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The vas deferens has been used as a model for many
diverse studies of different aspects of autonomic neuro-
transmission since its introduction including, in particu-
lar, sympathetic cotransmission involving release of ATP
and neuropeptide Y together with noradrenaline and
prejunctional and postjunctional neuromodulation. It
has also been used to study sympathetic reinnervation
following vasectomy and castration, as well as the dele-
terious effects of diabetes, hypertension and chronic
alcohol.

Introduction – The innervated vas deferens model
preparation
The vas deferens, as first introduced by Huković in 1961, is
densely innervated by sympathetic nerve fibres mostly
arising from the hypogastric ganglion and from neurones
in the hypogastric nerve trunk, together with some cholin-
ergic nerve fibres (Figure 1) [1]. Subpopulations of sym-
pathetic nerve fibres in the human vas deferens contain
somatostatin and galanin as well as neuropeptide Y (NPY)
[2]. Nerve fibres containing vasoactive intestinal polypep-
tide (VIP) and nitric oxide (NO) have also been described in
the guinea-pig vas deferens, probably colocalised in acetyl-
choline (ACh)-containing parasympathetic nerves [3]. Evi-
dence for release of calcitonin gene-related peptide (CGRP)
from capsaicin-sensitive sensory nerves in the rat and pig
vas deferens has been presented [4]. Nerve fibres originat-
ing from pelvic neurones in a discreet location in the pelvic
ganglia supply the rat vas deferens [5]. A population of
varicose nerves has been identified in the mouse vas
deferens after destruction of sympathetic nerves by 6-
hydroxydopamine (6-OHDA) [6]. These nerves might be
parasympathetic and/or sensory afferent fibres arising
from L1, L2, L6 and S1 dorsal root ganglia travelling to
the rat vas deferens in both hypogastric and pelvic nerves.

It is of interest that when Burn and Rand [7] first
proposed that ACh and noradrenaline (NA) were cotrans-
mitters in sympathetic nerves, one of their arguments was
that hexamethonium significantly reduced the contractile
responses of the vas deferens to stimulation of the hypogas-
tic nerve. Unfortunately, they did not realise that the hypo-
gastric nerve contains many sympathetic neurone cell
bodies at intervals along its length, and thus they were
blockingpreganglionic cholinergic transmission rather than
neuromuscular transmission from sympathetic terminals.

In addition to studies of sympathetic cotransmission,
the vas deferens has also been used to explore the function

of capsaicin-sensitive primary afferent neurones. Capsa-
zepine was shown to antagonise the action of capsaicin via
a vanilloid receptor, whereas non-competitive antagonism
by ruthenium red involved a more complex mechanism [8].
Some neurones on pelvic ganglia containing VIP immu-
noreactivity also showed NADPH–diaphorase reactivity
[9]. This was taken to suggest that NO could be a neuro-
transmitter in guinea-pig vas deferens, particularly in
nerves supplying the circular muscle layer. Functional
evidence for the participation of NO in the excitatory
neurotransmission in the rat vas deferens has also been
presented [10]. Some of the NO synthase (NOS)-containing
neurones of the pig inferior mesenteric ganglion supplying
the vas deferens are probably involved in regulation of local
blood flow and muscular tone [11]. NOS is present in
subpopulations of both sympathetic and non-sympathetic
nerves in the human vas deferens [12]. Histamine-contain-
ing neurones, distinct from NA-containing neurones, have
been claimed to be present in the rat vas deferens [13].

An early electronmicroscopic serial section study by
Merrillees [14] of the innervation of the guinea-pig vas
deferens supported and extended the early proposal of
Hillarp in 1946 for an autonomic grand plexus consisting
of varicose nerve fibres. Merrillees showed that axon var-
icosities containing vesicles were frequently within 20–

100 nM of a muscle fibre, usually with no intervening
Schwann cell processes. Later studies showed that the
transmitter was released en passage from varicosities
during conduction of an impulse, although excitatory junc-
tion potentials (EJPs) [15] are probably only elicited at
close junctions. Neuroeffector junctions do not have a
permanent geometry with postjunctional specialisations,
suggesting that the varicosities might be continuously
moving and that their close relation with muscle cell
membranes changes with time, including dispersal and
reformation of receptor clusters [16,17]. These and the
studies of the rat vas deferens have provided the data to
establish non-synaptic transmission at autonomic neuroef-
fector junctions ([17], Figure 2).

The classical work of Sir Henry Dale and Ulf Von Euler
established NA as the transmitter released from sympath-
etic nerves [18,19]. Here, we review studies using the
sympathetically innervated vas deferens preparation to
show that ATP is a cotransmitter with NA for sympathetic
neurotransmission.

Sympathetic cotransmission
Burnstock and Holman [15,20] carried out several studies
of the electrophysiology of sympathetic neurotransmission,

Review

Corresponding author: Burnstock, G. (g.burnstock@ucl.ac.uk)

0165-6147/$ – see front matter � 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tips.2009.12.002 Available online 13 January 2010 131



showing that EJPs in smooth muscle in response to single
nerve pulses summed and facilitated, until at a critical
depolarisation threshold, spikes were initiated associated
with contraction. They were puzzled, however, that adre-
noceptor antagonists did not abolish the EJPs, because NA
was established as the sympathetic neurotransmitter at
that time. It was not until over 20 years later that it was
recognised that ATP acting as a cotransmitterwithNAwas
responsible for the EJPs [21]. The David Westfall group
were the first to demonstrate that ATP produced fast
contraction of the vas deferens as a cotransmitter with
NA released from sympathetic nerves producing slower
contractions (Figure 3b) [22]. The non-adrenergic contrac-
tile component of the responses to sympathetic stimulation
has been shown to be antagonised by arylazido aminopro-
pionyl ATP, suramin, pyridoxal-phosphate-6-azophenyl-
20,40-disulphonic acid, NF023 [23] and desensitised by
a,b-methylene ATP (a,b-meATP) both in vitro and in vivo

[24,25]. 6-OHDA blocked both adrenergic and purinergic
components, supporting the view that they were cotrans-
mitters in sympathetic nerves [26]. During transmural
stimulation of nerves in the vas deferens, ATP and its
breakdown products ADP, AMP and adenosine were
detected in the surfusate [27].

In the mid-1980 s Neild and Hirst proposed that EJPs
were as a result of NA acting on hypothetical g-adreno-
ceptors [28]. This was much debated at the time. However,
when it was shown that NA, unlike ATP, did not mimic the
EJP [29] andwhen reserpine, which depleted neuronalNA,
but not ATP, failed to affect the rapid component of sym-
pathetic nerve-modulated responses [30], the g-hypothesis
was abandoned. Direct evidence for concomitant release of
NA, ATP and NPY from sympathetic nerves supplying the
guinea-pig vas deferens was presented in 1998 [31]. Amore
recent paper has described a purinergic component of
sympathetic nerves control of the human vas deferens [32].

There is postjunctional synergism by the sympathetic
cotransmitters NA and ATP [33]. It was proposed that NA
potentiates the contractile responses of the vas deferens to
ATP via a protein kinase C (PKC) mechanism that might
involve the inhibition of myosin light chain phosphatase
and subsequent calcium sensitisation [34].

Sophisticated electrophysiological studies have been
carried out on the vas deferens to study packaged release
of ATP from sympathetic nerve varicosities [35–40] show-
ing that:
� Secretion of transmitters from a single varicosity is

highly intermittent, i.e. only a small percentage of
varicosities release transmitters during sympathetic
nerve stimulation. Intermittence is caused by a low
probability of release from varicosities, rather than by
failure of the action potential to invade the varicosities.

� A higher number of varicosities release transmitters
with increasing frequency of nerve stimulation.

� Fast transmitter release from a varicosity is quantal,
whereas slow excitatory junction currents appear to be
non-quantal release.

� Many, but not all, varicosities secrete ATP.

Figure 1. The anatomy of the vas deferens–sympathetic nerve preparation is

shown.

Figure 2. Schematic representation of the innervation of visceral smooth muscle. ‘‘Directly innervated’’ cells are those that are directly activated by neurotransmitter

released from nerve varicosities; ‘‘coupled cells’’ are those where junction potentials spread from ‘‘directly innervated’’ cells. When a sufficient area of the muscle effector

bundle is depolarised, a propagated action potential will activate the ‘‘indirectly coupled’’ cells. (Modified, with permission from Springer Science and Business Media, from

Ref. [119].).
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� PKC plays a fundamental role in ATP release from
sympathetic nerves and in particular on the mechan-
isms underlying facilitation.

� Single release sites show dependency on external Ca2+.

A schematic summarising sympathetic cotransmission
is shown in Figure 3a.

Neuromodulation
The vas deferens preparation has been used to establish
the concept of neuromodulatory inhibition of transmitter
release via prejunctional receptors for a wide spectrum of
agents, includingNA via a2-adrenoceptors, dopamine, ACh
via M1muscarinic receptors, adenosine via A1 receptors, g-
aminobutyric acid via GABAB receptors, CGRP, NPY,
prostaglandins, histamine via H2 receptors, angiotensin,
opioids, 5-hydroxytryptamine (5-HT1) and cannabinoids

[41–43]. The electrically stimulated mouse vas deferens
has been used as a sensitive preparation for studying the
pharmacology of m-opioid, d-opioid [44] and nociceptin [45].

Prejunctional P2Y receptors have been shown to inhibit,
whereas prejunctional P2X receptors facilitate transmitter
release [46]. Prejunctional nicotinic receptors also facili-
tate neurotransmitter release [47]. b2-Adrenoceptor-
mediated prejunctional facilitation and postjunctional
inhibition of sympathetic neuroeffector transmission has
been shown in the vas deferens [48]. There is facilitation of
NA release via A2A receptors in the epididymal portion and
via A2B receptors in the prostatic portion of the rat vas
deferens [49]. Prejunctional facilitation of nerve-mediated
responses has also been reported in vas deferens via NK
tachykinin receptors and receptors to capsaicin [50].

Postjunctional potentiation of responses to both NA and
ATP via dopamine D4 receptors and endothelin has been

Figure 3. (a) Schematic representation of excitatory cotransmission in the vas deferens. NA, ATP and NPY are stored in and released from postganglionic sympathetic

nerves, most likely from separate neurotransmitter vesicles. NA acts on postjunctional a1-adrenoceptors, which are coupled to the intracellular generation of inositol

trisphosphate (InsP3). InsP3 in turn triggers the release of Ca2+ from the endoplasmic reticulum. NA can also act on prejunctional a2-adrenoceptors, which modulate

neurotransmitter release. ATP acts on postjunctional P2X1 receptors, which leads to the opening of non-selective cation channels through which Ca2+ influx can occur.

Synaptic ATP is metabolised by soluble nucleotidases to adenosine (ADO). The nucleotide and adenosine can act on prejunctional A1 receptors to modulate transmitter

release. NPY is released from LGV to modulate cotransmitter release via prejunctional NPY receptors and to potentiate the action of the cotransmitters via their

postjunctional receptors. LGV, large granular vesicle; SGV, small granular vesicle. (b) Biphasic contractile responses of the guinea-pig vas deferens to sympathetic nerve

stimulation (NS) (8 Hz, 0.3 ms, supramaximal voltage for 20 s) and to exogenous ATP (10–4 M) (fast twitch contraction, after short latency), NA (10–4 M) and carbachol (CARB,

10–4 M) (slower sustained contraction, after longer latency). (Reproduced, with permission from Elsevier, from Ref. [120].).
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reported [51]. Purinergic neurogenic contractions and
responses to ATP are also potentiated by carbachol via
M3 muscarinic receptors, but responses to NA were not
[52]. Postjunctional facilitation of contractile responses of
the vas deferens with high concentrations of 5-HT have
been reported [53].

Are ATP and NA stored and released from the same
vesicles?
Evidence that suggests that NA andATP are largely stored
in separate vesicles in the sympathetic nerve terminals
comes from experiments showing differential prejunc-
tional modulatory effects of various agents. These include
the actions of angiotensin II, prostaglandins (Figure 4),
CGRP, atrial natriuretic peptide, endothelin-3 and NA via
b-adrenoceptors [54,55] on noradrenergic and purinergic
responses and on NA and ATP release. Temporal dis-
sociation of the release of ATP and NA also supported
the view that these sympathetic cotransmitters occur
largely from two different populations of vesicles [56]. It
has been suggested that sympathetic axon varicosities in
the mouse vas deferens recycle vesicle membrane through
the plasma membrane in a manner similar to that
described for cholinergic nerve terminals. NPY and NA
are coreleased from large dense core vesicles in sympath-
etic nerves of the bovine vas deferens [57].

Inactivation of ATP and NA
Ectonucleotidase activity has been shown in smooth
muscle membranes of the vas deferens, including 50-
nucleotidase. The ecto-ATPase inhibitor, ARL67156,
enhanced sympathetic purinergic neurotransmission in
the guinea-pig vas deferens [58].

The vas deferens was also utilised to show for the first
time that soluble nucleotidases are released together with
transmitters from sympathetic nerves as a novel mechan-
ism for neurotransmitter inactivation [59]. The releasable
ATPase exhibits some similarities to known ectonucleoside

triphosphate/diphosphohydrolases, whereas the releasa-
ble AMPase exhibits some similarities to ecto-50-nucleoti-
dases [60].

In contrast, inactivation of NA released by sympathetic
nerves is largely via reuptake into nerve terminals, where
it is either re-injected into vesicular stores or degraded by
monoamine oxidase (MAO); some NA is taken up by
smooth muscle cells and inactivated by MAO or cate-
chol-O-methyl transferase [61].

Regional variation in purinergic and adrenergic
responses to vas deferens
An early paper revealed a predominance of a-adrenoceptors
in the testicular (epididymal) segment of the vas deferens,
compared with the urethral (prostatic) segment [62]. Later,
regional variation showing dominance of purinergic signal-
ling at the prostatic segmentwas reported, whereasNAwas
significantly more potent in the epididymal segment [63].
The ectonucleotidase system was shown to differ between
epididymal and prostatic portions with the epididymal por-
tion presenting a different and higher capacity to form
adenosine [64]. Most varicosities at the epididymal end of
the vas deferens release an insufficient amount of ATP to
evokeEJPs [65]. It seems likely that the regional variation is
as a result of different subpopulations of sympathetic nerves
containing a predominance of NA or of ATP in the epididy-
mal and prostatic regions, respectively.

Receptors on smooth muscle of vas deferens
The nerve-stimulation evoked postjunctional receptor for
NA is the a1A-adrenoceptor, acting via inositol trispho-
sphate leading to increase in intracellular Ca2+ and the
slow component of nerve-mediated contraction [66]. How-
ever, the possibility that there are differences between
neurogenic and exogenously applied NA has been raised
[67]. They showed that contractions to exogenous NA
involved both a1A and a2A/D adrenoceptors.

The main postjunctional receptor to ATP is the P2X1 ion
channel receptor, leading to increase in intracellular
calcium and the fast component of contraction. The pre-
sence of P2Y2 receptors mediating contraction of the rat
vas deferens has also been claimed [68], whereas P2Y1

receptors mediate a minor relaxing effect of ATP [69]. It
was reported that nifedipine blocked P2X-mediated
responses to ATP but not to NA [70], although NA
responses have also been claimed to be sensitive to nife-
dipine [71,72]. The calcium agonist Bay K 8644 enhanced
the non-adrenergic (purinergic) response, whereas the
calcium antagonist nifedipine attenuated this response
but not the NA response [70]. Nifedipine preferentially
blocks nerve-mediated contractions of the prostatic portion
of the vas deferens (demonstrated by a,b-meATP-mediated
responses) leaving the epididymal end largely unaffected
[73]. N-type Ca2+ channels predominate in the central
sympathetic transmission in the vas deferens, although
P- and Q-type channels also mediate Ca2+ influx at high
stimulation frequencies [74]. Antagonist affinities at P2X
receptors in rat vas deferens have been described pre-
viously [75]. Antagonism of P2X1, but not P2Y receptors,
in guinea-pig vas deferens by diinosine pentaphosphate
was observed [76].

Figure 4. Effect of PGE2 (100 nM) on the overflow of [3H]-NA and ATP from the

guinea-pig vas deferens induced by electrical field stimulation (2 Hz). Alterations in

the overflow/release of [3H]-NA and ATP are shown by comparing the control S2/S1

ratio when no drug is present throughout the experiment (stippled column) to the

S2/S1 ratio obtained when PGE2 is added to the superfusate 15 min prior to the

second stimulation (open column). Significance of drug effect was made by using

the Student t-test for unpaired observations. ***P < 0.001. (Reproduced, with

permission from John Wiley and Sons, from Ref. [121].).
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An important advance was made when clusters of P2X1

receptors on smooth muscle opposite close sympathetic
terminal varicosities was described in the mouse vas defe-
rens [16]. However, a later paper questioned this finding
[77]. In P2X1 receptor-deficient mice, contraction of the vas
deferens to sympathetic nerve stimulation was reduced by
up to 60% [78]. P2X2 receptor expression by interstitial
cells of Cajal in vas deferens have been claimed to be
involved in semen emission [79]. P2X1 receptors have been
shown to be internalised after exposure to the agonist a,b-
meATP [80], perhaps underlying the mechanism of desen-
sitisation. Perinuclear P2X7 receptor-like immunoreactiv-
ity has been described in smoothmuscle cells of the guinea-
pig vas deferens [81].

Development and aging
Responses to NA, ACh, histamine and 5-HT did not pro-
duce full contractility until 3–4 weeks postnatal in rat vas
deferens [82]. Autonomic nerves containing dopamine-b-
hydroxylase, NPY and enkephalin first appeared at 3
weeks gestation in the human foetal vas deferens [12].
Changes in adrenergic and purinergic signalling in the vas
deferens might be expected to occur later than in the gut,
because rats are not sexually active until approximately 10
weeks, although the morphology of the vas deferens
appears mature by day 35 [83]. Furness et al. [84] showed
that EJPs, produced by ATP, in response to nerve stimu-
lation of the vas deferens, were not observed in mice of less
than 18 days postnatal. Another early study of postnatal
development of functional neurotransmission in the rat
vas deferens showed that at 3 weeks postnatal (the earliest
time studied) the responses to field stimulation with single
or trains of pulses lacked the adrenergic component,
although the non-adrenergic component was present
[85]. Responses to ATP first appeared at day 15 and
increased with age [86].

Examination of the ontogeny of P1 purinergic receptors
showed that adenosine, acting via prejunctional A1 recep-
tors, inhibited neurotransmission when nerve-mediated
contractions of the rat vas deferens were first observed
at day 15, but its potency decreased with age [87]. In a later
study, this group claimed that inhibitory postjunctional
A2-like receptors and prejunctional A1 receptors were pre-
sent from days 10 and 15, respectively. In contrast, they
identified postjunctional excitatory A1 receptors that did
not appear until after day 20 [87].

In 2-week-old guinea-pigs, stimulation of the hypogas-
tric nerve produced monophasic contractions which were
only partially blocked by the combination of prazosin and
a,b-meATP, suggesting the involvement of an unknown
transmitter; however, in 10–15-week-old animals, stimu-
lation produced a biphasic contraction, which was almost
completely inhibited by both blockers [88].

Studies of developmental changes on sympathetic
nerve-evoked contractions of the circular muscle layer of
the guinea-pig vas deferens showed that the contractions
produced a significant decreasewith increasing age, appar-
ently as a result of postjunctional rather than prejunc-
tional mechanisms, responses to a,b-meATP decreasing in
parallel [89]. An increase in P2X1 receptor mRNA expres-
sion has been demonstrated between postnatal days 10

and 42 [90]. An early study showed that nerve-mediated
contractions in newborn rat vas deferens were susceptible
to a-adrenoceptor antagonism by up to 10 days but resist-
ant thereafter [91], suggesting an increase in input of non-
adrenergic responses.

Both prejunctional and postjunctional mechanisms
cause the maturation of fast purinergic junctional trans-
mission of the longitudinal muscle of the mouse vas defe-
rens between 21 and 42 days postnatal [90]. Postnatal
androgen deprivation dissociates the development of
smooth muscle innervation from functional neurotrans-
mission in mouse vas deferens [92].

Regulation of smooth muscle contractility by the
epithelium
By analogy with evidence for the release of transmitters
from endothelial cells lining blood vessels [93] and urothe-
lial cells in bladder and ureter [94,95], it has been recently
shown that prostaglandin E2 is released from epithelial
cells of the rat vas deferens in response to neurally released
ATP acting via P2Y receptors to participate in neurogenic
contractions [96]. The contractile responses to NA and ATP
were not modified by removal of the epithelium from the
rat vas deferens [97].

Effects of disease on vas deferens
An enhanced initial fast component of sympathetic nerve-
mediated responses from spontaneously hypertensive rats
(SHRs) was noted as far back as 1985 [98]. However,
neurogenic responses were found to be significantly
enhanced in the epididymal but not in the prostatic portion
of the vas deferens fromSHRs comparedwithWistar Kyoto
rats [99], implying a greater potentiation of adrenergic
compared with purinergic components in the vas deferens
of SHRs. This appears to be in contrast to reports of a
significant increase in the purinergic component of
cotransmission from sympathetic nerves supplying blood
vessels of SHRs [100]. A reduction in the prejunctional
neuromodulatory role of adenosine via A1 receptors in
SHRs has also been described [101].

Studies of streptozotocin diabetic rats showed that after
8 and 12 weeks there was an increase in the purinergic
component of the responses to sympathetic nerve stimu-
lation in the vas deferens [102]. An earlier paper concluded
that a sympathetic neuropathy occurred in the vas defe-
rens of the streptozotocin diabetic mouse [103]. Treatment
of streptozotocin diabetic rats with testosterone for 8weeks
prevented the loss of weight of the vas deferens and the
supersensitivity to NA associated with diabetes [104].

Chronic alcohol treatment has been shown to differen-
tially affect noradrenergic and purinergic responses in the
rat vas deferens, perhaps altering male reproductive tract
function [105].

Reinnervation of vas deferens following vasectomy and
castration
Vasectomy, cutting the vas deferens, is a contraceptive
procedure designed to block the passage of sperm. There
have been several studies of the effect of this procedure
over time on the innervation of the vas deferens in animals
[106] and man [107]. Innervation of the epididymal (distal)
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portion of the vas deferens was severely compromised even
15 years after the operation [108]. The epididymal segment
of the vas deferens shows prolonged supersensitivity to NA
[109]. Anastomosis (vasovasostomy) of epididymal and
prostatic halves of the vas deferens was carried out in rats
in which unilateral or bilateral medial transection (vasect-
omy) had been performed 4 weeks previously [110]. It was
shown that 8 weeks after anastomosis NA levels were back
to 40% of the controls and fertility restored.

Following castration, vas deferens exhibited spon-
taneous contractions, the adrenergic component of the
nerve-mediated contractile response was lost, whereas
the non-adrenergic (purinergic) component remained
and prejunctional inhibition of contractions was signifi-
cantly reduced [111]. Treatment of castrated rats with
testosterone for 8 weeks prevented the decreased vas
deferens weight and contractile changes associated with
castration [104].

P2X1 receptor antagonists as potential contraceptives
The fast purinergic component of the contraction is
required to coordinate the rapid emission of sperm into
the urethra prior to ejaculation, whereas the sustained
noradrenergic contraction probably prevents any reflux
into the vas deferens during ejaculation. The concept of
a P2X1 receptor antagonist acting as a non-hormonal male
contraceptive is attractive [78,112], but the effectiveness of
such drugs in man is not yet clear because of species
differences in the components of purinergic cotransmis-
sion. A recent paper has shown the presence of a purinergic
cotransmitter pathway in man [32], although in another
study a twitch component was claimed to be missing [113].

In P2X1 receptor-deficient mice, contractions of the vas
deferens to sympathetic nerve stimulation is reduced by up
to 60%, and there is a 90% decrease in male fertility
(Figure 5) [78]. An investigation of neurotransmission in
the vas deferens from a2A/D-adrenoceptor knockout mice
led to the conclusion that there is a major loss of prejunc-
tional a2-adrenoceptor activity [114].

Concluding remarks
Data from the vas deferens preparation has produced
substantial support for sympathetic cotransmission invol-
ving NA and ATP as cotransmitters and this has been
supported by further studies showing sympathetic cotrans-
mission to many different blood vessels [115]. It has pro-
duced a very convenient model for studies of prejunctional
and postjunctional neuromodulation and has also been
used to examine changes in sympathetic neurotrans-
mission in pathophysiology. After all these years, it would
seem likely that all is known about this preparation but
amazingly new discoveries continue to be made [116–118].
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