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ABSTRACT The majority of studies of the functional distribution of purinoceptors have been carried 
out with mammalian preparations. The objective of this article is to review the disparate literature de- 
scribing purinoceptor-mediated effects in invertebrates and lower vertebrates and, in view of the concept 
that ontogeny repeats phylogeny, to review also the evidence for purinoceptor involvement in the com- 
plex signaling involved in embryonic development. Even with the limited information currently available, 
it is clear that purinoceptors are involved in early signalling in vertebrate embryos; one novel G protein- 
coupled P2Y receptor has already been cloned and characterized in frog embryo and hopefully more will 
follow. It is also clear that purinoceptors for both adenosine and ATP are present in early evolution and play 
a number of different roles in most, if not all, invertebrate and lower species. However, until selective 
agonists and antagonists are identified for the recently cloned purinoceptors subtypes in vertebrates, it will 
not be possible to resolve questions concerned with the evolution of these subtypes. Molecular 
cloning of genes encoding receptors for purines and pyrimidines from invertebrates and lower verte- 
brates represents an alternative approach to advancing knowledge in the area. Drug Dev. Res. 39:204- 
242, 1996. 0 1997 Wiley-Liss, Inc. 
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INTRODUCTION 
Early Evolutionary Appearance of Purine Nucleotides 

ATP was identified in muscle cells independently 
by Fiske and Subharow and by Lohniann in 1929 [see 
Schlenk, 1987; Maruyania, IYgl]. 5 '-AMP (myoadenylic 
acid) was described by Embden and Zimmerman in 1927, 
but it became clear later that the bulk of 5 '-AMP in cells 
occurred as ATP with less than 2% as 5'-AMP per se 
[Lohmann and Schuster, 19341. 

It has been speculated that the first organisms con- 
sisted of RNA arid that as these organisms evolved, they 
learned to synthesist: proteins which could help them to 
replicatc more cfficicntly; later, RNA-based organisms 
gave rise to DNA, a molecule more reliable for storing 
the genetic information [Waldrop, 1989; Horgan, 19911. 
Phosphorylation of nucleosides and the formation of py- 
rophosphate bonds may have occurred on the early earth 
by  purely theriiial processes [Sawai and Orgel, 19751, the 
resulting compounds becoming important starting nia- 
terials for further syntheses in aqueous solutions or on 

surfaces [Cairns-Smith, 19851. In this way, the formation 
of ATP from AMP would have paved the way for the for- 
mation of oligonucleotides and finally RNA. ATP appears 
to have been particularly suitahle for early development 
because of its propensity to bond with the metal ion, Mf 
that promotes dephosphoiylatiori arid generation of en- 
ergy; ITP and GTP also show a metal ion-promoted de- 
phosphorylation but their reactive rates arc lower. The 
pyrimidines were also likely to be available in the prinii- 
tive earth, but it is suggested that they were incorpo- 
rated into living systenis in ;I more passive way, possibly 
even directed by the purines [Sigel, 19921. Thus, ATP 
appears to have played a crucial and activc role in early 
evolution. In contemporary biochemistry, ATP is still the 
most important energy-rich intermediate in nucleotitle 
processes. The cnzyme-catalyzed hydrolysis of ATP to 
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ADP and PO4 is the main source of cncrgy. It has been 
estimated that ATP participates in more chemical reac- 
tions than any other compound on the earth's surface, 
except water. 

Compelling arguments have been presented for the 
prominent role of ATP and ADP in intracellular energy 
metabolism very early in evolution, including the: avail- 
ability of adenine compounds in the biosphere and the 
development of complementary binding sites on cellular 
proteins [see Wilson, 19841. However, until recently, less 
attention has been directed towards the early evolution- 
ary appearance of ATP and adenosine as extracellular 
messengers in cell communication and signalling. 

In the evolution of neurochemical transmitters it 
has been suggested that purine derivativcs may well have 
been the primordial transmitter substances [Trams, 19811. 
There are reports of extracellular actions of ATP in very 
primitive organisms, including bacteria, diatoms, algae, 
and slime moulds. For example, ATP inhibits prodigi- 
osin formation in Serratia rnarcescens, while adenosine 
does not [Lawanson and Sholeye, 19761. Exogenous ATP 
stimulates generative nuclear division in pollen tubes of 
Lilium longiflorum [Kamizyo and Tanaka, 19821. ATP 
regulation of oscillating torsional movement in strands 
of the slime mould Physarum polycephalum has also been 
described [Ogihara, 19821. Caffeine, an adenosine antago- 
nist, can block cell plate formation in nieristem cells of 
onion root tips arid adenosine antagoriises this action 
[Gonzalez-Fernandez and Lopez-Saez, 19801. Changes 
in membrane potential and excitability of Cham ccds and 
cytoplasmic streaming in response to ATP have been 
demonstrated [Williamson, 1975; Shimmen and Tazawa, 
19771. Both adenosine and 2 '-deoxyadenosine at very 
low concentrations M) promoted growth in the dia- 
tom Phueodactylzim tricornutum [Komacla et al., 19831. A 
high affinity binding site for ATP has been localised on 
membrane-bound chloroplast ATP synthase isolated from 
leaves of spinach [Abbott et al., 19841. The F,-ATPase 
component of ATP synthase from chloroplasts (as well as 
mitochondria and microorganisms) contain six sites that 
can be occupied by adenine nucleotides [Senior, 19881. 
Adenosine has been shown to inhibit the growth of vari- 
ous bacteria including Crithidia fasciculata [Dewey et 
al., 19781, Micrococcus sodonensis [Shobe and Campbell, 
1973a,b], and Staphylococcus aureus [Matheiu et al., 
19691. Adenosine polyphosphates have been found in 
bacilli [Rhaese et al., 19721 and in Streptornyces [Muraio 
et al., 19781 and have been considered to be involved in 
the initiation of sporulation in Baccillis subtilis [Rhaese 
et al., 19721. Some purine and pyrimidine nucleotides 
and nucleosides inhibit spore germination in Streptorny- 
ces galilaeus [Hamagishi et al., 19801. Exogenous adenos- 
ine 5 '-triphosphate 3 '-diphosphate (pppApp) reduces 
growth rate and increases sporulation frequency by  100 

times or more in Bacillus subtilis [Murao et d., 1980; 
Kameda et  al., 19831 and Streptornyces galilaeus 
[Hamagishi et al., 19801. Extracellular ATP and other 5 '- 
nucleotides are broken down by the high activity of mem- 
brane-bound 5 '-nucleotidase in the halophilic bacterium, 
Vibrio costicole [Sakai et al., 19871. UTE ATE and pyro- 
phosphate are metabolized by alkylsulfatase-producing 
bacteria [Stewart and Fitzgerald, 19811. Membrane-as- 
sociated ATPases from halophilic archaebacterium in- 
cluding Holobacterium salinarium and Methanosarcina 
harkeri have been isolated, purified, cloned, and sequenced 
[Ihara and Mukohata, 19911. TmrB protein, responsible for 
tunicamycin resistance of Bacillus suhtilis, is a novel ATP- 
binding membrane protein [Noda et al., 19921. 

History and Current Perception of Extracellular 
Purinergic Signalling 

Since the early recognition of the potent extracel- 
lular actions of ATP and adenosine by Druiy and Szent- 
Gyorgyi [1929] there has been an escalating development 
of knowledge of the receptors involved. In 1978, Burn- 
stock established the existence of separate receptors for 
adenosine (Pl)  and for ATP/ADP (P2) and subclasses of 
P1 receptors (A, and A,) [Londos et al., 19801 and for P2 
purinoceptors (P2X and P2Y) [Burnstock and Kennedy, 
19851 followed. P1 purinoceptors have been long known 
to act via adenylate cyclase second messenger systems 
[Sattin and Rall, 19701. On the basis of the transduction 
mechanisms involved in PZ-purinoceptor activation 
[Dubyak, 19911 and cloning of the receptors [Webb et 
al., 1993; Lustig et al., 1993; Valera et al., 1994; Brake et 
al., 19941, Ahbracchio and Burnstock [1994] outlined the 
basis for the currently accepted subclassification of P2 
purinoceptors, namely the subdivision into a P2X family 
of ligand-gated ion channel receptors and a P2Y family 
of G protein-coupled receptors. To date, seven meniliers 
of the P2X purinoceptor family and eight members of 
the P2Y purinoceptor family have been recognized [see 
Burnstock, 1996a; Burnstock and King, 19961. 

The majority of studies of purinoceptor functional 
distribution have been carried out in mamrnalian prepa- 
rations and it is one objective of this article to review the 
disparate literature describing purinoceptors in inverte- 
brates and lower vertebrates firstly to establish the primi- 
tive and long-standing utilization of these receptors 
during evolution and secondly to see if any pattern of 
receptor subtype development can be recognized. 

In view of the extraordinarily widespread distribu- 
tion of extracellular receptors for purines during phylog- 
eny, the second objective of this article is to review the 
beginnings of exploration into possible roles for purines 
during the complex sequences of signalling involved in 
embryonic development. The article will not include 
descriptions of the postnatal development of purinocep- 
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tors or changes occurring in aging, but some accounts 
are available [see Swedin, 1972; MacDonald and 
McGrath, 1984; Furukawa and Noinoto, 1989; Matherne 
et al., 1990; Koga et al., 1992; Nicholls et al., 1992; 
Zagorodnyuk et al., 1993; Peachey et al., 19961. 

I t  is important to recognize that both short-term 
signalling, such as that occurring in neurotransmis- 
sion and secretion [see Burnstock, 1972, 1996111 and 
long-term signalling involved in cell division, prolif- 
eration, differentiation, regeneration, and death and 
in plasticity of expression in pathological states includ- 
ing wound healing [see Fraser e t  al., 1979; Ziada et 
a]., 1984; Teuscher and Weidlich, 1985; Dusseau et 
a]., 1986; Meininger et al., 1988; Adair e t  a]., 1989; 
Huang et  a]., 1989; K~ibo, 1991~; Rathbone et al., 1992; 
Er l inge  e t  a].,  1993;  Henn ing  e t  al.,  1993a ,b ;  
Burnstock, 1993; Abhracchio et al., 1994; Boarder e t  
al., 1995; Neary ct al., 1996; Abbracchio, 19961 should 
be taken into consideration when examining both the 
ontogeny and phylogeny of purinoceptors. 

ONTOCENY OF PURINOCEPTORS 

In the past, a role of ATP in early development has 
been interpreted merely in terms of its use as a source of 
energy. However, since it is now generally accepted that 
ATP and adenosine have potent extracellular actions 
mediated by the activation of specific membrane recep- 
tors, a number of these previous studies can now be re- 
interpreted. ATP and adenosine play key roles from the 
very beginnings of life, i.e., the moment of conception. 
ATP is obligatory for sperm movement [Yeung, 19861 and 
is a trigger for capacitation, the acrosome reaction nec- 
essary to fertilize the egg [Foresta et al., 19921. Extracel- 
liilar ATP also promotes a rapid increase in Na' 
permeability of the fertilized egg membrane through the 
activation of a specific ATP receptor [Kupitz and Atlas, 
19931. Together with the demonstration that ATP-acti- 
vated spermatozoa show very high success ratcs in fer- 
tilization tests [Foresta et al., 19921, this strongly suggests 
that ATP is a key sperm-to-egg signal in the process of 
fertiliz a t '  ion. 

Purinoceptors in Frog Embryos 

The nicotinic channels in myotomal muscle cells 
cultured from Xenopus embryos at stages 19-22 were 
shown to be opened by  micromolar concentrations of 
exogenous ATP [Igusa, 19881, following the earlier dem- 
onstration that ATP increases the sensitivity of receptors 
in adrilt frog skeletal muscles without increasing the af- 
finity of acetylcholine (ACh) for the receptor or inhibi- 
tory acetylcholinesterase [Akasu et al., 19811. Since then, 
there have been a number of studies of the actions of 
ATP in developing Xenqms  neuroinuscuku synapses [see 
Fu, 19951. Extracellular applications of ATP to develop- 

ing Xenopus neuromuscular synapses in culture potenti- 
ate ACh responses of developing muscle cells during the 
early phase of synaptogenesis [!A and Poo, 1991; Fu, 1994; 
Fu and Huang, 19941. The possibility that extracellular 
ATP co-released with ACh, may serve as a positive trophic 
factor at developing neuromuscular synapses has also 
been raised [Fu and Poo, 1991; Fu; 19951. It is further 
suggested that calcitoniii gene-related peptide (CGRP) 
and ATP co-released with ACh from the nerve terminal 
may act together to potentiate postsynaptic ACh channel 
activity during the early phase of syriaptogenesis [Lu and 
Fu, 19951; it is claimed that CGRP actions are mediated 
by CAMP-dependent protein kinasc (PKA), while ATP 
exerts its effects via protein kinase C (PKC). 

In a recent study of the regulation of rhythmic 
movements by purinergic transmitters in frog embryos 
[Dale and Gildry, 19961, it has been shown that ATP is 
released during swimming that activates P2Y-receptors 
to reduce voltage-gated K+ currents and cause an increase 
in the excitability of the spinal motor circuits. It was also 
shown that adenosine, resulting from the breakdown of 
ATE acts on P1 receptors to reducc the voltage-gated 
ca2+ currents to lower excitability of the motor circuits 
thereby opposing the actions of ATE The authors sug- 
gest that a gradually changing balance between ATP and 
adenosine underlies the run-down of the motor pattern 
for swimming in Xenopus. 

We have recently cloned arid sequenced in m~7 l a h -  
ratory a novel P2Y-purinoceptor (X1P2Y) that is expressed 
(as seen by Northern blots and in situ hybridization) in 
the neural plate ofXenopus embryos from stages 13 to 18 
and again at stage 28 when secondary neurulation oc- 
curs in the tail hud [Bogdanov et al., 19971. It differs from 
other members of the P2Y-purinoceptor family in that it 
has an intracellular C terminus with 216 amino acid resi- 
dues (compared to 16 to 67 in P2Y1-?). When expressed 
as a recombinant receptor in Xenopus oocytcs, it shows 
equipotent responses to the triphospliates ATE: UTE ITe 
CTE and GTP and smaller responses to diphosphates and 
tetraphosphates, but is not responsive to inorganic phos- 
phates. Responses to activation of the XlP2Y receptor 
have a long duration (40-60 min). These data suggest that 
this novel PZY-receptor may he involved in the early for- 
mation of the nervous system. 

Purinoceptors in Chick Embryos 

Together with muscarinic cholinergic receptors, 
extracellular receptors to KrP were shown to he the first 
functionally active membrane rceeptors in chick embyo 
cells at the time of germ layer formation [Laasherg, 19901. 
In gastrulating chick embryo, ATP causes rapid accumii- 
lation of inositol-phosphate and Ca" mo1)ilization in a 
similar way and to the same extent as ACh, whereas othcr 
neuroendocrine substances such as insulin and noratf- 
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renaline (NA) have much weaker effects [Laasberg, 19901. 
This suggests that, alongside ACh, other phylogenetically 
old and universal regulators of cell metabolism such as 
ATP (and perhaps nitric oxide) might play a leading role 
in the functional regulation of gastrulation via the activa- 
tion of specific receptors triggering CaZ+ mobilization. 

ATP has been shown to induce precocious evagi- 
nation of the embryonic chick thyroid, an event which 
has been hypothesized to be involved in the formation of 
the thyroid gland from the thyroid primordium [Hilfer 
et al., 19771. The requirement for ATP was very precise, 
since it could not be replaced by pyrophosphate, AME 
or ADP nor by GTI: suggesting a high degree of specific- 
ity of the ATP-induced effect. 

ATP acts on embryonic and developing cells of both 
nervous and non-nervous systems by increasing intrac- 
ellular Ca2+ concentrations. Release of Caz+ from intrac- 
ellular stores is evoked in the otocyst epithelium of the 
early embryonic chick, incubated for 3 days (stage 18 to 
19) [Nakaoka and Yamashita, 19951 (Fig. l), in develop- 
ing chick myotubes [Haggblad and Heilbronn, 1088] and 
in dissociated cells from whole early embryonic chicks 
[Laasberg, 1990; Lohmann et al., 19911. 

A recent study of embryonic chick neural retina 
[Sugioka et al., 19961 has shown that the ATP-induced 
rise in intracellular Ca2+ is mediated by PZu (= P2Y2)- 
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Fig. 1. Interaction between acetylcholine and A-IP recorded in an oto- 
cyst from chick embryo. a: The response to 10 pM acetylcholine. b: The 
response to 100bM ATP. C: The response to the co-application of 1 0p.M 
acetylcholine and 100 p.M ATP. The records in a-c were taken in this 
order at 5 min intervals. The bath solutions contained 25 rnM Ca". Re- 
produced from Nakaoka and Yamashita, 1995. 

purinoceptors and that there is a dramatic decline of the 
ATP-induced rise in intracellular Ca2+ just before 
synaptogenesis. Suramin and Reactive Blue 2 almost com- 
pletely block these responses (Fig. 2). These authors also 
reported unpublished data that injection of Reactive Blue 
2 into early embryonic chicks produced severe effects in 
embryogenesis. 

A transmitter-like action of ATP on patched niem- 
branes of myoblasts and myotubes cultured from 12-clay- 
old chicken embryos was first demonstrated by  Koll) and 
Wakelam in 1983. Using biochemical methods, ATP-in- 
duced cation influx was later demonstrated in rnyotubes 
prepared from 1 l-day-old chick embryos and shown to 
be additive to cholinergic agonist action [Hiiggblad ct al., 
19851. Later papers from this group claimed that the 
myotube P2-purinoceptor triggers phosphoinositide turn- 
over [Hiiggblad and Heilbronn, 19881 and alters Ca" in- 
flux through dihydropyridine-sensitive channels [ Erikson 
and Heilbronn, 19891. ATP has a potent dcpolarizing ac- 
tion on myotubes derived from pectoral muscle cultured 
from 11 day chick embryos [Hume and Hiinig, 19861 and 
its physiological and pharmacological properties have 
been described in a series of papers [Hume and Thomas, 
1988; Thomas and Hume, 1990a,b, 1993; Thomas ct al., 
19911. The niyotube P2-purinoceptor is not activated by 
ADE AME adenosine or the non-hydrolyzable ATP ana- 
logues a,P-methylene ATP (a,P-meATP) or P,y-methyl- 
ene ATP (P,y-meATP) [Hume and Hiinig, 19861. A single 
class of ATP-activated ion channel conducts both cations 
and anions in the myotube [Thomas and Hume, 1990al 
and the P2-purinoceptors involved showcd marked dc- 
sensitization [Thomas and Hume, 199ObI. The sensitiv- 
ity of extracellular ATP has been tested at various stages 
of development of different muscles [Wells et al., 19951. 
At embryonic day 6 [stage 30 of Hamberger and Hamil- 
ton, 19511 ATP (50-lOOpM) elicits vigorous contractions 
in all the muscles tested, but by embryonic day 17 (stage 
43) none of the muscles contract in response to ATP (Fig. 
3) .  However, denencation of muscles in newly hatched 
chicks leads to the reappearance of sensitivity to ATE 
suggesting that the expression of ATP receptors is regu- 
lated by motor neurons. An immunohistochemical study 
of the distribution of 5 '-nucleotidase during the devel- 
opment of chick striated muscle shows that the adult ex- 
hibits a more restricted distribution compared to the 
einbryo [Mehul et al., 19923. 

Studies of the development of pharmacological sen- 
sitivity to adenosine analogs in embryonic chick heart 
[Hatae et al., 1989; Blair et al., 19891 show that pharma- 
cological sensitivity to Al agonists begins at embryonic 
day 7 and then increases continuously to day 12, when 
the atria became fully responsive. Ligand binding shows 
that A, receptors are present at days 5 and 6, but are not 
responsive to adenosine, and the author concluded that 
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Fig. 2. Effects of P2 purinoceptor antagonists on the Ca2+ responses to 
ATP and UTP in E3 retinas. A: The effects of ~uramin  (100 pM; A,a) and 
reactive blue 2 (50~M;  A,b) on the response lo 50UpM ATP. The records 
in the presence of suramin or Reactive Blue 2 were taken 7 min after 
changing the bath solutions to the antagonist-containing medium. The 
recovery controls were taken after washing suramin for 7 rnin or reactive 
blue 2 for 25 min. The duration of ATP application (20 s) is indicated by 
the bars. All records were taken in the bath solutions containing 2.5 

the development of sensitivity to Al adenosine receptor- 
mediated negative chronotropic responses was not par- 
alleled by developmental changes in adenosine inhibition 
of adenylyl cyclase, or hy the devcloprnent of sympathetic 
and parasympathetic innervation. Chronic exposure of 
the enibryonic chick heart (15-17-days-old) to R-PIA 
produces down-regulation of Al adenosine receptor and 
desensitization of the negative inotropic response to ad- 
enosine [Shryock et al., 19891. 

Adenosine has been iniplicated in growth regula- 
tion of the vascular system in the chick embryo [Adair et 
al., 19891, in common with a similar role claimed for ex- 
perimental angiogenesis in the chorio-allantoic nxm-  
brarie [Fraser ct al., 1979; Teusher and Weidlich, 1985; 
Dusseau et al., 19861. 

Responses to ATP have heen described in ciliary neu- 
rons acutely dissociated horn embryonic chick ciliary gan- 
glia taken at day 14 [Abe et al., 19951. The relative potency 
of agonists in producing transicnt inward currents with 
patch recording is ATP>2meSATP>ADP; neither adenos- 
ine, AMP or a,P-meATP are effective, but suramin is an 

I 100 IIM suramin 

1 

0 Time (s) 80 
200 p~ UTP 

b 

0 Time (s) 80 
200 p M  UTP 

mMCa2+. 6: The effects of suramin (100 pM; B,a) and Reactive Blue 2 
(50 pM; B,b) on the response to 200 pM UTP. The records in the pres- 
ence of suramin or Reactive Blue were taken 7 min after changing the 
bath solutions to the antagonist-containing medium. The recovery con- 
trols were taken after washingsuramin for 7 min or reactive blue 2 for 15  
min. The duration of UTP application (20 s) is indicated by the bars. All 
records were taken in the bath solutions containing 2.5 mM Ca2+. Re- 
produced from Sugioka et al., 1996. 

antagonist (Fig. 4). The authors suggest that the P2 recep- 
tor subtype involved might be PBY, but in view of more 
recent knowledge about the functional properties of cloned 
subtypes of the P2 receptor family, it seems more likely to 
belong to the P2X receptor family. 

Adenosine inhibits neurite outgrowth of chick sym- 
pathetic neurons taken from 11 day chick embryos and kills 
by apoptosis about 80% of sympathetic nerves supported 
b y  growth factor over the next 2 days in culture [Wakade et 
al., 19951. Specific Al or A2 agonists are not neurotoxic. The 
toxic effects of adenosine are not antagonized by amino- 
phylline, but are prevented by an adenosine transporter or 
adenosine deaminase inhibitor, suggesting an intracellular 
site of action for the toxic effects of adenosine. The authors 
conclude that adenosinc and its breakdown enzymes play 
an important role in the regulation of growth and devclop- 
nient of sympathetic neurons. 

Purinoceptors in Mammalian Embryos 
Puff-applied ATP has been shown to have two main 

effects on a mouse mesodermal stem cell line: an increase 
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Fig. 3. Location of the muscles of the chick embryo that were respon- 
sive to ATP. Three chick embryos from stages 35-37 were sacrificed, and 
each muscle was identified and tested in at least two of the three em- 

in intracellular Caz+ concentrations and a subsequent 
hyperpolarization due to Ca2+-activated Kt conductance 
[Kubo, 1991aI (Fig. 5). The author speculates that the tran- 
sient increase in intracellular ca2+ may influence meso- 
dermal cell differcntiation, particularly in relation to 
muscle differentiation. In a later paper [Kubo, 1991b], 
two myoblastic cell lines, one from rat, the other from 
mouse, showed similar properties to those of the myo- 
genic clonal cells derived from the muuse mesodermal 
stem cell line described above. 

ATP and ADP have been shown to enhance, re- 
duce, or have no effect (depending on the dose used) on 
the incidence of trypan blue-induced teratogenic mal- 
formations in the rat foetus at day 20 [Beaudoin, 19761. 
Concomitant administration of ATP and cortisone in mice 
either decrease the teratogenic effect of cortisone (SO pg 
ATP) or enhance its teratogenic effect (> lo0  pg ATP) 
[Gordon et al., 19631. 

Mouse heads of emhyos from 14 to 24 pairs ofbody 
somites exposed to an ATP-containing medium have been 
demonstrated to undergo rapid epithelial thickening and 
invagination, a process that appears to take part in the 
shaping of nasal pits and formation of' primary palate 
[Smuts, 19811. 

Besides ATE: a number of reports implicate adenos- 

SARTORlUS 

TENSOR FASCIA LATAE 

~ BICEPS FEMORIS 

bryos. All muscles tested in embryos of these ages contracted in response 
to ATP. By embryo day 17 (stage 43) none of the muscles contracted in 
response to ATP. Reproduced from Wells et al., 1995. 

ine as one of the endogenous effectors that can selectively 
modulate cell growth during embryonic development. For 
example, adenosine is shown to potentiate the delaying 
effect of dibutyryl cyclic adenosine monophosphate (a 
membrane-permeable analog of CAMP) on meiosis re- 
sumption in denuded mouse oocytes [Petrungaro et al., 
19861. The role of adenosine has becn particularly well 
characterized in the morphogenetic outgrowth of verte- 
brate limb buds [Knudsen and Elmer, 19871. Embryonic 
limb development in the mouse is driven by rapid rnes- 
enchymal cell proliferation induced by trophic substances 
secreted by the apical ectodermal ridge. This interaction 
can be restricted experimentally by  pharmacological 
agents that elevate intracellular CAMP levels, or physi- 
ologically by the onset of programmed cell death trig- 
gered by  naturally occurring negative regulators of 
growth. Mutations that affect the pattern of limb/bud 
outgrowth provide invaluable experimental means to in- 
vestigate these growth-regulatory processes. Knudsen 
and Elmer [1987] studied the regulation of polydacty- 
lous out growth (an expression of the Heinimelia-extra 
toe (HmX/+) mutant phenotype) in hind-limb buds ex- 
planted into a serum-free in vitro system at stage 18 of 
gestation. Its expression was promoted by exposure to 
exogenous adenosine-deaminase, the enzyme which cata- 
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Fig. 4. Chick embryo (day 14) ciliary ganglion cells: the inhibition of 
ATP-induced inward current by suramin. The neurons were pretreated 
with suramin of various concentrations for 2 min. In the upper panel, 
the filled and open horizontal bars indicate the periods of application of 

lyzes the inactivation of endogenous adenosine, and con- 
versely suppressed by co-exposure to hydrolysis-resis- 
tant adenosine analogues. Adenosine-induced effects 
were niediated by activation of specific extracellular re- 
ceptors, since the Pl-purinoceptor antagonist, caffeine, 
could completely prevent suppression of polydactylous 
outgrowth. Measurenient of both adenosine and adenos- 
ine deaminase levels in embryonal plasma and whole em- 
bryos argued against an endocrine mechanism of adenosine 
secretion, in favour of an autocrine (self-regulatory) or 
paracrine (groximate-regulatory mechanisms). These results 
suggest that the in vitro outgrowth of the prospective poly- 
dactylous region is induced upon escape from the local 
gowth-inhibitory influence of extracellular adenosine. 

Micromolar concentrations of adenosine, inosinc, 
and hypoxanthine, but not guanosine block the second 
or third cleavage of niousc embryos developing in vitro 
[Nureddin et al., 19901. Zygotes or early two-cell em- 
bryos, cultured in a purine-containing medium for 24 h, 
resume development following transfer to purine-free 
conditions. The precise mechanism of the purine-sensi- 
tive process is not known, hut embryos coiiceivcd in vivo 
are sensitivc until approximately 28-30 h after fertiliza- 

ATP and suramin, respectively. In the lower panel, the responses in t h e  
presence of suramin are normalised to the peak current amplitude in- 
duced by 10 pM alone. Each point is the average of four neurons, and 
the vertical bars indicate S.E.M. Reproduced from Abe et al., 1995. 

tion and are no longer sensitive by 34 h [Loutradis et al., 
19891. However, a later study by this group has shown 
that the purine-induced block can be reversed by com- 
pounds that elevate CAMP [Fissore et al., 19921. 

In a study of human fibroblasts, differential sensi- 
tivity to adenosine was demonstrated in donors of dif- 
ferent ages !Bynum, 19801. Fetal fibroblasts were the 
most sensitive to adenosine, which produced inhibition 
of growth and RNA synthesis; in contrast, fibroblasts 
taken from 4-year-old donors showed growth stiniula- 
tion to adenosine. 

Taken together, these results point to a role for pu- 
rines in both physiological fertilization and normal de- 
velopment and also underline that alterations of the 
purinergic regulation of embryonal growth might be in- 
volved in the onset of morphological malformations. 
Depending upon the purine derivative, and probably 
upon the purinoceptor involved as well, ATP and adenos- 
ine can act as both positive and negative regulators of 
growth. This is also consistent with data obtained from 
in vitro cell lines which implicates purines in both cell 
proliferation and apoptosis. Further studies are needed 
to better characterize the receptor subtypes involved and 
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Fig. 5. K+ responses to ATP analogues of a mouse mesodermal cell 
line. Each of the two traces was obtained from the same cell (A-E). The 
responses induced by ATP (left traces) and ATP analogues (right traces) 
are shown. The names of the analogues are shown near the traces. Each 
drug was applied at 20 pM, and the holding potentials were 0 mV. Re- 
produced from Kubo, 1991 a. 

also to identify more precisely the developmental events 
specifically controlled by purines. 

Radioligand binding studies have provided infor- 
mation about the development of Al receptors in guinea- 
pig and rat brain, in particular the forebrain and 
cerebellum [Morgan et al., 1987, 19901. In guinea-pig 
forebrain it appears that A, receptors are present from 
embryonic day 19, with adult binding levels achieved 
about 25 days postpartum. In guinea-pig cerebellum, 
however, Al receptor binding is low until just prior to 
birth, when a dramatic increase in binding is observed 
which then continues to increase up to adulthood. A simi- 
lar development is seen in rat forebrain and cerebellum 
with Al receptor binding changing very gradually in the 
forebrain, whereas binding in the cerebellum increases 
markedly after birth [Marangos et  al., 1982; Geiger et 
al., 19841. 

There are a number of reports about changes in the 
distribution of the ectoenzymes involved in the break- 
down of ATP and adenosine in the brain during foetal 
and neonatal development. 5 '-Nucleotidase shows a 
marked redistribution during development of the cat vi- 
sual cortex and is thought to be involved in the remodel- 
ling of ocular dominance columns [Schoen et al., 19901. 

A later electron microscopic study by the same group 
has suggested that synapse-bound 5 '-nucleotidase activ- 
ity plays a role in synaptic malleability during develop- 
ment; its later association with glial cell profiles may 
reflect other functions for this enzyme [Schocn et al., 
19933. Complex changes in the activity of adenosine 
deaminase in the different regions of the developing rat 
brain suggest that there are important roles for purines 
in very early stages of development from 1.5 days of ges- 
tation, as well as in the adult in specific regions of the 
brain [Geiger and Nagy, 1987; Senba et a]., 19871. A his- 
tochemical study of Ca2+-ATPase in the rat spinal cord 
during embryonic development demonstrated intense 
activity in the roof and floor plates, rather than in the 
basal and lateral plates at embryonic day 12, indicating a 
possible role for Ca2+-ATPase in early differentiation of 
neuroepithelial cells [Yoshioka et al., 19871. ATP induces 
rises in intracellular Ca2+ in embryonic spinal cord as- 
trocytes [Salter and Hicks, 19951. 

In foetal sheep, centrally administered adenosine 
influences cardiac function [Egerman et al., 19931. The 
ontogeny of Al adenosine receptors was studied in rats 
with binding assays (using [3H]DPCPX, an Al antagonist), 
and by in situ hybridization of mRNA [Rivkees, 19951. At 
gestational days 8-11, mRNA expression for A, receptor 
was detected in the atrium (one of the earliest G protein- 
coupled receptor genes to be expressed in the heart), but 
not in other foetal structures, while at gestational day 14, 
A, mRNA was present in the CNS (thalamus, ventral horn 
of spinal cord) as  well as the atrium; by gestational age 
17, patterns of Al receptor expression in the brain were 
similar to those observed in adults [Weber et al., 1990; 
Reppert et al., 19911. Determination of A, receptor den- 
sity in developing rat heart using ['HIDPCPX, showed 
that functional Al receptors are present in greater nuni- 
hers in the immature perinatal heart than in the adult 
heart [Cothran et al., 19951. 

Intravenous infusion of adenosine analogs into foe- 
tal lambs produced dose-dependent bradycardia arid 
hypotension [Yoneyama and Power, 19%; Kondiiri et al., 
1992; Koos et al., 19931. In contrast, in the newborn, 
NECA produced dose-dependent tachycardia, while PIA 
and CHA produced dose-dependent bradycardia. Foetal 
breathing movements were interrupted by  all analogs, 
but they did not produce apnea in the newborn [Toubas 
et al., 19901. 

In the gastrointestinal tract, responses to ATP have 
been observed in rat duodenum the day after birth, sug- 
gesting that functional P2-purinoceptors are present at 
this time. Low concentrations of ATP were inhibitory at 
every age studied and its potency increased with age, 
while higher concentrations were excitatory but only until 
15 days after birth [Nicholls et al., 19921. It has been pro- 
posed that ATP is a non-adrenergic, non-cholinergic 
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(NANC) rieurotrarisrriitter in riiany areas of the gas- 
trointestinal tract [Burnstock, 19721 and NANC neive- 
mediated effects have been ohserved before hirth in rat 
stomach [Ito et al., 19881 and in inwise and rabbit small 
intestine [Cershon and Thompson, 19731. Also, quina- 
crine fluorescence, which indicates the presence of high 
levels of bound ATP in nerves, is observed before birth 
in ral,bit ileum and stomach [Crowe and Bunistock, 19811. 

ATP has also been proposed as the non-cholinergic 
excitatory transmitter in urinary bladder [ Burnstock et 
al., 1978a,b] aiid purinergic responses are apparent at 
birth [Keating et al., 19901. Purincrgic innervation and 
responsiveness to ATP is greater in 1-day-old urinary 
bladder than in adult tissue [Keating et al., 1990; Zderic 
et al., 1990; Snccldon arid McLees, 19921. The inipor- 
tance of ATP in neonatal tissue has also been demon- 
strated in rat vas tleferens, where ATPhas heen proposed 
as the cotransmitter with NA in sympathetic nerves 
[Meldrum and Burnstock, 19831. 

Purinoceptors have been characterized in iiiousc 
C2C12 myotubes [Henning et al., 1992,1993a,b]. Adenos- 
ine-sensitive P1-purinoceptors activating cyclic AMP 
formation were identified and a novel PZ-purinoceptor 
was also postulated, sensitive to ATE ADT: and ATPyS, 
which also activates the formation of CAME This recep- 
tor was also sensitive to UTE but not a,P-meATE 2nieSATE 
GTE or CTE: thus reseinbling the P2Y2 (= P2u)-purinocep- 
tor identified in mainmals. The response to ATP and U'TP 
was biphasic, a transient hypeipolarization being followed 
by a slowly declining clcpolarization; the li?i~e'l,olarization 
was blocked by apamin arid surariiin arid abolished under 
Ci"-free conditions. Occupation ofthe receptor by ATP 
or UTP led to formation of inositol trisphosphate and 
release of ~ 2 '  from internal stores a s  well as from the 
extracellular space. 

PHYLOGENY OF PURINOCEPTORS 

While there have been some commentaries and 
reviews about the evolution of transniitters (including 
acetylcholine, rnonamines, amino acids, peptides, and 
nitric oxide), their receptors and ion channels [Venter et 
al., 1988; Walker and Holden-Dye, 1989, 1991; Messen- 
ger, 1991; Arbas et al., 1991; Feelisch and Martin, 19953, 
few have referred to receptors for purines. There is now 
a wealth of infimtiatioii about the distribution of pu- 
rinoceptors in mammalian tissues, although there have 
been some reports of the extracellular roles of purine 
nucleosides and nucleotides in invertebrate and lower 
verte1)rate species [scc Burnstock, 1975, 1977, 1979; 
Berlind, 1977; Siebenallcr and MLI~XL)~, 1986; Venter et 
al., 1988; IIoylc and Greenberg, 1988; Walker and 
Holden-Dye, 1989; Feng and Doolittle, 1990; Linden et 
al., 19941. It is the aim of this section to review what is 
known abut the actions ofl)oth adenosine and ATP on a 

variety of different invertebrate and lower vertebrate tis- 
sues, to attempt to characterize purinoceptor subtypes, 
and to consider thcsc findings in evolutionary terms. 

Invertebrates 
Protozoa 

The inhibitory effects of external ATP on amoeboid 
movement has been recognized for many years [Zimmer- 
man ct al., 1958; Zimmerman, 1962; Nachmias, 19681. 
Output from the contractile vacuole of Amoebu protei~s 
increases in the presence of ATP and, to a lesser extent, 
other polyphosphates [Pothier e t  al., 1984, 1987; 
Couillard, 19861. Amoeba behaves a s  an excitable cell; 
its membrane responds to KI'P by iion-propagated last- 
ing depolarizations, probably resulting from opening of 
sodium channels. Cell-surface receptors for adenosine 
and cyclic adenosine 3 ' ,5 ' -monophosphate have been 
reported in the free-living amoeba of the slime mould, 
Dict!yosteliuin discoideuin; they niediate signals involved 
in cell aggregation [Robertson et al., 1972; Clark and 
Steck, 1979; Newell, 1982; Ncwcll and Ross, 19821. 

Externally applied, CTP alters the motility and elic- 
its an oscillating membrane depolarization in Purmecium 
tetrcieiureliu, a unicellular ciliated protist [Clark et al., 
19931. More specificaIly, it transiently induces alternat- 
ing forward and backward swimming interspersed with 
whirling at a concentration as low as 100 nM. ATP is 
1,OOO-fold less active, while CTP and UTP are virtually 
inactive. The authors suggest that GTP released from 
lyscd paramecia, brought on by predators or noxious 
chemicals, may be used as a signal to ncighbouring para- 
mecia to evacuate the local area. ATP is known to alter 
the rate of beat of cilia in Purcimeciurn and it is interest- 
ing that there are lower levels of adenosine triphosphasc 
in slow-swirnniirig niutants [Hayashi and Takahashi, 19793. 
As for Amoeba, ATP has also k e n  shown to increase the 
rate of output of contractile vacuoles in Pclrurneciziin [Or- 
gan et al., 19681. The ecto-ATPase from the ciliary mem- 
branes of Pcwumeciurn is similar to that from mammalian 
brain and the cndothclial plasnia nicmbrane with respect 
to kinetics, ionic requirements, and insensitivity to vana- 
date [Doughty and Kaiieshiro, 19851. ATP keeps exocyto- 
sis sites in Paramecium in aprimed state, but is not required 
for membrane fusion [Vilmai-t-Seuwen et al., 19861. 

ATP causes herniation (blebbiiig) and plasmodia1 
disruption of the myxomycete Phys~irurn polgcephcilutn 
[Mante et al., 19781; the authors suggest that these ef- 
fects may reflect acceleration of normal contractile pro- 
c e s s e s in this organism. U s in g 1 u c i fe ri n - 1 u ci fe ras e 
I~iolu~ninescciicc, ATP has bcen shown to lcak out rhyth- 
mically from Physarzm and tlic period and phase of os- 
cillation in ATP leakage corresponds well with those of 
tension production [Yoshimoto et al., 1981; Uyeda and 
Furuya, 19871. Extracellular ATP leads to changes in the 
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cytoskeletal organisation in Physarum apparently caus- 
ing the microtubules and microfilaments to slide apart 
[Uyeda and Furnya, 19871. 

Certain adenosine analogs have been shown to in- 
hibit the growth of Giurdia Zurnblia, a protozoan parasite 
that canses diarrhoea in both man and animals; dnig treat- 
ment includes the use of quinacrine, which is known to 
bind high levels ofATP [see Berens and Marr, 19861. Both 
adenosine and 2 '-deoxyadenosine are inhibitory to the 
growth of the  trypanosome protozoon Crithidia 
fusculuta; this inhibition of growth is reversed by py- 
rimidine nucleosides [Dewey et  al., 19781. Trypano- 
soma hrucei is the causative agent of sleeping sickness 
and like other protozoan parasites is unable to synthe- 
size purines and therefore depends on purine salvage 
from the host environment; hypoxanthine transport oc- 
curs via a high affinity, energy-dependent transporter 
with a substrate specificity that is markedly different from 
any known mammalian nucleobase transporter [de 
Koning and Jarvis, 19951. 

Platyhelminths 
ATP diphosphohydrolase has been located on the 

external surface of the tegument of the parasitic liver 
fluke, Schistosoma rnansoni; it is suggested that this en- 
zyme could regulate the concentration of purine nucle- 
otides around the parasites and hence enable them to 
escape the host haemostasis by preventing ADP-induced 
platelet aggregation [Vasconcelos et al., 19931. 

Coelenterates 
Encompassing the jellyfish, sea anenomes, and cor- 

als, these mainly marine organisms are radially symmetri- 
cal with a two layered body wall enclosing a single cavity 
with a single aperture, the mouth. 

The pedal disc of the sea anenome Actinia eqina 
has been shown to posse purinoceptor that is respon- 
sive to ATE: ADE and adenosine, all of which cause con- 
tractions, but is insensitive to AMP [Hoyle et al., 19891 
(Fig. 6). A role of ATP in the maturation of nematocysts 
from sea anenomes has been suggested [Greenwood et 
al., 19891. A purine, caissarone, extracted from the sea 
anemone, Bunodosomz caissarurn, has been shown to be 
an adenosine receptor antagonist [de Freitas and Sawaya, 
1990; Cooper et a]., 199.51. ATP causes ciliary reversal in 
the comb plates of ctenophores, probably by increasing 
intracellular Ca2+ ions [Nakamura and Tamm, 1985; 
Tamm and Tamm, 19891. 

Annelida 
This phylum comprises the segmented worms, in- 

cluding the polychaetes, oligochaetes, and hirudines. The 
worms possess both circular and longitudinal body 
muscles. The nervous system consists of dorsal cerebral 

ganglia and ventral nerve chord, with nerve cclls along 
the length of the chord not necessarily confined within 
ganglia and with peripheral nerves from each segment. 

Electrophysiological investigations, using lmth in- 
tracelliilar rnicroelectrodes and whole cell patch-clamp 
recording on identified neurones in the central nervous 
system of the leech Hirudo medicinalis revealed that A'I'P 
and ADP depolarised selected neurons but not the neu- 
ropil glial cells [Backus et al., 19941 ('Iablc 1). The most 
effective responses (up to 10 mv) were ohserved in the 
noxious and touch cells. In  most neurons the stable ana- 
log of ATE ATP-y-S (5 pM) induced larger depolariza- 
tions than ATE: indicating that ectonucleotidases were 
probably present. The authors concluded from further 
experiments that ATP activates non-sclective cation chan- 
nels in medial noxious cells of the leech with an order of 
potency ATP ADP AMP They claimed that the results 
suggest that these cells express purinoceptors of the P2 
type, although suramin was not an effective antagonist of 
this receptor. Salivary cells of the leech Haernenteriu 
ghiZianii cxhibit a selective response to ATP producing 
inhibition of voltage-dependent Ca2+ influx [Werner et 
al., 19961; ATE but not adenosine, modulates action 130- 
tential firing, thought to be via a niammalian-like P2-pu- 
rinoceptor [Wuttke and Berry, 19931. Alater study showed 
that the PS-purinoceptor involved is suramin-insensitive 
and that activation by ATP inhibits Ca2+ influx throi~gh 
voltage-gated Ca2+ channels [Wuttke et al. ,  19963. 

Molluscs 
Molluscs do not show segmentation, the body con- 

sists of a head-foot and visceral mass extended into folds 
which often secrete a shell. The nervons system consists 
of ganglia connected by commisures. This group includes 
snails, bivalves, and octopuses. 

Adenosine has been shown to have a modulatory 
effect on an excitatory ACh response on an identified 
neuron (F,) of the suboesophageal ganglion of the snail 
Helix aspersa; it was proposed that an Al-receptor medi- 
ated inhibition, while an A2-receptor mediated enhance- 
ment of the response to ACh [Cox and Walker, 19871. ATP 
and a,P-meATP also enhance the response, suggesting 
that a P2X-purinoceptor is also present. Nanomolar con- 
centrations of extracellular ATP and its stable analog 
AMP-PNP were also shown to activate calcium channels 
in these neurons [Yatani et al., 19821 (Fig. 7). Single neu- 
rons in ganglia of the marine mollusc ApZysia californica 
contain highly variable levels of ATP and lower levels of 
related purines, including ADE AME adenosine, and 
inosine [Stein and Weinreieh, 1984; McCarnan, 19861, in 
keeping with the possibility that some are involved in 
purinergic transmission. 

Adenosine modulates monoamine release hom neu- 
rons in the pedal ganglion of the marine hivalve M y t i h s  
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Fig. 6. Actions of adenylyl compounds on isolated circular muscle of 
the pedal disc of Actinia equina. Upper panels: Examples of contractile 
responses to ATP and an example of a cumulative concentration-response 
relationship for adenosine (Ado). lower panel: Conccntration-response 
curves for ATP ( A, n = 121, ADP (0, n = 101, and adenosine ( A ,  n = 7). 

Symbols show mean percentage maximum contraction due to the ade- 
nyl compound ? S.E.M. (unless occluded by symbol). Solid lines are the 
curves fitted following probit transformation and horizontal averaging. 
For clarity the curve for adenosine has not been drawn, as it overlies the 
curve for ADP. Reproduced from Hoyle et al., 1989. 

edulis; analogucs of adenosine are also capable of inhib- 
iting transmitter release, the receptor, being highly spe- 
cific for NECA, exhibits the characteristics of the 
mammalian A,-receptor [Barraco and Stefano, 19951. 
Adenosine deaminase has been identified in M & L S  
edulis [Aikawa and Aikawa, 19841 as well as in the ad- 
diictor muscle and midgut of the scallop, Putinopecten 
yassoeizsis [Sato and Aikawa, 1991; Yoshida and Aikawa, 
19931, which is consistent with a role for adenosine as an 
extracelliilar modulator. 

Studies of the systemic heart of the cephalopod 
Octopus vulgaris have shown that adenosine has an op- 
posite effect to that known for the mammalian heart, in 
that adenosine and AMP produced positive chronotro- 
pic and inotropic effects [Agnisola et al., 19871. The heart 
of the Venus clam, Kutelysiu rhyctiphoru, is stimulated 

by ATP and electron microscopy revealed different types 
of nerve profiles, some containing large opaque vesicles 
and staining for Mg-ATPase and 5 '-nucleotidase which 
resembled NANC purinergic nerves observed in mam- 
malian gut [Sathananthan and Burnstock, 19761. Adenos- 
ine has also been shown to cause systemic arrest of 
pulsations in the isolated heart auricle of the oyster 
Cmssostreu nipponu, but only in alkaline conditions, he- 
cause the specific enzyme involved has a low optimum 
pH as a protective device [Aikawa and Ishida, 1966; 
Aikawa et al., 19671. The hearts of Rzisycon contrariuin 
and Melongerta corona responded in a complex way to 
purine compounds, ATP causing 110th positive and nega- 
tive inotropy [ Hoyle and Greenherg, 19881. The same is 
tnie for the hearts of the snail Helix uspersn and the slug 
Arion nter where the responses to ATE ADT: AME: and ad- 
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TABLE 1. Quantitative Effects of Extracellular Nucleotides on Leech Neurons and Neuropil Clial Cells' 

ATP ADP AMP Adenosine ATP- y- S 

Annulus erector cell 2.8 ? 1.6 (20) 6.3 (2) 2.5 (2) 1.5 2 1.3 (3) -4.2 t 2.3 (3) 
Anterior pagoda cell 1.7 ? 2.7 (6) 2.0 ? 2.9 (6) 0.9 t 2.0 (5) 2.0 ? 2.0 (3) 3.5 ? 1.8 (10) 

Retzuis cell 2.1 ? 0.9 (7) 1.3 ? 0.8 (6) 1.3 ? 0.8 (6) 1.3 t 0.5 (4) 10.4 t 2.2 (10) 
Medial noxious cell 4.5 ? 5.9 (35) 4.0 ? 1.7 (7) 2.7 ? 2.4 (7) 1.3 ? 1 .0 (8) 6.4 * 2.0 (32) 
Lateral noxious cell 6.9 2 3.5 (8) 9.6 ? 0.9 (7) 5.2 t 1.8 (6) 5.4 2 1.5 (8) Not tested 

-2.8 ? 1.3 (5) 

Medial pressure cell 3.2 ? 2.2 (8) 2.4 t 1.0 (7) 0.4 ? 0.8 (7) Not tested 3.7 ? 2.3 (5) 
Lateral pressure cell 1.2 ? 2.0 (3) 1.8 t 1.8 (3) 0.7 2 1.2 (3) 1.5 (2) 1.3 ? 0.5 (5) 

Neuropil glioal cell 0 (6) 0 (6) 0 (6) 0 (6) 0 (3) 
Touch cell 6.4 ? 4.6 (4) 4.5 2 2.8 (5) 2.9 ? 1.7 (5) 4.0 ? 3.0 (4) 3.0 ? 0.9 (3) 

'All agonists were applied at a concentration of 100 pM except ATP-y-S (5 pM). The numbers give the mean depolarisation in mV 2 the standard 
deviation. The number of experiments is given in parenthesis, Negative values indicate hyperpolarisations. Reproduced from Bakus et al., 1994. 

enosine caused either cardioexcitation or cardioinhibition 
in any given preparation [Knight et al., 1992~1. 

Probiscis smooth muscles of Buccinurn undaturn 
respond to GTP and G T P F  (but not to ATP or adenos- 
ine) in the 10-7-10-3 M range with a moderately fast twitch 
activity which was unaccompanied by action potentials 
[Nelson and Huddart, 19941. Both the oesophagus and 
the rectum of the snail, Helix aspersa, produced contrac- 
tions to ATE ADE and AME but the synthetic analogs 2- 
chloroadenosine, a,P-meATP and 2meSATP were 
inactive [Knight et a]., 1992al. 

The body wall of the pulmonate slug, Ariolimux 
columbianus, secretes mucous packaged in granules; 
newly secreted granules rupture in the presence of ATE 

log concentration ( M )  

Fig. 7. Activation of Ca2+ channels on Snail neurones: Dose-response 
curves for the effects of extracellular ATP (0) and AMP-PNP (0) on Ira 
(elicited by a 70 ms long pulse to t 2 0  mV from a holding potential of -50 
mV). Each point represents the mean of six measurements for ATP and 
seven for AMP-PNP obtained from different neurones (curves were drawn 
by eye). Reproduced from Yatani et al., 1982. 

aparently via a specific ATP/ADP receptor [Deyrup-Olsen 
et al., 19921. In general, nerves in the heart and gut of the 
pulmonate gastropod molluscs show a high affinity for 
quinacrine [Cardot, 1981; Knight et al., 19!Eb] suggest- 
ing that they contain high levels of granule-bound ATl? 

Arthropods 

The phylum arthropoda includes crustaceans, cen- 
tipedes, millipedes, insects, and arachnids. They are 
characterized by their bilateral symmetry and typically 
each segment has a pair of jointed appendages at least 
one pair being modified as jaws, although the number of 
segments included in the head is variable. There is a 
strong and well-developed exoskeleton. The CNS con- 
sists of cerebral ganglia and a ventral nerve cord made 
up of separate paired ganglia connected by  commisures. 
There is a contractile heart lying in a haeniocoelic peri- 
cardial cavity. 

Crustacea 

There is considerable information about the effects 
of ATP and adenosine in crustaceans. The olfactory or- 
gan of the spiny lobsters Panulirus argus and Panulirus 
interruptus have different populations of purinergic 
chemoreceptors that are excited by AME ADI: or ATP 
[see Carr et al., 1986, 1987; Zimmer-Faust et a]., 1988; 
Trapido-Rosenthal et al., 19891 (Fig. 8). These receptors 
reside on chemosensitive neurons that are contained 
within aesthetasc sensilla on the lateral filaments of the 
antennules. 5 '-AMP odorent receptor sites have recently 
been localized ultrastructurally, utilizing 5 ' AMP-biotin, 
along the entire dendritic region, including the transi- 
tional zone between inner and outer dendritic segments, 
the region which also contains 5 ' -ectonuclotidase/phos- 
phatase [Blaustein et al., 19931. 

The potency order for some sensilla indicates a P1- 
purinoceptor [Derby et al., 1984, 1987; Carr et al., 1986, 
19871. In addition, there are chemoreceptors stimulated 
by ATP exhibiting properties similar to P2-purinocep- 
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Fig. 8. Comparisons of response characteristics of AMP-sensitive and 
ATP-sensitive cells in the antennule of the spiny lobster. a: Response of 
AMP-best cells to the indicated compounds. b: Series of action poten- 
tials produced by an AMP-best cell to the indicated concentrations of 
AMP. c: Response of ATP-best cells to the indicated compounds. d: Se- 
ries of action potentials produced by an ATP-best cell to the indicated 
concentrations of ATP. Note the differences in time scale in (b) and (d). 
Reproduced from Trapido-Rosenthal et al., 1989. 

tors [Carr et al., 19861. Since these receptors are more 
sensitive to the slowly degradable analogues of ATE: a,P- 
nicATP and P,y-nicATP [Carr ct al., 19871, they appear 
to he comparable to the P2X family of purinoceptors. 
Siniilarities 1)etwec:n the PI- and P2-purinoceptors of 
these crustaceans and mammalian purinoceptor subtypes 
arc cxtcndcd furthcr, in that thc chcmoscnsory scnsilla 
inactivate excitatory nucleotides by  a two-step proccss. 
Ectonucleotidases dephosphorylate adenine nucleotidcs 
to yield a nucleoside which is internalised by  an uptake 
system [Trapido-Rosenthal et al., 1987, 19901, which is 
similar to mammalian systems [Bnrnstock, 19751. 

Activation of olfactory (smell) and gustatory (taste) 
P%purinoceptors in 1ol)sters is thought to indnce a feed- 
ing liehavioural response [Fine-Levy et al., 1987; Zirnmer- 
Faust ct al., 1988; Daniel and Derby, 1989; Gleeson et 
al., 1989; Zimmer-Faust, 19931. ATP is an ideal stimulus 
for such animals that fcccl on woundcd or recently killed 
animals, since ATP occurs at high concentrations in fresh 
animal flesh 1)ut decays rapidly as cells die [Sikorski ct 
a]., 19901. Since predators, such as lobsters, often inhabit 
crevices and only emerge to feed at night, foraging is di- 
rectcd principally lly chemical stimuli, rather than visual 
or mechanical stimuli. ATP is detected in prey organ- 

isms, such as mussels and oysters, which contain high 
conccntrations of nucleotides and arc released when the 
animal dies [Carr and Derhy, 19861. ATP acts as an effec- 
tive signal molecule in seawater, since mechanisms exist 
in seawater that minimise the presence of background 
ATP levels that might represent a false indication of thc 
prescncc of food [Zimnier-Faust e t  al., 19881. These 
nicchanisms include ctepliosphoiylating enzymes present 
on the outer surfaces of many planktonic organisms which 
quickly degrade nucleotides released into the sea 
[Amnierman and Azani, 19851 in addition to nucleotidascs 
in tissues that rapidly dephosphorylate ATP after death 
[Zinimcr-Faust, 19873. Hence the presence of appreciable 
concentrations of ATP in seawater may provide a reli- 
able indicator that an injured or freshly killed prey is 
nearby. While ATP is a potent attractant, AMP has an 
inhibitory effect on some lobsters [Gleeson et al., 1989; 
Zimmer-Falist, 19931 and may therefore act to direct the 
predator towards only fresh prey. For those predators in 
which AMP acts as the attractant [Carr and Thompson, 
1983; Derby et al., 1984; Carr et al., 19871, the rapid break- 
down ofA’TP to AMP may account for this. AMP is found 
to be the most potent chenioattractant of Octopus vul- 
garis, initiating a locomotor response. The arms are be- 
lieved to carry the sensory organs, chemoreceptors having 
been morphologically identified in the suckers [Chase 
and Wells, 19861 which would direct the arms towards 
the nieal. Modulatory actions of AMP and adenosine were 
recorded in brain cells of the spiny lobster [Derby et al.. 
1987; Derby, 19871; A M P  was the most potent ofthe pii- 
rincs cxamined and its effect was antagonizcd hy theo- 
phyllinc. Olfactory purinoceptors have also been 
identified in the shrimp Pulaemonetes pugio [Carr and 
Thompson, 1983; Carr and Derby, 19861 and blue crab 
Callinectes supidus [Buch and Rechnitz, 19891. 

In lobsters and other decapod crustaceans, the sites 
of olfaction and gustation are anatomically distinct, the 
former in the antennules, the latter on the walking legs, 
maxillipecls and mouthparts; the sensilla on the walking 
legs of the spiny lobster, Punulirus argus, have also been 
shown to possess ATP- and AMP-sensitive cells as well 
as enzymes that dephosphorylate purine nucleotides 
[Glccson et al., 19891. 

Extracellular ATP has been shown to modulate cal- 
cium uptake and transmitter release from neuromuscu- 
lar junctions in the walking leg of the crayfish, 
Procumburus clurkii [Lindgren and Smith, 19871, remi- 
niscent of purinergic modulation of transmitter release 
at the skeletal neuromuscular junction of vertebrates 
[Ribeiro and Walker, 1975; Redman and Siliiisky, 19931. 

The inhibitory effects of ATP on the heart of the 
spiny spider crab, Maiu, wcx-c reported iiiariy years ago 
[Welsh, 19391. ATP potentiates the effects of electrical 
field stimulation of neiirons in the terminal intestine of 
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the lobster Panulirus argus via a P2-like purinoceptor 
[Hoyle and Greenberg, 19881. 

Arteinia is a crustacean whose embryos become 
encapsulated at the gastrula stage. The cysts are viable 
for years in a dry environment. When placed in a suit- 
able saline medium, the eggs resume their development 
and differentiate into free swimming larvae at about 24 
h. During this time, Artemia uses the maternal stored 
diguanosine tetraphosphate (Gp,G) as a source of gua- 
nine and adenine nucleotides during development from 
encysted gastrulae to free swimming larvae [Finamore 
and Clegg, 1969; Sillero and Sillero, 1987; Warner, 19921. 
Artemia cysts contain the appropriate enzymatic machin- 
ery for the conversion of Gp4G into AMP and GMP 
[Prescott et al., 19891. However, Artemia is apparently 
unable to synthesize purines de novo [Clegg et al, 19671 
and the larvae depend on a balanced dietary source of 
purines (nucleotides, nucleosides, or bases) for growth 
and survival to adulthood [Hernandarena, 1985, 1990; 
Sillero et al., 19931. 

Insects 
ATP released from erythrocytes stimulates the gorg- 

ing response in a variety of blood-feeding insects such as 
the mosquitoes Aedes uegypti and caspius, Culex pipiens 
univittatus and quinyuefasciatus and Culiseta inornatu, 
the blackfly, Sirnulium venusturn [Sutcliffe and McIver, 
19791, the horse fly, Tabanus nigrovittutus [Friend and 
Stoffalano, 19841, the stable fly, Stornoxys calcitrans, 
the tsetse fly, Glossina austeni morsitans, tachinoides, 
and palpal i s ,  the bug, Rhodnius prolixus and the 
haematophagous ticks, Zxodesdarnrnini and Boophilus 
inicroplus [Hosoi, 1959; Galun et al., 1963,1985,1988; 
Galun and Margalit, 1969; Friend and Smith, 1975, 
1977; Smith, 1979; Ribeiro et  al., 1985; Willadsen et al., 
1987; Ellgaard et al., 1987; Ascoli-Christensen et al., 1991; 
Liscia et al., 1993; Moskalyk and Friend, 19941. 

Electrophysiological methods have been used to 
demonstrate that the apical sensilla of the labrum ofCulex 
pipiens house the ATP receptors involved in blood feed- 
ing [Liscia et al., 19931. Novobiocin, which blocks ATP 
access to its binding site on ATPase, inhibits the gorging 
response [Galun et al., 19851. The EDjo ofATP for Glos- 
sina tuchinoides females is 13 nM, while for males it is 
140 nM; this level of sensitivity for detecting ATP is the 
highest recorded for an insect [Galun and Kabayo, 19881. 

Other chemosensory P2-purinoceptors have been 
identified that are involved in the recognition of a blood 
meal in haematophagous insects. These represent a het- 
erogeneous group. Many hlood-feeding insects recognize 
ATP and related compounds as phagostimulants. In mos- 
quitoes and tsetse flies, ATP is found to be more potent 
than ADP at stimulating feeding while AMP is a very 
poor phagostimulant, indicating an ATP-selective P2- 

purinoceptor [Galun et d., 1963,1985; Galun and Margalit, 
1969; Mitchell, 1976; Galun and Zacharia, 19843. A similar 
ATP-selective receptor mediates the phagostimulatory 
response of Glossina tachinoides [Galun, 19881 and 
Rhodnius prolixus larvae, suggesting that this response 
is not limited to the adult form [Smith, 1979; Friend and 
Smith, 19821. Further investigations have revealed that 
the receptor can be subclassified; a,P-meATP and P,y- 
meATP are less potent than ATP as phagostimiilants in 
G. palpulis palpalis suggesting that the receptor may be 
tentatively classified as a PZY-purinoceptor [Galun and 
Kabayo, 19881. A similar order of potency is found for 
Rhodnius prolixus [Friend and Smith, 198.21. However, 
since 2meSATP, which is a more selective P2Y- 
purinoceptor agonist, has not been investigated, the clas- 
sification of this receptor is still uncertain. 

A P2-purinoceptor has also been identified that 
inititates feeding of the culicine mosquitoes Culex pipiens 
and Culiseta inornatu. The potency order was found to 
be ADP >ATP=AMP>P,y-meATP for C. pipiens and 
ADP>ATP>P,y-meATP> >AMP for C. inornata [Galun 
et al., 19881. ADP is also found to be the most potent 
phagostimulant of the horsefly Tabanus nigrovittatus 
[Friend and Stoffolano, 1983, 19841. ADP-selective re- 
ceptors, termed PzT-purinoceptors, have h e n  identified 
in mammals [Gordon, 19861. However, the ADP-selec- 
tive receptor of the haematophagous insects differs from 
the mammalian receptor where ATP acts as a competi- 
tive antagonist [Macfarlane and Mills, 19751. ATP behaves 
as an agonist at the insect receptor. The potency orders 
of the purine nucleotides vary considerably between dif- 
ferent groups of haematophagous insects; however, 
closely related species usually show a similar structure- 
activity relationship. It has been suggested that a pre- 
existing pool of nucleotide-binding proteins, present in 
all living cells, served as a source of the receptor pro- 
teins for the gustatory receptors involved in blood detec- 
tion and that the selection of any such nucleotide bindng 
protein was random [Galun, 19871, perhaps accounting 
for the variety of receptor profiles found among the 
haematophagous insects. 

The potency order of various adenine nucleotides 
suggests the receptor involved is of the P2-subtype [see 
Galun, 1987, 1988; Galun et al., 19881 (Table 2). In the 
tsetse fly Glossina palpalis, P2-purinoceptor stimulating 
gorging has been identified as being of the P2Y-subtype 
[Galun and Kabayo, 19881; in contrast, in the stable fly 
the ATP-mediated response is antagonised by ANAPP3, 
suggesting a receptor that resembles the P2X-purinocep- 
tor subtype [Ascoli-Christensen et al., 19'311. The P2- 
purinoceptor of G. morsitans morsitans was not classified 
further, although it was noted that the phosphate chain 
was of importance [Mitchell, 19761. Both AMP and ATP 
were also found to be potent chemoattractant s, with equal 
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TABLE 2. Gorging Response of the Tsetse Fly, Glvssia fachinvides, to 
Adenine Nucleotides* 

Compound No. flies EDSO (1M) ED85 

Females 
ATP 240 0.01 3 (0.007-0.024) 0.20 (0.1 0-0.42) 
ADP 210 0.063 (0.034-0.15) 1.30 (0.50-3.8) 
AMP 135 69.5 (36.4-1 33) 1060 (308-3640) 
None 7 05 27% fed 

Males 
ATP 180 0.14(0.12-0.19) 0.56 (0.31 -1.02) 
None 30 7% fed 

*Figures in parenthesis are 95% confidence limits. Reproduced from 
Calun, 1988. 

potency, for the larvae of Culex yuinyuefusciutus, although 
unlike the adult stage, the phosphate chain is not as im- 
portant, since adenosine was found to be a moderate 
chemoattractant [Ellgaard et al., 19871. It is fascinating 
that apyrase (ATP diphosphohydrolase), a general desig- 
nation for enzymes that hydrolyze ATP and ADe has been 
reported to have exceptionally high activity in the sali- 
vary glands or saliva of blood sucking insects, includ- 
ing the bug Rhodnius prolixus [Ribeiro and Garcia, 
1980; Smith et al., 1980; Sarkis et al., 19861, tsetse fly 
[Mant and Parker, 19811, mosquito [Ribeiro et  al., 
19841, and sandfly [Ribeiro et a]., 19861. In  all cases, 
since ADP induces platelet aggregation, hreakdown 
of ADP hy apyrase leads to enhanced haemorrhage 
and more effective lilood sucking [see Ribeiro, 19951. 
In ticks, where each engorgement generally extends 
over severaI days, the saliva has antiinflammatory and 
immunosuppressive properties as well as platelet anti- 
aggregative apyrase and Mg‘*+/ATPase [Ribeiro et a]., 
198s; Willadsen eta].,  19871. 

The involvement of purines in the recognition of a 
blood meal in haematophagous insects is interesting. Both 
platelets and red blood cells (RBC) release ATP and ADP 
as a result of wounding [Mills and Thomas, 1969; Born, 
19771; which source offers the stimuliis to feed depends 
on the insect in question, some species are more sensi- 
tive to ATE while others are more sensitive to ADE For 
instance, ATP released from RBC preferentially induces 
Rhodnius prolixus to gorge, since plasma, which contains 
little ATP [Bishop et al., 19591, is considerably less effec- 
tive than a suspension of washed erythrocytes [Smith, 
19791. The potency ofthe erythrocyte suspension is as- 
sociated with RBC contents rather than the erythrocyte 
membrane, since RBC ghosts are ineffective as gorging 
stimulants [Smith, 19791. It is suggested that the release 
of ATP from RBC close to the mouth sense organs act as 
the feeding stimulant. Platelets also contain quantities of 
ATE both ATP and ADP are released into the plasma by 
appropriate triggers such as wounding [Holmsen, 19721 

and platelets have been implicated as the gorging stimu- 
lus of Aedes tzegypti [Galun and Rice, 19711. 

Taste cbemosensilla sensitive to nucleotides have 
been identified in some non-haematophagous insects, 
for example, in the omnivorous common blowfly, 
Phurmiu reginu [Daley and Van de Berg, 1976; Liscia, 
1985; Liscia et al., 19871. In this species, ATP does 
not have a direct stimulatory action, hut rather inodu- 
lates the responses of the labilla sensilla; it reduces 
the responses to NaCl and fructose, but enhances re- 
sponses to sucrose and glucose [Liscia, 19851. Cyclic 
AMP inhibits neuronal firing ofthe labellar sugar sen- 
sitive receptor of the blowfly when applied in con- 
junction with the stimulant sucrose [Daley and Van 
de Berg, 19761. ATP has also been reported to be a 
feeding stimulant in a flea, Xennpsyllu chenpis [Galun, 
19661 and a tick [Galun and Kindler, 19681. 

Adenosine stimulates feeding in the African army- 
worm Spodopteru exemptu; this larva of an owlmoth ex- 
clusively feeds on grasses [Ma, 19771. Other purines and 
pyrimidines have no such phagostimulatory activity in- 
dicating an adenosine-selective receptor. The function 
of the styloconic sensilla in determining the chemosen- 
sitivity to adenosine in this animal was examined by Ma, 
who found that addition of a ribose group to thc N6 posi- 
tion of the adenine molecule greatly enhances its effec- 
tiveness as a stimulus. D-ribose itself failed to excite any 
receptor cell in the lateral sensilla, but did stimulate some 
neurons in the medial sensilla. 

Adenosine inhibits adenylate cyclase in the pupa1 
fat body of the silkworm, Bornbyx rnori with characteris- 
tics comparable to those known for neuroinuscular ad- 
enosine receptors, Al subtype [Morishima, 19801. 

Echinodermata 

This pliylum includes the starfishes, sea urchins, 
brittle stars, feather stars, and sea cucumbers. The adults 
have acquired a large measure of radial symmetry (usu- 
ally five-rayed) and often an ectoskeleton develops. There 
is a water vascular system which is linked to the tube 
feet assisting in locomotion as well as a ‘perihaemal’ blood 
vascular system which is less extensive. The nervous sys- 
tem consists of a nerve ring around the oral part of the 
gut with projections along the radii. Many echinoderms 
have a deeper-lying motor nerve component. 

There are several reports of the ef’fects of purine 
compounds on echinoderms. In a review of several ma- 
rine species, Hoyle and Greenberg [1988] found that ad- 
enosine, AMP, ADP, and ATP all relaxed the gastric 
ligament of the starfish, Asteriusforbesi with ATP being 
the most potent of the purines examined. 

In a later study, Knight et al. [1990] showed that, in 
the precontracted gastric ligament in the starfish, Asterias 
rubens, the relaxation to ATP was antagonized by glib- 
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enclaniide; in contrast, relaxation to adenosine, which was 
equipotent to ATP in this species, was not blocked b y  
glibenclamide, supporting the view that separate recep- 
tors for adenosine and ATE comparable to P I -  and 
P2- purinoceptors of vertebrates, exist in the echino- 
derms. However, the antagonists for P1- and P2-pu- 
rinoceptors, effective in most mammalian preparations, 
8-phenyltheophylline (8-PT; for P1-purinoceptors), Re- 
active Blue 2 (for P2-purinoceptors) and desensitization 
of the P2-purinoceptors with a,P-meATP were ineffec- 
tive in the starfish preparations [Hoyle and Greenberg, 
1988; Knight et al., 19901. It is not clear why glibenclamide, 
which is a potent inhibitor of ATP regulated-K+ channels 
in mammalian preparations, is effective in antagonking re- 
sponses of the starfish gastric ligament to ATE: but it does 
suggest that glibenclamide may be a useful tool for ex- 
amining purinoceptor subtypes in invertebrates. The cir- 
cular and longitudinal muscles from the polian vesicle of 
the sea cucumber, Thyone briareus relaxed to ATE: but 
not to adenosine, AMP and ADE: suggesting an ATP-spe- 
cific receptor [Hoyle and Greenberg, 19881; however, the 
rectum of the sea urchin, Lytechinus variegatus, con- 
tracted equipotently to all four purine compounds which 
may indicate a non-selective receptor or the presence of 
both P1 and P2 receptors which can only be confirmed 
b y  the use of selective antagonists. ATP produces tonic 
contractions of the spine muscle of the sea urchin, 
Anthocidaris crassispina [ Shingyoji and Yamaguchi, 19951. 

Other diverse effects of purine compounds have also 
been identified in echinoderms. For instance, adenosine 
inhibits the growth of fertilized eggs of the starfish, 
Asterina pectinqera, at the early blastula stage, specifi- 
cally at the 256-cell stage; adenosine causes more than a 
95% reduction in the rate ofprotein, DNA and RNA syn- 
thesis [Tsuchimori et al., 19881. Effects are not limited to 
the blastula stage; muscular activity of sea urchin 
Psamrnechinus miliaris larva is stimulated by adenosine 
[Gustafson, 19911. 

ATP and its stable analog AMP-PNP modulate 
flagellar motility of the sea urchin Lytechinus pictus, 
[Brokaw, 1975; Penningroth and Witman, 1978; Omoto 
and Brokaw, 19893. This effect has been interpreted 
largely in terms of the intracellular actions of ATE the 
possibility that extracellular P2-purinoceptors are in- 
volved needs to be considered. 

lower Vertebrates 

The vertebrates, which are a sub-phylum of' 
Chordata, are characterized by the presence of a noto- 
chord at some time during their life-history and a high 
degree of cephalisation so that a proper head region is 
recognisable, with a definite brain enclosed by a cranium. 
The group contains two superclasses: Agnatha, of which 

the cyclostomes comprise one class, and Gnathostomata, 
encompassing all the more familiar vertebrates, includ- 
ing elasmobranchs, teleosts, amphibians, reptiles, birds, 
and mammals. 

Cyclostome Fish 

These are primitive cartilaginous fish and include 
the lampreys and hagfish. In the hagfish Myxine gluitinosa 
adenosine has been observed to dilate the isolated bra- 
chial vasculature, although it had no effect on the heart 
[Axelsson et al., 19901. Specific binding of the P1 (A,) 
adenosine receptor ligand [3H]cyclohexyladenosine 
(CHA) to membrane fractions from the brain of the hag- 
fish, Eptatretus deani, was demonstrated as well as in elas- 
mobranch and teleost fish, but not from the brains of 
arthropods or molluscs [Siebenaller and Murray, 19861. 

Elasmobranch Fish 

There are various reports of the effect of purine 
compounds within this group of cartilaginous fish, includ- 
ing reactivity in both the gastrointestinal and cardiovas- 
cular systems. The spontaneous activity in various 
preparations of elasmobranch gut is inhibited by ATE: 
such as the stomach and spiral intestine of the ray Raja 
clavata and the dogfish, Scyliorhinus canicula, and rec- 
tum of Raja [Young, 1983, 19881. ATP was reported to 
cause contraction or relaxation of the stomach of the dog- 
fish [Young, 19801, contraction of the stomach of the ray 
[Young, 19831 and relaxation of the rectum of the skate 
[Young, 19881. Both Al- and A,-adenosine P1.-purinocep- 
tor subtypes have been identified in the rectal gland of 
the shark, Syualus acanthias, which modulate hormone 
stimulated chloride transport [Kelley et al., 1990, 1991; 
Forrest and Kelley, 1995; Forrest, 19961. 

An inhibitory PI-purinoceptor has becn identified 
in the atria of the dogfish S. canicula [Meghji and Burn- 
stock, 1984al and the possibility of purinergic modula- 
tion of vagal control of the heart of S. stellaris has been 
investigated [Taylor e t  al., 19931; in another species of 
dogfish, Squalus acanthias, both Al- and A2-subtypes of 
receptor have been characterized in the aorta [Evans, 
19921. In the coronary artery of the skate Raja nasuta, 
adenosine causes vasoconstriction, while ADP and ATP 
cause vasoconstriction at lower concentrations, but va- 
sodilatation at higher concentrations [Farrell and Davie, 
1991bI; in the dogfish 10 FM ATP produced contraction 
followed by relaxation [Farrell and Johanson, 19951. In 
contrast, in the coronary artery of the mako shark, Isurus 
oxyrinchus, adenosine is a dilator, as in the dogfish, and 
ADP a vasoconstrictor; theophylline inhibited both the 
adenosine-mediated relaxation and the ADP-mediated 
contraction [Farrell and Davie, 1991aI. 

The electric organ of electric elasmobranch fish, 
which is phylogenetically derived from neiiromuscular 
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junctions, consists of motor nerves and electrocyte cells 
forming electroplaques that are derived from myolilasts. 
Synchronous discharge of the electrocytes by motor nerve 
stimulation produces a total discharge of about 40 V; It 
has been shown that ACh and ATP are co-stored (in a 
ratio of about 5:l) and co-released during synaptic activ- 
ity of the electric organ of the electric eel, Electrophorus 
and the electric ray, Torpedo [Meunier e t  al., 1975; 
Zimmermann & Denston, 1976; Dowdall et al., 1974, 
1976; Tashiro arid Stadler, 1978; Stadler and Fuldner, 
1981). Release of ATP from syriaptosornes isolated from 
the electric organ ofTorpedo by either depolarisation with 
KCI or after the action of venom extracted from the an- 
nelid Glyceru, exhibited closely similar kinetics to that 
of ACh release [Morel and Meunier, 19811 (Fig. 9). Both 
ACh and ATP release are inhibited by the removal of 
extracellular Ca2+ or by the addition of the calmodulin 
antagonist, trifluoperazine, suggesting that ACh and ATP 
are both released by cxocytosis from synaptic vesicles 
[Schweitzer, 1987; see also Unsworth and Johnson, 1990, 
and Solsona et al., 19911, although it is interesting that 
ATP release (in contrast to ACh) is not blocked by teta- 

Fig. 9. Torpedo electric organ: ACh and ATP release from synaptosomes 
triggered by venom extracted from the annelid Clycera convoluta. Syn- 
aptosomal ACh was labelled using [I -'4Cl-acetate. Concentrated synap- 
tosomes deriving from 1.8 g electric organ were perfused with the 
physiological medium for 15 min. When a constant background radioac- 
tivity was obtained, the perfusion was switched to KCI solutions (where 
KCI replaces equivalent amounts of NaCI). Venom was used at a final 
concentration of 0.5 glandsiml physiological medium. The perfusate was 
collected by 200 pl aliquots and the efflux of radioactivity and of ATP 
determined in each aliquot. The specific radioactivity of synaptosomal 
ACh was 700 cpminmol and the ACh/ATP ratio in the synaptosomes was 
6.9. Sixty-five percent of injected synaptosomes was retained in the per- 
fusion chamber at the end of the experiment. Reproduced from Morel 
and Meunier, 1981. 

iius toxin [Rabasseda et al., 19871, and omega-conotoxin 
differentially blocks ACh and ATP release [Farias et al., 
19921. A high affinity adenosine uptake system has been 
demonstrated in the synaptosomes for reconstitution of 
stored ATP [h4eunier and Morel, 1978; Ziininerniann et 
al., 1979; Tomas et al., 19821. Isolated synapatic vesicles 
from Torpedo electric organ contain about 200,000 mol- 
ecules of ACh and about 24,000 molecules of ATP; small 
amounts of ADP are also present (10% of ATP content) 
and traces of AMP [Zimmcrmann, 19821. The diadenos- 
ine polyphosphates, Ap,A and Ap5A are both present in 
synaptic vesicles of Torpedo murmoruta and binding of 
Ap,A to P2-purinoceptors has been demonstrated in Tor- 
pedo synaptosomes [Pintor et al., 19941. Vesicles from the 
closely related Narcine electric organ contain consider- 
able amounts of GTP (17% of ATP content). One func- 
tion for the ATP is that it increases receptor sensitivity to 
ACh [Akasu et al., 1981; Schrattenholz et al., 19941, i.e.. 
it acts as a postjunctional modulator. A further role is 
that adenosine resulting from hydrolysis of ATP by 
ectoerizynies acts as a prejunctional modulator of ACh 
release [Ginsborg and Hirst, 1972; Israel et al., 1977: 
Keller and Zimmermann, 1983; Grondal and Zimmer- 
mann, 1986; Grondal et al., 1988; Sarkis et al., 19911. The 
ability of bound ectoenzymes, obtained from Torpedo 
electric organ synaptosomes to dephosphorylate ATP to 
adenosine supported this hypothesis [Grondal and 
Zimmermann, 19861. This was later further substantiated 
as a result of chemiluminescent investigations [Solsona 
et al., 19901 and studies showing that adenosine can in- 
hibit ACh release [Israel et al., 19801. A cDNA encoding 
5 '-nucleotidase was identified by screening a cDNA li- 
braiy from the electric lobe of the electric ray, Discopygv 
ornmatu using a cDNA probe for the rat liver enzynie 
[Volknandt et al., 19911; the possiblc phylogcnetic ori- 
gins of vertebrate 5 '-nucleotidase from multi-functional 
nucleotide hydrolases is described in this paper. 

Teleost Fish 

ATP and adenosine both produced relaxation of the 
intestine of the Atlantic cod, Gadus rnorhua [Jensen and 
Holmgren, 19851, and the circular muscle of the stom- 
ach of the rainbow trout, Salrno gairdneri [Holmgren, 
19831. However, ATP contracts both the longitudinal and 
circular muscle layers of the intestinal bulb of the carp, 
Cyprinus curpio [Kitazawa et al., 19901, the intestine of 
the angler fish Lophius [Young, 19831 and the intestine of 
the goldfish (Carussius uurutus) [Burnstock et al., 19721. 
Adenosine relaxed the stoinach and intestine of the stick- 
leback, Gasterosteus aculeatus, and this response was 
antagonized by 8-PT, indicating the presence of a P1- 
purinoceptor; ATP and its analogs, 2meSATE and a,P- 
meATP caused contractions of the stomach and intestine, 
indicating a P2-purinoceptor [Knight and Burnstock, 
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19931. ATP has been found to closely mimic the NANC 
responses to vagal stimulation of the pyloric caeci and 
duodenum of Lophius, even at very low concentrations, 
producing an inhibition followed by a rebound contrac- 
tion [Young, 19801. The possibility that there is a NANC 
inhibitory innervation of the gut of the brown trout Salmo 
trutta was hinted at, although the concept of NANC in- 
nervation was unknown at the time of the investigation 
[Burnstock, 1958, 19591. The ileum and rectum of the 
flounder, Pleuronectes, both possess excitatory PSX-pu- 
rinoceptors and inhibitory P1-purinoceptors [Grove and 
Campbell, 1979; Lennard and Huddart, 1989aI. 

Examples of the presence of various types of pu- 
rinoceptors within the cardiovascular system include a 
P1-purinoceptor in the gill vasculature of the rainbow 
trout, Salrno gairdneri, and of the tropical cichlid, 
Oreochromas niloticus, that mediates vasoconstriction 
[Colin and Lerajr, 1979, 1981; Colin et al., 1979; Okafor 
and Oduleye, 19861. A P2-purinoceptor is also likely to 
be present in the gill vessels since the contraction po- 
tency order of purine compounds in the rainbow trout 
was ATP=ADP>AMP=adenosine [Colin and Leray, 
19791, while ATP produced vasodilatation in cichlid 
[Okafor and Oduleye, 19861. ATP constricts the systemic 
vasculature of the rainbow trout [Wood, 19771. ATE ADP 
and adenosine contract the coronary artery of both the 
rainbow and steelhead trout probably via Pl-purinocep- 
tors [Small and Farrell, 1990; Small et al., 1990; Farrell 
and Johansen, 19951. 

The action of adenosine on the heart of the carp, 
Cyprinus carpio, mimics that observed in elasmobranchs, 
actingvia a P1-purinoceptor [Cohen et al., 1981; Rotmensch 
et al., 19811. Similarly, in the flounder, Plutichthys Jlt.sus, 
adenosine causes a positive inotropic effect [ Lennard and 
Huddart, 1989133; the trout is somewhat different in that 
adenosine and ATP are equipotent both producing nega- 
tive inotropic and positive chronotropic effects [Meghji and 
Burnstock, 1984131. 

Many fish are capable of spectacular colour changes 
due to the motile activities of chromatophores, controlled 
both by nerves and by hormones. These include melano- 
phore-stimulating hormone (MSH) secreted from the in- 
termediate lobe of the pituitary giving rise to darkening, 
often antagonized by melanin-concentrating hormone 
(MCH) which causes blanching by aggregation of pig- 
ments [see Fujii and Oshima, 19861. A role for purines in 
the neural control of fish chematophores was first sug- 
gested by Fujii and Miyashita [1976], in a study of dis- 
persion of melanophore inclusions in the guppy, Lebistes 
reticulatus. This was confirmed later with cultured gold- 
fish erythrophores [Ozato, 19771. Since niethylxanthines 
antagonize the darkening reaction, it was concluded that 
an adenosine receptor was involved in the responses of 
melanosomes in the siluroid catfish, ParusiEurus 

(Miyashita et al., 1984), of both melanophores and 
iridophores in the blue damselfish, Chrysiptera cyanea 
[Kasukawa et al., 1985, 1986; Oshima et a]. ,  1986a1 and 
ofleucophores in the medaka [Oshima et al., 1986111. In 
more recent studies of denervated melanophores in the 
medaka, Orzjnias latipes, the potency series for melano- 
phore dispersion was: NECA>adenosine>ATP > 2 -  
chloroadenosine (2-CADO) > R-PIA>CHA>cAMP; this 
effect was antagonized by 8-PT and by adenosine deami- 
nase and the action of adenosine was mimicked by  for- 
skolin, a potent activator of adenylate cyclase [Namoto, 
1987, 19921. It was concluded that the P1-purinoceptor 
involved was of the A2 subtype. Evidence that ATP is 
liberated as a cotransmitter together with noradrenaline 
from melanosome aggregating sympathetic nerves in the 
tilapian fish, Surotherodon niloticus, has been presented 
[Kumazawa et al., 1984; Kumazawa and Fujii, 1984,19861. 
It seems likely that ATP released from sympathetic nerves 
is broken down by ectoenzymes to adenosine which then 
acts on P1-purinoceptors both on chromatophore mem- 
branes leading to dispersion of pigment, and also on 
prejunctional sites leading to modulation of sympathetic 
transmitter release [Oshima, 19891. In a more recent 
study, Fujii and his colleagues [Hayashi et al., 19931 found 
that the circadian motile activity of erythrophores in the 
red abdominal skin of the tetra tropical fish Paracheirodon 
innesi and axeZrodi are controlled partly by ATP and 
adenosine. 

Within the brain of the goldfish, Carussius uuratus, 
the presence of adenosine binding sites has been dem- 
onstrated with the characteristics of the A,,  but not the 
Aza P1-purinoceptor subtype [Lucchi et al., 1992; Rosati 
et al., 19951, which is claimed to inhibit glutamate re- 
lease from the cerebellum [Lucchi et al., 19941. In two 
congeneric marine fish, it has been found that the bind- 
ing properties of the Al-receptors are different, the re- 
ceptor of the shallow-living Sebustolobus alascunus 
exhibiting a high affinity for the Al adenosine ligand, 
whereas the Al-receptor in the deeper-living S. altiuelis, 
exhibits a significantly lower binding affinity [Murray and 
Siebenaller, 19871. Low temperatures and high hydro- 
static pressures are typical of the deep sea; however, sig- 
nal transduction by the Al purinoceptor system of the 
bathyal deep living fish Antimura rostratu is not disrupted 
by deep sea conditions [Siebenaller and Murray, 19901. 
In goldfish exposed to warmth, the increase in locomo- 
tor activity is associated with increased uptake and re- 
lease of adenosine from cerebellar slices, suggesting a 
compensatory role for adenosine in excitatory control of 
motor centres [Poli et al., 19951. 

A NANC inhibitory response to electrical stimula- 
tion has been observed in the urinary bladder of the cod 
Gadus morhua; ATP has an excitatory effect on about half 
of the bladder preparations examined and was included 
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as a putative candidatc for the NANC transmitter [ Lundin 
and Holmgren, 19863. 

There is evidence that soine fish are attracted to 
purine compounds in a manner similar to that ofcarnivo- 
rous crustaceans. Chemoreceptors on the lip ofthe puffer 
fish Fog0 pundalis exhibit an especially high sensitivity 
for ADIj and are thought to direct the fish to food sources 
[Kiyohara et al., 19751. 

Amphibia 
Evidence was presented in the early 1970's that 

ATP was a transmitter in the NANC nerves supplying 
the toad stomach [Burnstock et al., 1970; Satchel1 and 
Burnstock, 19711, duodenum and ileum [Burnstock et al., 
19721. ATE ADrj and AMP were shown to be released 
upon stiniulation of vagal NANC fibres and ATP mim- 
icked the relaxation in response to nerve stimulation. 
Evidence that ATP is the transmitter substance rcleased 
from NANC excitatory fibres in the splanchnic nerves 
supplying the small intestine of the toad was also pre- 
sented, where again responses to nerve stiniulation were 
mimicked by ATP [Sneddon et al., 19731. Cultures ofcili- 
ated cells from the frog oesophageal epithelium and pal- 
ate have been used as a model for studying the role of 
ATP in control of mucociliary activity. A'TP in micromo- 
lar concentrations increases the ciliary activity by 3 4 -  
fold in frequency and 4-5-fold in the rate of transport, as 
well as stimulating mucin release [Ovadiahu et al., 1988; 
Gheber and Priel, 19943. ATP hyperpolarizes thesc 
cells [Tarasiuk et  al., 19951. Studies using 3,-0-(4- 
benzoyl)benzoylA1P (BzATP) as a photoaffinity label 
for the ATP receptor involved were claimed to suggest 
the participation of two labelled proteins with molecular 
masses of 46 and 96 KDa (P46 and P96) in the stimula- 
tory effect of ATP on the ciliary beat [Gheber et al., 19951. 
Another study suggested that the extracellular ATP-in- 
duccd changes in both ciliary beat frequency and mem- 
brane fluidity are triggered by similar signal transduction 
pathways [Alfkihel et al., 19961. 

Adenosine exerts effects on the amphihian heart in 
a nianner similar to its effect upon the mammalian heart, 
having negative chronotropic and inotropic effects, mim- 
icking the response to ACh by slowing the heart. This 
has been ohserved in the hearts of the frogs, R a m  ridi- 
bumla [Lazou and Beis, 19873, R. pipiens [Hartzell, 19791, 
R. temporuriu [Burnstock and Meghji, 19811, and R. 
cutesbiawu [Yatnni et al., 1978; Goto et al., 19811. In con- 
trast, ATP lias excitatory effects, increasing the force and 
rate of the heart beat [Cook et al., 1958; Goto et al., 1977; 
Burnstock arid Meghji, 1981; Hoyle and Biirnstock, 1986; 
Bramich et al., 19901. Currents activated by extracellular 
ATP were studied on single voltage clamped bullfrog 
atrial cells; two ATP-activated conductances were dem- 
onstrated [Friel and Bean, 19881. In frog ventricular cells, 

P2-purinoceptors stimulate increases in Ca current by a 
pathway that might involve phosphoinositide turnover 
[Alvarez et al., 19901. It has been shown that under cer- 
tain conditions of physiological strcss, such as hypoxia, 
ATP is released from the heart [Paddle and Burnstock, 
1974; Doyle and Forrester, 19851. Thus, ATP is available 
to directly modulate activity, and indirectly after degra- 
dation to adenosine, which in itself has been found to 
mediate a protective influence on the frog heart against 
periods of reduced calcium availability [Touraki and 
Lazou, 19921. It has been shown that frog atria receive a 
NANC excitatory innervation [Donald, 19851. ATP has a 
biphasic action, initial excitation followed by inhibition 
[Flitney et al., 19771, the excitatory effects bcing medi- 
ated by Pe-purinoceptors, while the inhibitory effects are 
mediated by PI-purinoceptors following the degradation 
of ATP to adenosine [Burnstock and Meghji, 19811. The 
excitatory responses to ATP partially mimics NANC 
stimulation of the frog and toad heart where it is believed 
that ATP is a cotransmitter with adrenaline [Hoyle and 
Burnstock, 1986; Bramich et al., 19901 acting on P2X- 
purinoceptors. ATP also has a biphasic action on the heart 
of the axolotl Ambystornu inexicunurn [Meghji and Burn- 
stock, 1983bI. Unlike fish, the amphibian ventricle is sen- 
sitive to adenosine and ATE For instance, adenosine 
excites ventricular muscle of the toad Xenopus Zaevis 
[Meghji and Burnstock, 1983~1 but is inhibitory in the 
axolotl [Meghji and Burnstock, 1983b1 whereas in the 
frog, ATP is excitatory [Flitney and Singh, 1980; 
Burnstock arid Meghji, 19813. ATP in the niicromolar 
range had two types of effect on isolated myocytes from 
the frog ventricle: it acted through PI-purinoceptors af- 
ter breakdown to adenosine to antagonize the increase 
in Ic,, elicited by  P-adrenoceptor stimulation; and directly 
through P2-purinoceptors (probably the P2Y-subtype) to 
increase Ici, [Alvarez et al., 19901. 

Descriptions of the effect of purine compounds 
on amphibian vascular preparations are somewhat lim- 
ited. However, a prejunctional adenosinc receptor 
revealed to be an A,-adenosine receptor has been iden- 
tified, which inhibits sympathetic nerve activity to the 
frog cutaneous muscle arterioles resulting in vasodilata- 
tion [Fuglsang and Crone, 1988; Fuglsang et al., 19891. 
In addition, stimulation ofvagal NANC fibres in the toad 
Bufo rnaiiiaus mediates a fall in vascular resistance, al- 
though the transmitter is as yet unidentified [Campbell, 
19711. In a recent study of purinoceptors in the aorta of 
the frog, Runa ternporuria, Knight and Burnstock [1995h] 
concluded that there appears to be a novel subclass of 
PI-purinoceptor mediating vasodilatation which, like 
the rat A:, subclass, is not blocked hy niethylxanthines; 
they also identified a P2-purinoceptor that mediates 
vasoconstriction that resembles a P2X subtype in 
ternis of agonist potencies and is antagonized b y  
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PPADS. However, no evidence for a P2Y-purinoceptor 
mediating vasodilatation was found. 

Purine compounds also have effects on preparations 
from amphibian tissues other than those of the gas- 
trointestinal and cardiovascular systems. Vagal stimula- 
tion of the visceral muscle of the lung of Bufo rnarinus is 
purely inhibitory and the transmitter unknown, although 
ATP was proposed as a candidate [Campbell, 19711 and 
it had been shown that ATP caused relaxations of the lung 
preparation [Meves, 19531. ATP has recently been shown 
to activate membrane current in frog Schwann cells 
[Vinogradova et al., 19941, perhaps playing a role in neuro- 
glial interactions, since perisynaptic Schwann cells at the 
frog neuromuscular junction showed increases in intrac- 
ellular calcium during motor nerve stimulation, an effect 
mimicked by local application of ATP [Jahromi et al., 
1992; Robitaille, 19951. Injections of ATP into the third 
ventricle of the mud puppy, Necturus muculosus, elic- 
ited dose-related increases in thermal tolerance [Ritchart 
and Hutchison, 19861. Adenosine inhibits a-melanocyte- 
stimulating hormone (a-MSH) from frog pituitary 
melanotrophs, suggesting that Al-purinoceptors may play 
a physiological role in the regulation of hormone release 
from the intermediate lobe of the pituitary [Chartrel et 
al., 19911. An inhibitory action of adenosine on electrical 
activity of frog pituitary melanotrophs mediated via Al- 
purinoceptors has been reported [Mei et al., 19'341. ATP 
regulates a quinidine-sensitive K+ conductance in single 
proximal tubule cells isolated from frog kidney [Lynch 
and Hunter, 1994; Robson and Hunter, 19951. P2Y-re- 
ceptors on A6 epithelial cells derived from renal distal 
tubules of Xenopus Zaevis mediate increases in intracel- 
lular Ca2+ concentrations by releasing Ca2+ froni intrac- 
ellular stores [Mori et al., 19961. 

Many years ago, Buchthal and Folkow [1944] in- 
jected ATP into the sciatic artery supplying the gastroc- 
nemius muscle of the frog and reported tetanus-like 
contractions; they also observed that the sensitivity of 
the preparation to ACh was greatly increased by previ- 
ous application of ATE This postjunctional potentiation 
of ACh responses by ATP was later confirmed in bullfrog 
sympathetic ganglia [Akasu et al., 1981, 1983a,b] and in 
developing Xenopus neuromuscular synapses in culture 
[Igusa, 1988; Fu and Poo, 1991; Fu et al., 1993; Fu, 1994; 
Fu and Huang, 19941. The effect of ATP is apparently 
mediated by the activation of cytosolic protein kinases 
and requires the influx of Caz+ through the plasma mem- 
brane. In addition, a further purinergic involvement in 
transmission at the frog neuromuscular junction was rec- 
ognized, namely modulation of ACh release via 
prejunctional P1-purinoceptors. Both end plate poten- 
tials (epps) in response to nerve stimulation and sponta- 
neous miniature epp's were reduced by adenosine 
[Ginsborg and Hirst, 1972; Ribeiro and Walker, 1975; 

Silinsky, 1980; Ribeiro and SebastiHo, 1987; Branistcanu 
et a]., 1989; Hirsh et al., 1990; SebastiHo and Ribeiro, 
1990; Bennett et al., 1991; Silinsky and Solsona, 1992; 
Hunt and Silinsky, 19931. Examination of the actions of 
adenosine analogs suggested that this presynaptic PI-pu- 
rinoceptor may be of the Al-subtype [Barry, 19901, al- 
though this has been debated [SebastiHo and Ribeiro, 
19891. Later it was shown that ATP was released together 
with ACh from motor endings [Silinsky and Hubbard, 
1973; Silinsky, 19751 where it could then act as a 
postjunctional potentiator of ACh action, and following 
breakdown by ectoenzymes to adenosine [see Cunha and 
Sebastibo, 1991; Cascelheira and SebastiHo, 19921, to act 
prejunctionally to inhibit ACh release [Silinksky and 
Redman, 19961. 

ATP has been implicated as a synaptic transmitter 
in both sympathetic and sensory ganglia. After an early 
paper where high concentrations of adenine nucleosides 
and nucleotides were shown to have depressant and 
hyperpolarising actions on both dorsal and ventral root 
neurons in isolated hemisected perfused toad spinal cords 
[Phillis and Kirkpatrick, 19781, ATP was shown to clepo- 
larize bullfrog sympathetic ganglion cells [Nakamura et 
al., 1974; Siggins et al., 19771. ATP probably acts by de- 
creasing K+ conductance, including the M -current; ATP 
also depressed the maximum amplitude of action poten- 
tial after-hyperpolarizations and it was suggested that ATP 
released with ACh from presynaptic nerve terminals may 
act as a modulator of nicotinic transmission [Akasu et al., 
1983b]. ATP inhibits calcium current in frog sympathetic 
neurons [Elmslie, 19921. Silinsky and Ginsborg [1983] 
claimed that inhibition of ACh release from pregangli- 
onic nerves supplying neurons in the ninth lumbar sym- 
pathetic chain ganglion of the frog, Ranu pipiens, was 
largely by ATP itself rather than by adenosine after break- 
down of ATE However, in keeping with the evidence for 
synaptic transmission at the skeletal neuromuscular junc- 
tion, ATP was later shown to increase the sensitivity of the 
nicotinic ACh receptor in bullfrog ganglia cells and it was 
suggested that ATE perhaps via a P2-purinoceptor, had this 
effect by acting on an allosteric site of the ACh-receptor- 
ionic channel complex [Akasu and Koketsu, 19851. 

The concentration-dependence and kinetics of ionic 
currents activated by ATP were studied in voltage- 
clamped dorsal root ganglion cells from bullfrogs [Bean, 
1990; Bean et al., 19901. About 40% of the neurons re- 
sponded with an increase in membrane conductance, but 
showed rapid desensitization, typical of the P2X3-pu- 
rinoceptor recently described in rat dorsal root nerves 
[Chen et al., 1995; Lewis et al., 19951. Ethanol was shown 
to inhibit the ATP-activated current in dorsal root gan- 
glion cells, perhaps by increasing the apparent dissocia- 
tion constant of the ATP receptor [Li et d . ,  19931. In a 
later study, Akasu and his colleagues [Tokimasa et al., 
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19931 showed with dissociated hillfrog dorsal root gan- 
glion cells that, whereas in small C-cells ATP (1-10 pM) 
activated a sodium-potassium current, in large A-cells 
(approx. 65 pin in diameter) ATP inhibited M-current. 
In some bullfrog primary afferent neurons, ATP revers- 
ibly augmented GABA-induced depolarizations [Morita 
et a]., 19841. 

Sincc spontaneous ACh release is known to regu- 
late the clevelopment of contractile properties of the 
postsynaptic muscle cell [Kidokoro and Saito, 19881, the 
authors suggest that ATP coreleased with ACh niay serve 
as a positive trophic factor at developing rieuroniuscular 
synapses. 

Xenopus oocyte has been used in expression clon- 
ing of purinoceptors [Lotan et al., 1982, 1985; Wellb et 
al., 1993; Chen et al., 1995; Lewis et al., 1995; Bo et al., 
19951, but the follicle cells contain endogenous pu- 
rinoceptors [King et al., 1996a,b]. A receptor for adenos- 
ine was the first to be reported [Lotan et al., 1985; Dascal 
et al., 19851 which appears to be a novel subtype [King et 
al., 1996al. P2-purinoceptor activated inward currents are 
also present [King et al., 19961-33. The actions of purines 
at these receptors niay be involved in the sequence of 
cellular events that occur in early development [see Jessus 
et al., 19891. Low concentrations of extracellular ATE 
present in the perilymphatic compartment of the semi- 
circular canal of the frog, Rana pipiens, appears to play a 
role in vestibular physiology; a P2Y subtype of purinoccp- 
tor seems to be involved and Reactive Blue 2 and suramin 
antagonize the responses [Auhert et al., 1994, 19951. 

Re pt i I ia 

An excitatory NANC innervation has been identi- 
fied in the ileum of the lizard Tiliqua rugosu, stimulation 
of which can be mimicked by ATP [Burnstock et al., 1972; 
Sneddon et a]., 19131; however the subtype of P2-pu- 
rinoccptor is not known. An excitatory effect of KIP has 
also been noted in the rectum of the 1izardAgarna agarna 
[Ojewole, 1983a; Savage and Atanga, 19851 but again the 
subtype of the purinoceptor has not been identified. 

There have been few studies of purinoceptors in 
the cardiovascular system of reptiles. Wedd and Fenn 
[ 19331 reported variable responses to adenosine in the 
heart of the turtle P<seurlornys elegans, whereas all the 
purine analogues tested, including adenosine, ATI: a,P- 
rneATP and P,y-meATE proved to be inactive on either 
the atrium oi- ventriclc of the turtle Ernys orbicuturis 
[Megliji and Burnstock, 1983aI. The ionic basis of the 
hyperpolarizing action of adenyl compounds on sinus 
venosus of the tortoise heart has been examined [Hutter 
and Rankin, 19841. 

In a recent study of purinoceptors in the aorta of 
the garter snake, Tharnnophis sirtilis, Knight and Burn- 
stock [ 1995aI concluded that both PI-purinoceptors me- 

diating vasodilatation and P2-purinoceptors mediating 
vasoconstriction are present. However, in contrast to 
mammalian aorta, both P2X- and P217-subtypes mediate 
vasoconstriction; there was no evidence for vasodilata- 
tion b y  ATP or its analogues. In contrast, the portal vein 
of the rainl>ow lizard, Agarnu agarna, dilated in the pres- 
ence of ATP [Ojewole, 1983bI. Occupation of the P2- 
purinoceptor led to synthesis of prostanoids as in 
inammals [Knight and Burnstock, 1995al. 

The visceral smooth muscle of the lung of the snake, 
Tharnnophis sp., is described a s  having NANC/puriner- 
gic innervation [Smith arid Macintyre, 19791, although 
there is no evidence of the involvement of ATP or ad- 
enosine in the response. In the bladder of the sleepy 
lizard, Trachysuurus rugcisa, an atropine-resistant con- 
traction in response to nerve stimulation has been found. 
athough the transmitter substance has not been identi- 
fied [Burnstock and Wood, 19671. 

Birds 
An adenosine receptor has 1)cen identified in the 

embryonic chick heart [Hatae et al., 1989; Blair et al.. 
19891; it appears to be an Al-receptor, which can be down- 
regulated by exposure to R-PIA [Shryock et al., 19891. 

ATP is a potent dilator of vessels in the duck foot. 
where doses of 1.9-19 nmol produces falls in perfusion 
pressurc comparable to those produced by stimulation 
of dorsal metatarsal nerves [McGregor, 1979; Bell and 
Rome, 19841. ATP has also been shown to cause selec- 
tive dilatation of arterio-venous shunts in the foot of the 
chicken [Hillmaii eta]., 19821. Since the feet ofbirds form 
an area of skin devoid of insulative feathers, change in 
blood flow is used to regulate body heat as well as pre- 
venting freezing of the foot, so that purinergic receptors 
may play a part in this mechanisni. 

There is evidence for P2-purinoceptors in differ- 
ent preparations of bird gut. The oesophagus of the 
chicken contracts to ATP via a P2-piirinoceptor [Bartlet, 
19741, as does the rectum [Bartlet, 1974; Meldrum and 
Burnstock, 19851. a,P-MeATP also causes a contraction 
of the chicken rectum and is able to desensitize the exci- 
tatory response to stimulation of Rernaks nerve, indicat- 
ing that P2X-purinoceptors may be involved in purinergic 
excitatory transmission [Meldrum and Burnstock, 1985; 
Komuri et al., 19881 which has long been recognized iri 
the rectum of birds [Bartlet and Hassan, 1971 ; Burnstock, 
1972; Bartlet, 1974, 1992; Ahmad et a]., 1978; Komori 
and Ohashi, 1982, 1988; Meldruni and Burnstock, 19851. 
Recent studies have examined the effects of different ATP 
analogs on membrane currents and transduction mecha- 
nisms in voltage clamped smooth muscle cells from the 
chick rectum [Matsuoka et al., 19931. Jnhibitory NANC 
innervation of the bird stomach has also been demon- 
strated [Bennet, 1969a,b, 19701. 
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The involvement of ATP as a purinergic cotransmitter 
with ACh was first described in cultured chick myotubes 
and micromolar concentrations of ATP were shown to acti- 
vate cation channels [Kolb and Wakelain, 19831; this was 
confirmed in later studies [Haggblad et al., 1985; Hume 
and Honig, 19861. The disappearance of ATP-responsive- 
ness of developing chick skeletal muscle shortly after 
muscles become innervated and the reappearance of ATP 
responsiveness following denervation suggest that the ex- 
pression of ATP responsiveness is regulated by motor 
neurones [Wells et al., 19951. 5'-Nucleotidase activity ap- 
peared during the development of chick striated muscle 
and increased markedly post hatching; in adult muscle it 
showed a more restricted distribution [Mehul et al., 19921. 

Interestingly, ATP has also been shown to trigger 
phosphoinositide turnover in chick rnyotubes [Hiiggblad 
and Heilbronn, 1987, 19881, perhaps suggesting that P2Y- 
as well as P2X-purinoceptors are present. The later dem- 
onstration of multiple responses in chick myotubes [Hume 
and Thomas, 1988; Eriksson and Heilbronn, 19891 is con- 
sistent with this possibility. The responses to ATP show 
rapid desensitization [Thomas and Hurne, 199Oal which is 
typical of the P2XI and P2X3 subclasses of the P2X- 
ionotropic purinoceptor family [see North, 19961. In more 
recent analyses of the ion channels involved in ATP-medi- 
ated responses of chick skeletal muscle, excitation has been 
shown to be due to a simultaneous increase in membrane 
permeability to sodium, potassium, and chloride ions, and 
that only a single class of excitatory ATP-activated channels 
are involved which do not select by charge, i.e., they con- 
duct both cations and anions [Thomas and Hume, 199Ob; 
19931. The order of potency for agonists at this receptor 
was ATP =ATpyS =2meSATP >2 '-deoxy-ATP=3 ' -deoxy- 
ATP>ATP-OPO, =ADP and both 2 ',3 'dialdehyde-ATP 
and 4,4 '-diisocyanatostilbene-2,2 '-disulphonic acid 
(DIDS) were potent irreversible inhibitors; 8-Br-ATP was 
a weak antagonist, while 2 ',3 '-dialdehyde-ATP and DIDS 
were potent irreversible inhibitors [Thomas et al., 19911. 

It has been suggested that extracellular adenine 
nucleotides may be involved in the PO2-dependent regu- 
lation of red cell metabolism in late chick embryos [Koller 
et al., 19941. P1(A2) purinoceptor mediated stimulation 
of cyclic AMP in cultured chicken pineal cells has been 
reported [Falcon et al., 19951. Adenosine induced apo- 
ptosis in chick embryonic sympathetic neurones 
[Wakade et al., 19951. Adenosine has been shown to 
modulate calcium currents in postganglionic neurones 
of cultured avian ciliary ganglia [Bennett and Ho, 
1991; Bennett et a]., 19921. 

Speculations About the Evolution of 
Purinoceptor Subtypes 

While it must be recognized that it is dangerous to 
look for an evolutionary pattern in the development of 

purinoceptor subtypes from studies of modern animals, 
it seems clear that two receptor types can be distinguished 
in divergent invertebrate and lower vertcbrate groups 
that correspond to niammalian PI- and P2-purinocep- 
tors. There are exceptions, where no distinction is made 
between the responses to adenosine and ATE hut in gen- 
eral there is sufficient evidence in the existing literature 
to support the view that two distinct subclasses, one se- 
lective for adenosine and one selective for ATE exist in 
invertebrates and lower vertebrates. Tables 3-6 illustrate 
the distribution of PI- and P2-purinoceptors that have 
been identified in invertebrates and lower vertebrates. 

Identification of PI-purinoceptors relies on a po- 
tency order of adenosine >AMP>ADP= ATE supple- 
mented with the use of selective antagonists, such as 8-PT. 
However, there are few studies of P1-purinoceptor sub- 
types in invertebrate groups partly because identifica- 
tion of purinoceptor subtypes has been hindered by  the 
lack of activity of the available agonists and antagonists. 
Despite these limitations, the first record of suhclasses 
of P1-purinoceptors into A, and A2 subtypes has heen 
claimed in molluscs. Adenosine agonists such as NECA, 
PIA, CGS 21680, and CPA, which are selective for sub- 
classes of mammalian adenosine receptors, are found to 
be inert in most invertebrates. Hopefully, some of the 
new selective agonists and antagonists for Al, AzA, AzB, 
and A3 subtypes [Jacobson et al., 19961 will be applied to 
invertebrate and lower vertebrate preparations. Bind- 
ing studies of the Al-selective ligand [3H]cyclo- 
hcxyladenosine (CHA) in brain membranes were not 
positive in molluscs and arthropods, although they were 
in hagfish [Siebenaller and Murray, 19861. 

There are many examples of the presence of P2- 
purinoceptors in a variety of tissues from many inverte- 
brate groups. Identification relies predominantly on the 
selective or more potent effect of ATP compared with ad- 
enosine and the use of PI-purinoceptor antagonists to rule 
out responses to ATP due to adenosine resulting from ex- 
tracellular breakdown of ATE Identification of subtypes is 
again hindered since P2-receptor antagonists developed for 
use in mammalian systems [see Fredholm et al., 19941 some- 
times lack activity in invertebrate tissues. For instance, in 
the Sea anemone, Reactive Blue 2 has agonist properties 
[Hoyle et al., 19891 and in identified neurons of the leech, 
suramin failed to block the activity of ATP and behaved as 
an agonist [Backus et al., 19941 although it has been shown 
recently that suramin is not an antagonist at P2&- and P2&)- 
purinoceptor subtypes [Bo et al., 1995; Buell et al., 19961. 
Another problem in trying to distinguish P2X and P2Y sub- 
types is that the relative potencies of agonists depends to 
some extent on the presence or absence of powerful 
ectoATPases [see Kennedy and Lee 1995; Kennedy et al., 
19961. Thus, in the presence of Camg ATPase inhibitors 
or in single cell preparations, the classical P2X- and P2Y- 
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TABLE 3. Summary of Reports of P1 and P2 Purinoceptors and, in Some Preparations, Their Subtypes in Various Tissues From Bacteria, 
Protozoans, Coelenterates, and Molluscs 

PI Purinoceptors P2 Purinoceptors 

Ph yl u in Tissueiactivity PI (not subtyped) A, A2 A3 P2 (not subtyped) P2X P2Y 

Bacteria 

Protozoa 

Coelenterates 

Molluscs 

Inhibition of growth 
Initiation of sporulation 
Regulation of binding of enterotoxin 
Inhibition of amoeboid movement 
Increase of contractile vacuole output 
Cell aggregation 
Motility increase of ciliated paramecium 
Herniation 
Cytoskeletal organization 
Inhibition of growth of pedal disc 
Contraction of anemone pedal disc 
Maturation of nematocysts 
Ciliary reversal in ctenophores 
Activation of snail suboesophageal neurons 
Neuromodulation of transmitter release 

Excitation of heart 
Contraction of snail rectum and oesophagus 

from pedal ganglion of Mytilus 

v 

J 

J 

J 

v 
J 
J 
J 
J 
J 
J 

J 
J 
v 
v 

J 
J 

v 

Rupture of secretory glands of slug J 

(i) = inhibition; (ej = excitation. 

purinoceptor potency series [Bumstockand Kennedy, 19851 
of a,P-meATP>ATP> 2meSATP and 2meSATP> >ATP > 
a,P-meATT: respectively, need to be modified for P2X- 
purinoceptors: ATP=2meSATP> a,P-nieATP and for P2Y- 
purinoceptors: 2meSATP>ATP> a,PmATE Since little is 
known about ecto-ATPases in invertebrates and lower ver- 

tehrates [see Ziganshin et al., 19941, this must be taken into 
account in the interpretation of P2 agonist potency series 
in the lower animals. Despite these problems, there are 
records of fast P2X-purinoceptors involving ion channels 
in the nervous system ofmolluscs, annelids, and arthropods. 

One of the complications is the emerging evidence 

TABLE 4. Summary of Reports of P1 and P2 Purinoceptors and, in Some Preparations, Their Subtypes in Various Tissues From Annelids, 
Arthropods, and Echinoderms 

PI Purinoceptors P2 Purinoceptors 

Phylum Tissue/activity PI (not subtyped) A, A1 A3 P2 (not subtyped) P2X P2Y 

Annelids Depolarization of leech neurons 

Arthropods 
Stimulation of salivary cells 

Stimulation of lobster olfactory and 

Feeding behaviour 
Inhibition of crab heart 
Stirnulation of lobster intestinal neurons 
Initiation of the gorging reflex in 

Crustaceans 
gustatory chemoreceptors 

Insects 
blood suckers: 

tsetse fly 
stable fly 

Feeding stimulation in flea and tick 
Stimulation of fat body of silkworm 

Relaxation of body muscles of sea cucumber 
Contraction of rectum of sea urchin 
Contraction of spine muscles of sea urchin 

Modulation of sea urchin flagellar motility 

Echinoderms Relaxation of gastric ligament of starfish J 

J 

Inhibition of growth of fertilized starfish eggs J 

v 

J 
J 

J 

J (el 
J (i) 
J 

J 

J 
J 
I/ 

J 

J 

rc 
v 

(i) = inhibition; (ej = excitation 
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TABLE 5. Summary of Reports of PI and P2 Purinoceptors and, in Some Preparations, Their Subtypes in Various Tissues From Cyclostomes, 
Elasmobranch, Coelenterate, and Teleost Fishes 

PI Purinoceptors P2 Purinoceptors 

Vertebrates Tissue/activity PI (not subtyped) A, A2 A3 P2 (not subtyped) P2X P2Y 

Fish 
Cyclostomes 

Elasmobranchs 

Teleosts 

Dilatation of brachial vessels of hagfish I/ 
L 

Inhibition of intestinal motility in 

Contraction of stomach 
Stimulation of rectal gland of shark 
Dogfish aorta 
Coronary artery of: 

dogfish and ray 

Skate 
Mako shark 

Electric organ 
Cod, stickleback and flounder intestine 
Carp and goldfish intestine 
Rectum of flounder 
Stomach of stickleback 
Gill vessels of: 

Trout 
Cichlid 

Systemic vessels of trout 
Heart of carp and flounder and trout 
Melanophore dispersion in medaka 
Brain of goldfish (temperature 

control and locomotor activity) 
Excitation of bladder 

J (c) 

(c) = constrict/contract; (d) = dilateirelax. 

for a P2-purinoceptor subtype, both in lower animals, 
and in certain mammalian cell lines (e.g., C6 glioma cells 
[Boyer et al., 19931; DDT,-MF2-smooth muscle cells 
[Sipma et al., 19941 and in mouse C2C12 myotubes 
[Henning et al., 1993a,b], which operates via an adeny- 
late cyclase second messenger system, since one of the 
original criteria for distinguishing PI- from P2-purinocep- 
tors was adenosine action through adenylate cyclase 
[Burnstock, 1978bl. It is possible that the primitive P2- 
purinoceptor acted via an adenylate cyclase transduction 
system in parallel with PI-purinoceptors and only later 
diverged to act via inositol trisphosphate second mes- 
senger systems or ligand-gated ion channels. 

Adenosine has potent cardiovascular actions on sev- 
eral fish groups, including vasodilator and vasoconstric- 
tor actions [see Nilsson and Holmgren, 19921, with many 
striking similarities to the effect of adenosine on mam- 
malian cardiovascular systems [see Collis, 1989; Olsson 
and Pearson, 19901. Al and A2 subclasses of Pl-purinocep- 
tor first appear in elasmobranch fish; A, receptors have 
been described in amphibians. Studies of the action of 
adenosine on the gill vasculature of teleost fish, all re- 
port vasoconstriction, e.g., as in the trout Salmo gaird- 
neri [Colin and Leray, 1979; Colin et al., 19793 and tropical 
cichlid Oreochrornas niloticus [Okafor and Oduleye, 
19861. Fish ventral aorta and brachial vessels are the evo- 

v 

J 

v 
J 

v 

lutionary precursors of the pulmonary vasculature; al- 
though in mammalian pulmonary systems, such as the 
rabbit, adenosine is a potent vasodilator, acting via an A>- 
receptor [Pearl, 19941, there are also reports of vasocon- 
strictor actions of adenosine in the pulmonary bed 
[Biaggioni et al., 1989; Neely et al., 19911. 

P2X-purinoceptors have been described in teleost 
fish; separate P2X- and P2Y-purinoceptor subtypes are 
well represented in amphibians, reptiles, and birds. Car- 
diovascular P2-purinoceptors have also been identified 
in lower vertebrates which parallel those described in 
mammals [Ralevic and Burnstock, 19911 For example, 
ATP causes vasoconstriction of'the systemic vasculature 
of the trout Salmo gairdneri [wood, 19771. ATP constricts 
the coronaiy artery of the trout Oncorhynchus mykiss, 
being equipotent with ADE but more potent than ad- 
enosine, indicating a P2-purinoceptor [Small and Farrell, 
19901. The vascular rings are described as being endot- 
helium-free and may therefore correspond to the vaso- 
constrictor P2X-purinoceptor found on mammalian 
vascular smooth muscle. 

With the exception of the mussel and the turtle, vir- 
tually every examined species of invertebrate and lower 
vertebrate heart responded to adenosine or ATE and of- 
ten both, frequently mimicking the effect of adenosine 
and ATP on the mammalian heart. There is considerable 
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TABLE 6. Summary of Reports of P1 and P2 Purinoceptors and, in Some Preparations, Their Subtypes in Various Tissues From Amphibians, 
Reptiles, and Birds 

PI f'urinoceptors P2 Purinoceptors 

Tissue/activity P I  (not subtyped) A, A2 A3 P2 (not subtyped) P2X P2Y 

Amphibians Toad stomach 
Frog heart 
Frog isolated ventricular cells 
Frog ventricle 
Prejunctional modulation of sympathetic 

Frog aorta 
Toad lung 
Increases in beat frequency of ciliary cells 

from frog palate and oesophagus 
Activation of membrane currents in 

Schwann cells 
Increase in thermal tolerance after 

brain injections 
Regulation of hormone release from pituitary 
Proximal tubules of frog kidney 
Modulation in sympathetic ganglia and 

neuromuscular junction 
Toad spinal cord 
Bullfrog dorsal root ganglia 
Xenopus oocyte follicular cells 
Semicircular canal of frog 

Snake aorta 
Lizard portal vein 

Vessels of duck foot 
Chicken rectum 
Chick myotubes 
Stimulation of chicken pineal cells 
Ciliarv ganglia 

nerve activity 

Reptiles Lizard ileum and rectum 

Birds Embryonic chick heart 

v 
v 

v 

v 

v 

v 

v 

v 
v 

(i) = inhibition/relaxation/dilatation; (e) = excitation/contraction. 

evidence for P2-purinoceptors on the amphibian atria and 
ventricle. ATP causes positive inotropic effects on frog 
atrial [Goto et al., 1977; Burnstock and Meghji, 19811 and 
ventricular muscle [Flitney et al., 1977; Flitney and Singh, 
1980; Burnstock and Meghji, 19811, the excitatory ATP 
responses in the atria of the frog is inhibited by a,p- 
nieATE suggesting the presence of P2X-purinoceptors 
[Hoyle and Burnstock, 19863. 

Amphibian bladders studied so far would appear 
to possess a contractile P2X-purinoceptor with similar 
characteristics to those of mammalian urinary bladders 
[see Hoyle and Burnstock, 1985,19921. These studies also 
provide evidence for purinergic neurotransinission in the 
urinary bladders of amphibians. 

There is evidence that purines other than adenos- 
ine and ATP and also pyrimidines have activity on some 
invertebrate and lower vertebrate tissues. The purine 
guanosine 5 '-monophosphate (GMP) acts in a similar 
manner as ATE by modulating calcium conductance in 
leech salivary glands [Wuttke and Berry, 19931; it is less 

potent than ATP but may be acting via a P2-purinoceptor. 
GTP has been found to modulate ACh-induced depolar- 
ization of Buccinurn undntum proboscis smooth muscles, 
whereas ATP and adenosine are without activity [Nelson 
and Huddart, 19941. Various other purine or pyrimidine 
triphosphates including cytidine, inosine, and xanthosiiie 
(CTe ITE and XTP) stimulate chenioreceptors of crusta- 
ceans [Carr et al., 1986, 19871; similarly, the monophos- 
phates of inosine, guanosine, and cytidine (IME GMe 
and CMP) together with the triphosphates ITE GTE CTe 
and UTE all stimulate gorging of blood-feeding insects 
[Galun and Margalit, 1969; Friend and Smith, 1982; Dadd 
and Kleinjan, 19851, as does the tetraphosphate of acl- 
enosine [Galun et al., 1963,1988; Smith and Friend, 19761. 
ATP and adenosine stimulate the hearts of two molluscs, 
as does uridine, UDE and UTE cytidine, CME CDE and 
CTl? In contrast, GMP and GDP are inhibitory implying 
separate receptors [S.-R6zsa, 19681. Actions of pyrim- 
idines and purines other than adenosine and ATP have 
also been described in lower vertebrates. For instance, 
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guaiiosine 5 '-&phosphate (GDP), GMP, and GTP, to- 
gether with IMP hyperpolarize isolated toad ventral and 
dorsal root neurons, whereas ITE TTE XTE CTE UTE 
and uridine 5 '-diphosphate (UDP) depolarize the spinal 
cord [Phillis and Kirkpatrick, 19781, implying the exist- 
ence of separate receptors which have yet to be identi- 
fied. UDP and UTP have also been shown to depolarize 
explanted frog sympathetic gangha [Siggins et al., 19771, 
being more potent than TTP, GTT: GDI: ITE or IDE High 
concentrations of inosine and guanosine stimulate the 
toad ventricle [ Meghji and Burnstock, 1983~1, although 
both are less potent than ATP or adenosine. An investi- 
gation of the snake aorta [Knight and Burnstock, 1995al 
revealed a sensitivity to UTE: although its action was simi- 
lar to ATP typical of P2Yz (= PzU)-purinoceptors. Whether 
there are separate receptors for the pyrimidines or 
whether they act on P2-purinoceptors is not always clear 
from the studies performed. This problem has recently 
been recognized by the IUPHAR Nomenclature Com- 
mittee, who propose that the P2-purinoceptors be re- 
placed by P2-receptors to incorporate both purines and 
pyrimidines [Fredholm et al., 19971. 

SUMMARY A N D  FUTURE DIRECTIONS 

It is clear from this review of currently available 
information that few conclusions can be made yet, ei- 
ther about the roles of purinoceptors in ontogeny or 
about the pattern of evolution of purinoceptor sub- 
types. However, it is clear that purinoceptors are in- 
volved in early signalling in vertebrate embryos; one 
receptor has already been cloned and characterized 
and, hopefully, more will follow. It is also clear that 
purinoceptors for both adenosine and ATP are present 
early in evolution and play a role in most, if not all, 
invertebrate and lower vertebrate species. However, 
until selective agonists and antagonists for the recently 
cloned purinoceptor subtypes become available, there 
is little possibility of resolving questions concerned 
with the evolution of purinoceptor subtypes, although 
a phylogenetic tree has been constructed for the evo- 
lutionary relationship between the known subtypes of 
adenosine receptors [Feng and Doolittle, 1990; Lin- 
den et al., 19941. The molecular cloning of genes en- 
coding  receptors  for adenos ine  and  ATP from 
invertebrates and lower vertebrates will be a good way 
forward. 
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