34421.5 
1 16 35950.0 
1 16 36043.5 
2 15 36401.3 

E20 
(em-I) 

17230.0 
18916.8 
20769.4 
20769.4 
22714.9 
22714.9 
24720.6 
24720.6 
26763.1 
26763.1 
26763.1 
28848.9 
28848.9 
28848.9 
30927.0 
32998.1 
32998.1 
32998.1 
35049.2 
35049.2 
35049.2 
35049.2 
35049.2 

23490.0 
23490.0 
25391.0 
25391.0 
25391.0 

31441.4 
31441.4 
33505.7 
33905.5 
35583.5 
35583.5 

Ezpe 

(em-I) 

918.4 
933.3 
794.5 
800.7 
665.0 
694.7 
707.5 
723.0 
526.3 
558.3 
579.3 
383.2 
467.2 
513.0 
447.4 
308.6 
460.6 
552.4 
315.1 
356.7 
383.6 
427.4 
492.3 

643.1 
712.6 
514.3 
554.4 
661.9 

336.6 
655.6 
501.0 
515.9 
366.4 
459.9 

mates are actually only an upper bound. 
In Fig. 5 we plot the even wave functions (with respect 

to ()) for all horseshoe states which can be assigned as having 
one or more excitations in the symmetric stretch mode. This 
is the DIM analogue of Fig. 2 for the MBB potential. Al­
though qualitatively the results are similar, there are consis­
tently less states on the DIM surface with higher VI excita­
tions. This is a further reflection of the fact that the DIM 
surface seems to be more "chaotic" leading to less localiza­
tion. The overall correspondence of the two surfaces does 
indicate that the properties of the horseshoe mode are robust 
and should be expected to be important for any surface hav­
ing the general topology and energetics of the H3+ molecule. 

III. CLASSICAL ANALYSIS 

A. 3D stability analysiS 

For zero total angular momentum, the classical Hamil­
tonian in the body-fixed coordinate system (using Jacobi 
coordinates) is 

H I 2 1 2 1 ~1 1) 2 = --Pr + --PR + - --2 + --2 Pe 
2""1 2""2 2 I r ""2R 

+ V(r,R,(}). (1) 

The horseshoe orbit corresponds to motion in aT-shaped 
configuration so that the momentum (Pe) conjugate to the 
angle () is zero. Although the horseshoe orbit passes twice 
(within a period) through the collinear plane (R = 0), this 
does not lead to any divergence, since the momentumpe is 
zero along the orbit. However, for a stability analysis, one 
needs to consider the second derivatives of the Hamiltonian, 
where the singUlarity at R = 0 causes numerical instability. 

To circumvent this problem we have followed a sugges­
tion made by Nowotny and Schliero and considered the full 
Hamiltonian in a space-fixed frame (cf. Fig. 6). Denote the 
three atoms as a,b,c, and their coordinates in a space-fixed 
frame as q;o i = a,b,c, respectively. The Lagrangian of the 
system is 

L=!maci! +!mbci~ +!mcci; - V(qa,qb,qc)' (2) 

Taking the origin of the coordinates system at the center of 
mass leads to the relation 

(3) 

z 

x 

FIG. 6. Schematic diagram of the space-fixed coordinate system. 
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Linear momentum conservation gives the additional result frame. The orientation of the space-fixed frame is chosen 
such that the orbit lies in the x-y plane (z = 0) with the 
body-fixed R axis along the space-fixed x axis (cf. Fig. 6). It 
is now straightforward to numerically integrate the equa­
tions of motion in the space-fixed frame. For the Liapunov 
stability analysis one has, after one period, a matrix whose 
dimension is 12 X 12, leading to six pairs of eigenvalues, such 
that the product of each pair is one. Of the six distinct eigen­
values, three are equal to one because of conservation of total 
angular momentum. The eigenvectors are distinct and iden­
tical to the principal moments of inertia ofthe molecule. One 
additional pair has a value of one, and is associated with 
energy conservation. This leaves us with two distinct pairs, 
one is associated with the symmetric (v I ) mode. This eigen­
value is also identified by inspecting the eigenvector. We find 
that it is identical to the eigenvalue obtained from a stability 
analysis performed in the restricted C2v problem. The re­
maining pair is similarly identified as associated with the 
antisymmetric stretch (v3 ) motion. 

(4) 

so that the Lagrangian may be written in terms of the two 
vectors q., and CIJ,: 

L 1 . 2 1 . 2 1 (. ')2 V. =-maqa +-mbqb +-- maqa +mbqb - . 
2 2 2me 

(5) 

Using standard techniques21 one finds the Hamiltonian in 
terms of these two vectors and their conjugate momenta: 

1 (mb + me 2 ma + mb 2 ) H=- Pa + Pb -2PaPb + V. 
2M ma me 

(6) 

The Liapunov stability analysis22 of the horseshoe orbit 
proceeds now in two steps. The first consists of locating the 
orbit, using the reduced (two degrees offreedom) C2V Ham­
iltonian in body-fixed coordinates [Po = 0, 0 = 11'/2 in Eq. 
( 1 ) ]. This search is done in standard form, using the turning 
point method described in Ref. 23. One finds with high accu­
racy an initial set of points on the orbit and its period. It is 
convenient to choose the initial set on the equipotential line, 
such that the momenta are zero. 

The results of the reduced dimension computation are 
then used as input for the stability analysis in the space-fixed 

The stability analysis in the reduced C2v subspace has 
been carried out previously in Ref. 10. We found that at all 
relevant energies on the MBB and DIM surfaces, the horse­
shoe orbit was stable. The eigenvalues and absolute stability 
frequencies for the VI mode may be found in Table V of Ref. 
10 and are also provided in Table III. The quantum number 
V 2 is determined by semiclassical quantization of the motion 
along the orbit. As mentioned in the previous section, for 

TABLE III. Properties of the horseshoe orbit. Energies are relative to the bottom of the weB of each surface, respectively. The collinear threshold is 14275.53 
(12347.33) cm - I for the MBB (DIM) surface. The dissociation energy to H2 + H + is 39 713.08 cm -Ion the DIM surface. The notation .1.w~" i = 1,3 

refers to the relative stability frequency [cf. Eqs. (7) and (8) 1 of the ith mode for the horseshoe orbit whose bending quantum number is v2 • w~, is the 

absolute frequency. 

Energy .1.w!., m!'2 w;,z .1.w;" (t)~;2 
n2 (cm- ' ) (cm- I ) (cm- I ) (cm- I) (cm- I) (cm- I ) 

MBB 
7 15502.44 i353.53 2605.49 750.653 141.27 
8 17117.86 i30.12 2591.20 853.693 1226.38 1933.77 
9 18890.78 i142.63 2602.08 914.903 195.73 
10 20762.33 1285.88 2574.55 953.478 i328.78 1578.18 
11 22693.43 i364.46 2561.89 975.118 i373.62 1348.74 
12 24653.76 i391.93 2558.09 983.340 i143.90 1127.24 
13 26620.13 i384.77 2560.23 981.683 180.78 
14 28576.14 i358.26 2561.93 973.396 223.14 

DIM 
8 15727.36 ;372.91 2907.90 844.998 1216.39 1906.39 
9 17496,29 i87.22 2835.59 916.123 236.60 
10 19378.03 ;97.10 2796.42 964.508 1294.20 1634.82 
11 21343.68 1240.24 2758.70 999.647 i378.51 1378.09 
12 23368.77 i343.69 2727.83 1023.839 110.30 
13 25433.03 i408,87 2705.94 1038.271 293.10 
14 27515.92 i438.09 2692.93 1043.674 327.87 
15 29601.36 ;438.27 2685.77 1041.345 311.63 
16 31676.98 ;418.78 2680.15 1032.975 261.29 875 ± 66" 
17 33730.90 i387.76 2672.88 1020.214 170.11 875 ± 66" 
18 35755.81 i350.63 2662.45 1004.360 i129.96 874.40 
19 37747.16 i31O.40 2648,62 986.340 1260.08 726.26 
20 39700.31 1268.49 2631.90 966.795 ;351.09 615.71 
21 41613.37 /225.15 2613.32 946.157 i430,24 515.92 
22 43484.17 i179.55 2594.65 924.733 i418.23 506.50 
23 45311.59 i128.68 2579.52 902.734 i314.76 587.97 
24 47094.52 i58.30 2582.65 880.318 i187.17 693.15 

"These are estimates for the adiabatic frequencies for energies at which the orbit is unstable. 
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J = 0 all states have a nodal line at R = O. Thus, the semi­
classical quantization condition for the action is 
(2v2 + 3/2)1i. 

The stability properties of the V3 mode are given in Ta­
ble III. Denote the eigenvalue as A.!2 and the period of the 
orbit as T",. When the orbit is stable, the relative stability 
frequency ~(()!2 is defined as 

~ 3 - 1 1 A. 3 7 (()'" =~T n ",' ( ) 
I ", 

When the orbit is unstable, the stability frequency is defined 
as 

1 
~(()! =-llnA.! I. , T 1 

", 
(8) 

In Fig. 7 we plot the relative stability frequencies for the 
V3 mode and the two potential energy surfaces as a function 
of energy. As already observed qualitatively in Ref. 8 (b), the 
orbit goes through cycles of stability and instability. The 
qualitative behavior is the same for both potential energy 
surfaces. It is important to note that the region of stability 
increases with energy and is quite large around the dissocia­
tion energy. As mentioned in the previous section, the quan­
tum states of both surfaces localize around the horseshoe 
orbit even when it is unstable. 

B. Stability frequency 

When the periodic orbit is stable, the Liapunov stability 
analysis gives an eigenvalue whose exponent is defined up to 
mod (21T). The periodic orbit quantization method needs the 
physical frequency for the motion along the relevant mode as 
input. In a two degree of freedom system this is found by a 
variety of means; the easiest to implement is to follow the 
motion of a trajectory initiated close to the periodic orbit. 10 

The number of times the adjacent trajectory crosses the peri-

500 

• DIM 
375 0 MBB 

250 

t=""""' 
I 125 
S 
c..> 
~ 0 

;;,.N 

'" 3 -125 
<l 

-250 

-375 

-500~----~--~----,---~----~--~ 

15000 20000 25000 30000 35000 40000 45000 
energy [ern -1] 

FIG. 7. Relative stability frequencies for the antisymmetric stretch mode of 
the horseshoe orbit. The stable regions are denoted with positive values of 
~W!2 [cf. Eq. (7) J. In the unstable regions we give a negative value to the 

frequency so as to give a clear picture. The shift between the MBB and DIM 
results is due to the small differences in the energetics of the two surfaces. 
The energy scale is relative to the bottom ofthe Ht well. 

odic orbit reveals the absolute frequency. In a 3D problem, 
this procedure can no longer be implemented. The higher 
dimensionality causes the number of crossings to be ill de­
fined; it depends on the coordinate system. Alternatively, we 
have used continuity to establish the absolute phase, I I since 
at the bottom of a well the stability frequency of an orbit 
coincides with the harmonic frequency. In the case of the 
horseshoe orbit, at threshold, it is already highly nonlinear 
and the stability analysis cannot be approximated with a 
simple harmonic estimate. In addition, the rapid alternating 
regions of stability and instability close to threshold render it 
difficult to implement. 

The analysis presented above, though, has established 
that of the two distinct eigenvalues, the VI mode is relatively 
stable. The stability frequency changes by - 10% over the 
whole energy region up to dissociation. This is clearly not the 
case for the V3 mode. Consider then a power spectrum of 
trajectories initiated in the vicinity ofthe orbit. In principle, 
such a spectrum should have three fundamentals and their 
overtones. These are the VI and V3 frequencies and the fre­
quency of the orbit itself (v2 ).If one now changes the energy 
somewhat, the VI and V 2 peaks will remain practically con­
stant while the V3 frequency will vary substantially. In this 
form one can identify the absolute value of the V3 frequency. 

In Fig. 8 we show spectra on the DIM surface in the 
energy range - 0.4<E< 0 eV (which is 36 486<E<39 713 
cm - I relative to the bottom ofthe H3+ well). At - 0.58 eV 
the orbit becomes stable and stays that way up to an energy 
of 1.23 eV above the dissociation threshold. These spectra 
are obtained by running the horseshoe orbit and an adjacent 
trajectory for a long time. The difference vector 
[~q(t),~p(t)] is projected onto the difference vector at 
time t = O. Figure 8 shows the power spectrum S( (() of this 
projection, where the initial difference is a slight perturba­
tion of the angle () away from 90·. This choice is guided by the 
fact that the antisymmetric stretch motion must involve a 
change of angle. 

One notes a peak that shifts considerably with energy. It 
is therefore identified as the V3 frequency. To verify that the 
peak is the fundamental and not an overtone or combination 
we show in Fig. 9 the time dependence of the variable 
([~q(O), ~p(O)]' [~q(t),~p(t)]} (denoted sp in the fig­
ure) from which the period associated with the the V3 peak 
can be discerned. Having established the absolute frequency 
of the V3 motion at one energy, we use the results of the 
stability analysis to determine the frequency at all energies. 
Note that the absolute frequency remains the same as one 
goes through a cycle of instability. In this form we obtained 
(()!, for the whole range in which the orbit is stable. 

In Fig. 10 we compare the classical results with the 
quantum frequencies obtained from the 2D and 3D quantum 
results as described in Sec. II B. The agreement is good. In 
Table IV we compare quantum energies predicted by the 
periodic orbit quantization formula: 

E"I'''''''3 = E"2 + (VI + 1I2)1ito~, + (v3 + 1I2)1ito!, 
(9) 

and the exact quantum results. What is still lacking is an 
estimate of the V3 adiabatic frequency in the energy range 
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FIG. 8. Power spectra S(lcI) of slight 
angular perturbation of the horse­
shoe orbit. Panels a-e show the spec­
tra at energies of - 0.4, - 0.3, 
-0.2, -0.1, and 0 eV relative to 

the classical H + + H2 dissociation 
threshold (which corresponds to en­
ergies of 36486.9, 37293.4, 
38 100.0, 38906.5, and 39713.1 
cm -, relative to the bottom of the 
H,+ well). At the lowest energy, the 
orbit is marginally stable and the v, 
peak is at the V2 frequency. As ener­
gy is increased, the v, frequency de­
creases noticeably. For further de­
tails, see the text. 
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log S(c.J) 

where the orbit is unstable. This is described in the next sub­
section. 

C. Adiabatic frequency 

The quantum localization even in the region where the 
periodic orbit is unstable in the sense of Liapunov implies 
that the orbit is still adiabatically stable. In other words, for 
short times, a trajectory initiated in the vicinity of the orbit 
will oscillate around it before moving away. Quantum me­
chanics are sensitive to the short time classical dynamics, as 
has been amply demonstrated for the resonances in atom­
diatom reactive scattering.23 In H + H2 for example, the 
quantum resonances were shown to be associated with an 
unstable periodic orbit which was adiabatically stable. Simi­
larly, for a quartic potential it has been recently demonstrat­
ed17

•
24 that quantum localization occurs around an adiabat­

ically stable orbit, which is unstable in the Liapunov sense. 

2.0 

1.5 

0.5 

0.0 -t----,------,----,----------, 
o 5000 10000 15000 20000 

tiITle [a.u.] 

FIG. 9. Correlation function of the perturbed horseshoe spectrum, shown 
in Fig. 8 at E = - 0.1 eV. Note the period of2120 a.u. corresponding to a 
frequency of 650 ± 3 cm - '. The horizontal brace indicates one period, sp is 
the scalar product, defined in the text. 

The periodic orbit quantization formula gave a good esti­
mate for the localized quantum states. 17 

In this subsection, we will demonstrate that the horse­
shoe orbit is adiabatically stable. An estimate of the adiaba­
tic frequency will also be given in the region where the insta­
bility of the orbit is not too large. As indicated, the adiabatic 
frequency should be observable in the short time dynamics. 
In Fig. 11 we plot short time averaged spectra. The dynami­
cal variable is the same as in Fig. 8. The main difference is 
that instead of integrating a single trajectory for a long time, 
we integrate 1000 trajectories initiated close to the orbit, but 
with angles slightly off 90· for short times. The integration 
time is limited by the instability of the orbit and the numeri­
cal accuracy in choosing the initial condition. We found it 
necessary to initiate trajectories distributed randomly over 
an initial distance 1 X 1O- 6..;;d(0)";;2X 10- 6 a.u. For a giv­
en Liapunov eigenvalue A ~2' this implies that 

( 10) 

When the distance d(t) is greater than 0.4 a.u., the orbit can 
no longer be thought of as being in the vicinity of the orbit 
and therefore will no longer give information on the adiaba­
tic frequency. As a result we were able to get meaningful 
spectra with reasonable resolution provided that the stability 
frequency of the unstable orbit was not greater than 
260cm- l

• 

Inspection of Fig. 11 shows a large peak at the frequency 
of the orbit (v2 ), but also a second peak at a slightly lower 
frequency. It is this lower peak which may be identified as 
the adiabatic frequency, which is also used in Fig. 10 to com­
pare with the quantum adiabatic results. 

At the boundary between the stable and unstable re­
gions, it has been shown in Ref. 18 that the adiabatic fre­
quency and the stability frequency coincide. From Fig. 10, it 
would then seem that at the boundary, the classical results 
go through a minimum or a maximum while the quantum 
results are on the average a monotonically decreasing func-

J. Chern. Phys., Vol. 92, No.6, 15 March 1990 

Downloaded 11 Nov 2010 to 128.40.5.142. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Brass, Tennyson, and Pollak: Spectroscopy and dynamics of Ht 3385 

2500 

2000 

,........, 
18 1500 

C,) 
'----' 

.., ::.1000 

3 

500 

8 

a 
a • .. 

(a) MBB 

8 

• 
a . • a 

a 
0; 

a 
a 

• 

o ~-------.--------,-------,-------, 

::::--' 
I 

8 

6 

2000 

1500 

8 

• a a 

a 
~ 

• • 

10 12 14 

V
2 

(b) DIM 

8 

a 
a tl 

~1000 
a a . !-f. a a 

a . a • a 
a a • 

500 • • 

6 8 10 12 14 16 18 20 22 24 

V
2 

FIG. 10. Comparison of classical and quantum mechanical estimates of the 
'1'3 frequency. The notation (open boxes, *, and stars) gives the quantum 
estimates for states assigned as (0,'1'2,0), (1,'1'2,0), and (2,'1'2,0) respective­
Iy. The closed boxes are the classical estimates, in the stable regions of the 
horseshoe. The closed diamonds (with error bars) are the classical estimate 
of the adiabatic frequency in a region where the orbit is unstable. Panels a, b 
are for the MBB and DIM potentials, respectively. 

tion. This plot is similar to the quantum smoothing of classi­
cal mechanical divergences in differential cross sections. The 
quantum results are not sensitive to the fine details of the 
classical dynamics. 

IV. DISCUSSION 

The numerical results presented in this paper lead to the 
following conclusions which are of importance for analysis 
of the experimental coarse grained photodissociation spec­
trum ofH3+: 

(a) Quantum localizations are found around the horse­
shoe orbit even in 3D. These include states with excita­
tions in the VI mode. No excitations in the V3 mode 
could be observed. 
(b) The horseshoe orbit changes stability with respect 
to the V3 mode as a function of energy. 

TABLE IV. Comparison ofthe quantal energies of Tables I and II and the 
semiclassical estimate [cf. Eq. (9) J. 

Eqm Esc 
VI '1'2 (cm- I ) (cm- I ) 

MBB 
0 8 19467.3 19380.4 
0 10 22796.6 22838.7 
0 11 24541.1 24648.7 
0 11 24574.5 24648.7 
0 11 24604.7 24648.7 
0 12 26483.3 26496.4 
0 12 26539.6 26496.4 
0 12 26569.7 26496.4 
1 8 22109.8 22938.4 
1 10 25217.8 25413.3 
1 11 26980.5 27210.6 
2 8 24454.0 25529.6 
DIM 
0 8 18 148.5 18134.5 
0 10 21564.0 21 593.7 
0 10 21 570.2 21593.7 
0 11 23380.0 23412.1 
0 11 23409.7 23412.1 
0 16 33306.8 33454.6" 
0 16 33458.8 33454.6" 
0 16 33550.6 33454.6" 
0 17 35364.4 35504.84" 
0 17 35406.0 35504.84" 
0 17 35432.9 35504.84" 
0 17 35476.7 35504.84" 
0 17 35541.6 35504.84" 
1 8 20700.9 21042.4 
1 8 21013.5 21042.4 
1 11 25905.4 26170.8 
1 11 25945.5 26170.8 
1 11 26053.0 26170.8 

"These are based on the adiabatic frequencies, cf. Table III. 

(c) Quantum localization occurs even in regions where 
the orbit is unstable. 
(d) The localized quantum states can be assigned, using 
the periodic orbit quantization method. 

o 500 1000 1500 2000 2500 
frequency w [crn-1] 

FIG. 11. Short time, averaged spectrum. The energy is that of the '1'2 = 17 
horseshoe orbit. Note the large peak at the '1'2 frequency. The amplitude of 
this peak goes beyond the scale of the vertical axis, reaching an amplitude of 
5.81 X 10". The adjacent broader peak shows the '1'3 adiabatic frequency. 
The surface is DIM; for further details, see the text. 
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(e) The assignment is not unique, usually at least a cou­
ple of adjacent states split by - 50 cm - I are assigned by 
the same set of periodic orbit quantum numbers. 
(f) The V3 frequency at the threshold for dissociation is 
determined from the stability analysis to be 
638 ± 3 cm -I, in good agreement with a previous esti­
mate of 643 cm -1,8(b) based on classical dipole spectra. 
The coarse-grained experimental photodissociation 

spectrum ofH3+ has been assigned in Ref. 8(b) in terms of 
the R branch associated with the antisymmetric stretch fre­
quency of the horseshoe orbit. The results of the present 
study are consistent with this interpretation. We have dem­
onstrated that quantum states localize around the horseshoe 
orbit and that the quantum mechanical V3 frequency is in 
good agreement with the classical estimate. This work is 
therefore an additional step in verification of the proposed 
assignment. There are, though, a number of questions which 
have yet to be answered. (1) For an R branch transition to be 
possible, one must demonstrate the existence of localized 
horseshoe states with one excitation in the V3 mode. Such a 
state necessarily is odd with respect to reflection about 
(J = 90· and so was not observed in the present work. We 
have found states that localize with more than one excitation 
in the VI mode, even in regions where the classical regular 
phase space around the orbit is much too small to justify the 
localization. It is therefore plausible that excitations in the 
antisymmetric stretch mode also will exist, especially at the 
experimental energy range where the horseshoe orbit is sta­
ble. (2) As discussed in detail in Ref. 8 (b), the experimental 
energy window for dissociating states at a given J is small. 
For the horseshoe ladder of states to be observable, it is nec­
essary that this ladder covers the whole energy range. In the 
present study we have seen that a given horseshoe assign­
ment is not unique and that typically two or three states have 
the same assignment. In terms of the Feshbach picture, the 
horseshoe state seems to be quite a broad resonance. This 
lends further credibility to the proposed assignment of the 
experimental spectrum. The present computation is, how­
ever, limited to J = 0 and it is necessary to study this proper­
ty at J = 5, the experimentally accessible region. (3) The 
present study stresses the need for an accurate surface up to 
the dissociation energy and beyond. 

It is clear that to verify the predicted assignment, it is 
necessary to compute the exact quantum spectrum. This 
should prove possible at least for transitions involving J = 0 
and J = 1 which are somewhat below the dissociation 

threshold. The present study as well as the previous ones 
imply that as far as the coarse-grained spectrum is con­
cerned, it is only weakly dependent on energy, justifying the 
very large computational effort involved. 
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