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Purinergic signalling and bone remodelling§

Isabel R Orriss1, Geoffrey Burnstock2 and Timothy R Arnett1
Accumulating evidence suggests that extracellular

nucleotides, signalling through P2 receptors, could play an

important role in modulating bone cell function. ATP and other

nucleotides can stimulate the formation and resorptive activity

of osteoclasts (bone-destroying cells) in addition to inhibiting

bone mineralisation by osteoblasts. This review discusses the

current understanding of the effects of extracellular nucleotides

on skeletal cells.
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Introduction
Bone is a composite tissue containing inorganic mineral

salts deposited within an organic collagen matrix, and

three major cell types: osteoblasts, osteoclasts and

osteocytes. Continuous remodelling by bone cells

allows the skeleton to grow, adapt and repair itself;

abnormalities in this process result in a variety of

skeletal disorders.

Osteoblasts, the bone-forming cells, are derived from

mesenchymal stem cells. Bone formation is a two-step

process, the first stage being synthesis and deposition of

the organic matrix. Mature osteoblasts synthesize and

release, via exocytosis, type I collagen (85–90% of organic

matrix) and many noncollagenous bone matrix proteins

(10–15%). The deposited organic matrix (known as

osteoid) is subsequently mineralised by calcium and

phosphate ions toproduce calcified bone tissue; the mineral

approximates to hydroxyapatite, Ca10(PO4)6(OH)2. In

some cases, osteoblasts become incorporated within
§ Grant support: EU Framework 7 Programme, Arthritis Research

Campaign.
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the bone matrix they secrete and undergo a terminal

differentiation to form osteocytes. Within bone, osteocytes

form a regular interconnected network of cells that is

thought to mediate responses to mechanical loading.

Osteoclasts, the bone-resorbing cells, are usually multi-

nuclear, and are formed from mononuclear progenitors of

the monocyte/macrophage lineage. Following their attach-

ment to bone and activation, osteoclasts undergo a polar-

isation, forming a sealed compartment that corresponds to

an ‘extracellular vacuole’ over the resorption site. Osteo-

clasts then secrete protons to dissolve the bone mineral and

enzymes (particularly cathepsin K) into this vacuole to

degrade the collagenous matrix. Osteoclasts destroy bone

rapidly and are normally only present in low number in

adult bone.

The concept that purines act as extracellular signalling

molecules was first suggested by Drury and Szent-Györ-

ygi in 1929, yet it was not until 1972 that the concept of

purinergic neurotransmission was proposed [1]. It is now

well recognised that extracellular nucleotides, signalling

via P2 receptors, participate in a wide number of bio-

logical processes in both neuronal and non-neuronal

tissues. The receptors for purines and pyrimidines are

classified into two groups; P1 receptors, which are prim-

arily activated by adenosine and P2 receptors, which

respond to nucleotides including adenosine triphosphate

(ATP), adenosine diphosphate (ADP), uridine tripho-

sphate (UTP) and uridine diphosphate (UDP). The P2

receptors are further subdivided into the P2X ligand-

gated ion channels and P2Y G-protein-coupled receptors

[2,3]. Currently, seven P2X receptors (P2X1–7) and eight

P2Y receptors (P2Y1,2,4,6,11–14) have been identified; each

of these receptors has been cloned, characterised and

displays distinct tissue expression and pharmacology

[4] (Table 1).

Within the field of ‘purinergic signalling’, the regulation

of bone cell function by extracellular nucleotides has

emerged as a particularly active and promising area of

research. This review will summarize current understand-

ing into the role of extracellular nucleotides and P2

receptors in bone remodelling (Figure 1).

The role of P2 receptors in osteoblast biology
Early work demonstrated that extracellular nucleotides

could transiently increase [Ca2+]i and induce inositol

(1,4,5)-trisphosphate formation in osteoblast-like cells

[5]; subsequent pharmacological studies indicated the

presence of at least two P2 receptor subtypes on osteo-

blast-like cells [6]. The expression of multiple P2

receptor subtypes by osteoblasts has now been reported
www.sciencedirect.com
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Table 1

P2 receptor pharmacology and expression: summary of published data

Receptor Main distribution Agonists Antagonists Transduction mechanisms

P2X1 Smooth muscle, platelets, cerebellum,

dorsal horn spinal neurons, bone cells

ATP = 2-MeSATP � a,b-meATP = b,g-meATP TNP-ATP, IP5I, NF023, RO1, NF449 Cation channel (Ca2+ and Na2+)

P2X2 Smooth muscle, CNS, chromaffin cells,

autonomic and sensory ganglia, bone cells

ATP � ATPgS � 2-MeSATP � a,b-meATP

(pH and Zn2+ sensitive)

Suramin, isoPPADS, NF770,

NF279, RB2, NF778

Cation channel (Ca2+)

P2X3 Sensory neurones, some sympathetic

neurons, bone cells

2-MeSATP � ATP � a,b-meATP � Ap5A TNP-ATP, PPADS, RO4, NF110,

RO51, spinorphin, Ip5I

Cation channel

P2X4 CNS, testis, colon, bone cells ATP� a,b-meATP = 2-MeSATP TNP-ATP (weak), BBG (weak),

phenolphthalein

Cation channel (Ca2+)

P2X5 Proliferating cells in skin, gut, bladder,

thymus, spinal cord, bone cells

ATP = 2-MeSATP = ATPgS > a,b-meATP Suramin, PPADS, BBG Cation channel

P2X6 CNS, motor neurons in spinal cord Functions poorly as a homomultimer – Cation channel

P2X7 Immune cells, pancreas, skin, bone cells Bz-ATP � 2-MeSATP � ATP A348079, KN62, KN04, MRS2427,

O-ATP, A-740003, A-804598

Cation channel large pore

after prolonged activation

P2Y1 Epithelial and endothelial cells, platelets,

immune cells, bone cells

MRS2365 > 2-MeSADP = ADPbS >

2-MeSATP = ADP > ATP

MRS2179, MRS2279, MRS2279 Gq/G11 PLCb activation

P2Y2 Immune cells, epithelial and endothelial

cells, kidney tubules, bone cells

2-thio-UTP > UTP = ATP > UTPgS Suramin > RB2 Gq/G11, possibly Gi/Go PLCb activation

P2Y4 Endothelial cells, osteoblasts UTP > ATP > Up4U > UTPgS RB2 > suramin Gq/G11, possibly Gi PLCb activation

P2Y6 Some epithelial cells, placenta,

T cells, thymus, bone cells

3-Phenylacyl UDP > UDPbS >

UDP > UTP� ATP

MRS2578 Gq/G11 PLCb activation

P2Y11 Spleen, intestine, granulocytes AR-C67085MX > Bz-ATP = ATPgS > ATP Suramin > RB2, NF157 Gq/G11 and Gs PLCb activation

P2Y12 Platelets, glial cells, bone cells 2-MeSATP � 2-MeSADP > ADP > ATP CT50547, ARL66096, clopidogrel Gai; inhibition of adenylate cyclase

P2Y13 Spleen, brain, lymph nodes, bone marrow ADP = 2-MeSADP� 2-MeSATP > ATP MRS2211, 2-MeSAMP Gi/Go

P2Y14 Placenta, adipose tissue,

stomach, intestine, bone cells

UDP-glucose � UDP-galactose – Gq/G11

Table modified from Burnstock [64].
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Figure 1

Overview of the known functional effects of ATP on bone cells. ATP

released from osteoblasts, stromal cells and osteocytes can act locally to

inhibit bone mineralisation and stimulate osteoclast formation and activity.
by a number of groups (Table 2) [7–10,11�,12–14] (IR

Orriss, abstract in Bone 2009, 44:S304). Furthermore,

recent studies have demonstrated that P2 receptor

expression in osteoblasts is strongly differentiation-de-

pendent [13].
Table 2

P2 receptor expression by osteoblasts

Receptor Species Cell type Evidenc

P2X1 Rat Primary qPC

P2X2 Rat Primary ISH,

Human MC3T3-E1 RT-P

Human MG-63 and SaOS-2 RT-P

P2X3 Rat Primary qPC

P2X4 Rat Primary qPC

Human SAM-1 RT-P

Human MG-63 and SaOS-2 RT-P

P2X5 Rat Primary RT-P

Human MC3T3-E1 RT-P

Human SAM-1 RT-P

P2X6 Rat Primary qPC

Human SAM-1 RT-P

P2X7 Rat Primary RT-P

Human MG-63 RT-P

Human MG-63 and SaOS-2 RT-P

Human Primary and SaOS-2 RT-P

Mouse Primary RT-P

P2Y1 Rat Primary ISH,

Human MG-63 RT-P

P2Y2 Rat Primary ISH,

Human MG-63 RT-P

Human Primary, SaOS-2 and Te85 RT-P

P2Y4 Rat Primary RT-P

Human MG-63 RT-P
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A growing body of work indicates that extracellular

nucleotides, signalling via P2 receptors, could play a role

in modulating osteoblast function (Table 3). ATP acting

via the P2X5 receptor has been reported to stimulate

osteoblast proliferation [8], whilst activation of the

P2Y1 receptor is thought to modulate osteoblast responses

to systemic factors such as parathyroid hormone [15,16].

P2Y receptor stimulation by ATP has also been associated

with increased interleukin-6 synthesis [12].

The role of the P2X7 receptor in osteoblast function is less

clear (for a detailed review on the P2X7 receptor see

[17��]). Early reports suggested that P2X7 receptor acti-

vation caused enhanced osteoblast apoptosis [9]. In con-

trast, more recent studies have suggested that P2X7

stimulation leads to increased membrane blebbing and

bone formation; an effect thought to be mediated via

increased production of lypophosphatidic acid (LPA) and

prostaglandin E2 (PGE2) [18–20]. The P2X7 receptor is

also thought to mediate the ERK1/2 activation caused by

fluid shear stress in osteoblast-like cells [21].

The first study of the effects of extracellular nucleotides

on bone formation in vitro by cultured primary osteoblast

showed that ATP and UTP were strongly inhibitory at

concentrations �1 mM [22]. A follow-up investigation

demonstrated that ATP-treated and UTP-treated osteo-

blasts deposited abundant collagenous matrix with the
e for expression References

R, ICC (IR Orriss, abstract in Bone 2009, 44:S304)

RT-PCR, ICC [10,13]

CR [8]

CR [14]

R, ICC (IR Orriss, abstract in Bone 2009, 44:S304)

R, ICC (IR Orriss, abstract in Bone 2009, 44:S304)

CR [12]

CR [14]

CR, ICC [10,13]

CR [8]

CR [12]

R, ICC (IR Orriss, abstract in Bone 2009, 44:S304)

CR [12]

CR, ICC [13]

CR [8]

CR, ICC, WB [14]

CR, ICC [9]

CR [11�]

RT-PCR, ICC [10,13]

CR [7]

RT-PCR, ICC, WB [10,13]

CR [7]

CR, SB [37]

CR, ICC, WB [13]

CR [7]

www.sciencedirect.com
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Table 2 (Continued )

Receptor Species Cell type Evidence for expression References

P2Y6 Rat Primary RT-PCR, ICC [13]

Human MG-63 RT-PCR [7]

P2Y12 Rat Primary qPCR, WB (IR Orriss, abstract in Bone 2009, 44:S304)

P2Y13 Rat Primary qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

P2Y14 Rat Primary qPCR, WB (IR Orriss, abstract in Bone 2009, 44:S304)

Quantitative real time polymerase chain reaction (qPCR), immunocytochemistry (ICC), in situ hybridisation (ISH), reverse transcriptase polymerase

chain reaction (RT-PCR), western blot (WB), southern blot (SB).
characteristic morphology of bone nodules, but that

mineralisation had failed to occur (Figure 2) [23��].
The potent inhibitory actions of ATP and UTP were

consistent pharmacologically with mediation via the P2Y2

or P2Y4 receptor subtypes. Reactive blue 2, a P2Y4 re-

ceptor antagonist, failed to prevent the nucleotide-

induced block of mineralisation, suggesting that P2Y2

receptor stimulation mediates the functional effects of

ATP and UTP [23��]. Skeletal analysis of P2Y2 knockout

mice by dual energy X-ray absorbtiometry and micro-CT

demonstrated striking increases in trabecular and cortical

bone parameters in both the femora and tibae [23��] (IR

Orriss, abstract in Calcif Tissue Int 2008, 83:2–3). In

addition, several studies have demonstrated that P2Y2
Table 3

P2 receptors and bone cell function

Receptor Proposed function

Osteoblasts

P2X5 Increased osteoblast proliferation

P2X7 Induction of osteoblast apoptosis

Induction of membrane blebbing and increased bone formatio

Fluid shear stress induced activation of ERK1/2

P2Y1 Modulate osteoblast responses to systemic factors e.g. PTH

P2Y2 Propagation of intercellular Ca2+ waves

Inhibition of bone mineralisation

Stimulation of Erg1 and Runx2 expression

Sensitises mechanical stress-activated Ca2+ channels

P2Y Increased Il-6 expression

Osteoclasts

P2X2 Increased bone resorption

P2X7 Increased apoptosis

Intercellular communication

Precursor cell fusion

Regulation of osteoclast formation and activity

Decreased apoptosis

?

Cytoskeletal reorganisation and the delivery

and secretion of lytic granules

P2Y1 Increased osteoclast formation and bone resorption

P2Y6 Increased osteoclast survival

Phospholipase D (PLD), phospholipase A2 (PLA2), lypophosphatidic ac

phosphatase (ALP), extracellular related kinase (ERK), p38 mitogen-activ

(JNK1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF

www.sciencedirect.com
activation in osteoblast-like cells activates a number of

intracellular signalling pathways including protein kinase

C (PKC), p38 mitogen-activated protein kinase (p38

MAPK) and c-Jun NH2-terminal protein kinase (JNK)

[24–27].

ATP is present in the cytoplasm of mammalian cells at

concentrations between 2 and 5 mM. Following mem-

brane damage or necrosis, all cells can potentially release

ATP into the extracellular environment, which can then

act in an autocrine/paracrine manner to influence local

purinergic signalling. Controlled ATP release has been

demonstrated from numerous excitatory and nonexcita-

tory cells including osteoblasts [28,29�,30,31]. ATP
Signalling References

Stimulation of the MAP kinase pathway [8]

[9]

n Activation of PLD and PLA2 stimulates LPA

and PGE2 synthesis/release

[18–20]

Increased [Ca2+]i and PKC activation [21,65]

Increased c-fos expression [15,16]

– [66]

Inhibition of ALP [22,23��]

Activation of the PKC and ERK pathways [25,67]

Activation of ERK, p38 MAPK and JNK1 pathways [26,27]

– [12]

– [43]

– [51]

– [68]

– [47]

Translocation and activation of NFKB [49]

Inhibition of caspase-3 [48]

PKCa translocation to the basolateral membrane [50]

Activation of the Syk pathway [52]

– [44]

Translocation and activation of NFKB [41]

id (LPA), prostaglandin E2 (PGE2), protein kinase C (PKC), alkaline

ated protein kinase (p38 MAPK), c-jun NH2-terminal protein kinase 1

KB).

Current Opinion in Pharmacology 2010, 10:322–330
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Figure 2

ATP and UTP inhibit bone mineralisation in vitro. (a) ATP, UTP and PPi

(�1 mM) inhibit mineralised bone nodule formation by rat osteoblasts. (b)

ATP and UTP (10 mM) inhibit osteoblast alkaline phosphatase activity

(***P < 0.001, **P < 0.01, *P < 0.05). The images in (c) show in vitro

‘trabecular-shaped’ bone nodule formation by rat osteoblasts under

normal conditions and the striking inhibition of mineralisation in

osteoblasts treated with UTP.

Figure 3

The effect of ATP and UTP on extracellular PPi and mineralisation.

Schematic diagram of the potential mechanism by which extracellular

nucleotides inhibit bone mineralisation. ATP and UTP, acting via the

P2Y2 receptor (and possibly also the P2Y4 receptor) on mature, bone-

forming osteoblasts, cause decreased expression/activity of alkaline

phosphatase (ALP). This in turn would lead to an increase in extracellular

pyrophosphate (PPi, a key physiological inhibitor of mineralisation) and a

decrease in local Pi levels. Concurrently, nucleotide triphosphates (NTP)

such as ATP and UTP can also be hydrolysed by osteoblast ecto-

pyrophosphatase/phosphodiesterase-1 (E-NPP1) to generate PPi

directly. The combined effect is a net increase in extracellular PPi

concentration, leading to a decrease in mineralisation.
release from osteoblasts in vitro has been reported in the

range 0.5–1 nmol/ml under normal conditions [31]. Since

osteoblasts in vivo are bathed by considerably lower

volumes of extracellular fluid than is the case in vitro,

these data suggest the possibility that local concentrations

of ATP in vivo could be considerably higher, in the range

1–100 mM [31]. ATP release is enhanced by a number of

external stimuli including fluid shear stress [30], hypoxia

[31] and vitamin D3 [32]. Increased ATP release in

response to shear stress has been associated with mechan-

otransduction since P2 receptor activation by secreted

ATP mediates fluid-flow induced PGE2 release [30].
Current Opinion in Pharmacology 2010, 10:322–330
Once released, nucleotides are rapidly broken down by an

extracellular hydrolysis cascade. Molecular and functional

characterisation has shown there are four families of ecto-

nucleotidases: firstly, the E-NTPdases (ecto-nucleoside

triphosphate diphosphohydrolase); secondly, the E-NPPs

(ecto-nucleotide pyrophosphatase/phosphodiesterase);

thirdly, alkaline phosphatases; and fourthly, ecto-

50nucleotidase [33�]. Many ecto-nucleotidases have over-

lapping specificities. For example, E-NTPdases catalyse

the reactions: NTP! NDP + phosphate (Pi) and

NDP! NMP + Pi, whereas E-NPPs hydrolyse NTP!
NMP + pyrophosphate (PPi) or NDP! NMP + Pi.

Thus, the combined activity of these ecto-enzymes will

tend to limit the actions of extracellular nucleotides

to cells within close proximity of the release site.

Osteoblasts express three members of the E-NPP family,

E-NPP1, E-NPP2 and E-NPP3 [23��,34]. A recent study

demonstrated that osteoblastic E-NPP activity was

capable of generating significant concentrations of PPi

in vitro [23��]. Since PPi is a potent inhibitor of bone

mineralisation [35], it is likely that nucleotide tripho-

sphates exert a dual inhibitory action on bone mineral-

isation via both P2 receptor mediated signalling and

direct hydrolysis to PPi [23��] (Figure 3).

P2 receptors and osteocytes
Osteocytes are the most abundant cell type in bone, yet

the role of purinergic signalling in their survival and

function is unknown. Normal osteocytes are difficult to
www.sciencedirect.com
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Table 4

P2 receptor expression by osteoclasts

Receptor Species Evidence for expression References

P2X1 Humana RT-PCR [39]

Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

P2X2 Ratc ICC, ICH [10]

Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

P2X3 Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

P2X4 Ratc ICC, ICH [10]

Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

Rabbitb RT-PCR [38]

Humana RT-PCR [39]

P2X5 Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

P2X7 Ratc ICC [10]

Mouseb RT-PCR, ICC [11�,20]

Humana RT-PCR, ICC [39,47]

P2Y1 Ratc ISH [10]

Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

Humana RT-PCR [39]

P2Y2 Ratc ISH [10]

Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

Humand RT-PCR [37]

Humana RT-PCR [39]

P2Y4 Humana RT-PCR [39]

P2Y6 Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

Rabbitc RT-PCR [41]

Humana RT-PCR [39]

P2Y11 Humana RT-PCR [39]

P2Y12 Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

P2Y13 Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

P2Y14 Mouseb qPCR (IR Orriss, abstract in Bone 2009, 44:S304)

Quantitative real time polymerase chain reaction (qPCR), immunocytochemistry (ICC), in situ hybridisation (ISH), reverse transcriptase polymerase

chain reaction (RT-PCR).
a Osteoclasts derived from peripheral blood monocytes.
b Osteoclasts derived from the bone marrow or spleen.
c Osteoclasts isolated from the long bones.
d Osteoclastoma.
study in situ, owing to their location within the miner-

alised bone matrix, and cannot easily be isolated for

primary cell culture. To date P2 receptor expression by

osteocytes has not been reported; although since mature

osteoblasts express multiple P2 receptor subtypes [13],

purinergic receptor expression by osteocytes seems

likely. A recent study demonstrated that cultured

MLO-Y4 osteocyte-like cells release ATP in response

to shear stress [36�]; there is no other published infor-

mation available regarding ATP release from osteocytes.

An intriguing possibility is that ATP released from osteo-

cytes entombed in bone might help to prevent cell

mineralisation (and thus death).

The role of P2 receptors in osteoclast biology
Studies in a number of laboratories have indicated that

osteoclasts express multiple P2 receptors (Table 4)
www.sciencedirect.com
[10,11�,20,37–41] (IR Orriss, abstract in Bone 2009,

44:S304). A role for the P2 receptors in the regulation

of osteoclast function was first suggested in 1995 by

Bowler et al. [37] after ATP was found to stimulate

resorption by cells derived from human osteoclastoma.

Initially, this effect was thought to be mediated via the

P2Y2 receptor; however, in a follow-up study, UTP failed

to stimulate bone resorption [42], suggesting this was not

the case. Subsequently, ATP was found to stimulate the

formation and activation of rodent osteoclasts; the resorp-

tive activity being further increased when osteoclasts

were first activated by culture in acidified medium

[43]. These pro-resorptive effects were suggested to

involve the P2X2 receptor since it is the only P2 receptor

sensitive to protons. Further investigation showed that

low micromolar concentrations of ATP, ADP and 2-

MeSADP potently stimulated both the formation and
Current Opinion in Pharmacology 2010, 10:322–330
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resorptive activity of rodent osteoclasts [44]. These obser-

vations, combined with cytochemical evidence, suggest

involvement of the P2Y1 receptor in mediating the osteo-

lytic effects of ATP and ADP [44,45]. Conversely, a study

on human osteoclasts suggested that ATP functions

indirectly, via upregulation of RANKL on osteoblasts,

to stimulate resorption [39] (Table 3).

The role of the P2X7 receptor, polymorphisms of which

are associated with fracture risk in postmenopausal

women [46��], in osteoclast formation and activity appears

complex (Table 3). Initial experiments using cells

derived from human peripheral blood demonstrated that

P2X7 receptor antagonism inhibited osteoclast formation

[47], suggesting a potential role in cell fusion. Analogues

of the P2X7 receptor antagonist, KN-62, have also been

shown to induce osteoclast apoptosis [48]. In contrast, a

report by Ke et al. [11�] demonstrated that P2X7-deficient

mice possessed functional osteoclasts in vivo. Further-

more, using knockout precursor cells, osteoclasts could be

generated in vitro, indicating that the P2X7 receptor is not

required for cell fusion [11�]. Activation of the P2X7

receptor has also been shown to induce the translocation

and activation of NFKB (nuclear factor kappa-light-chain-

enhancer of activated B cells) [49] and PKC [50] in

osteoclasts and their precursors. Additionally, the P2X7

receptor may also play a role in intercellular communi-

cation between bone cells [51], cytoskeletal reorganisa-

tion at the sealing zone and the delivery and secretion of

lytic granules into the resorption lacunae [52].

The P2Y6 receptor has been suggested to play a role in

osteoclast survival since the activation of this receptor

prevented the apoptosis induced by TNFa [41]. Further-

more, stimulation of the P2Y6 receptor by UDP induced

the translocation and activation of NFKB in osteoclasts

and their precursors [41].

P2 receptors and cartilage
P2 receptor expression in cartilage was first suggested in

1991 when ATP was shown to stimulate PGE2 production

from articular chondrocytes [53]. Expression of multiple

P2 receptor subtypes [10,54–56] and constitutive ATP

release [57] from chondrocytes has now been reported.

Available data regarding the effects of purinergic signal-

ling on cartilage are conflicting. Some studies suggest

extracellular nucleotides negatively regulate cartilage

metabolism, since ATP reportedly inhibits cartilage for-

mation in chick limb bud micromass cultures [58], pro-

motes proteoglycan breakdown and glycosaminoglycan

release [59] and increases the production of the inflam-

matory mediators, nitric oxide (NO) and PGE2 [60]. In

contrast, reported beneficial effects of ATP on cartilage

metabolism include upregulation of proteoglycan syn-

thesis and collagen accumulation [61] and suppression

of inflammatory mediator (NO) production [62]. In

addition, ATP signalling via the P2X4 receptor is thought
Current Opinion in Pharmacology 2010, 10:322–330
to mediate the increased intracellular Ca2+ required for

chondrocyte differentiation [63�]. Our own unpublished

data indicate that ATP causes a dose-dependent stimu-

lation of the formation of chondrocytic nodules in chick

micromass cultures.

Conclusions and future directions
The ATP-P2 receptor signalling system can exert com-

plex local effects on the function of skeletal cells. The

results summarised here suggest that the main functional

impact of extracellular nucleotides on bone may be

negative, with effects on osteoblast function being

particularly notable. Selective receptor agonists and

antagonists for the P2 receptor subtypes involved in bone

remodelling are currently being developed, which hope-

fully will lead to novel therapeutic strategies to treat bone

disease.
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