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Abstract. 

Understanding human mobility is crucial for every aspect of daily life and the functioning of cities. 
Advanced by sensor technology and the big data economy, a highly influential body of research and 
applications on human mobility is driven by analyses of massive human location datasets, such as social 
media data and spending data. New data is emerging as rapidly as evolutionary technologies. Mobile app 
data is relatively new and has become available only in the recent decade. The derived data products are 
similar to those mainstreaming existing ones, mainly in trip-activity chains, counts, flow matrices, and 
derived indicators. However, the data bias varies across areas, periods and policy restrictions, requiring 
tailored data processing and validation solutions, which are not fully transparently discussed. This study 
contributes as a handbook for processing similar types of location points data, detailing engineering 
workflow and multi-stage validation techniques. Second, we present insights into the limitations and 
potential of data applications that tolerate the inevitable data bias. Finally, open trajectory and matrix 
data are shared for research purposes. The team will keep updating the methodology and results with the 
latest developments on GitHub. 
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Background & Summary 
As demand for mobile services has multiplied over the last decade [1], the market is expected to continue 
growing rapidly with people wishing to access good quality mobile services wherever they live, work 
and travel. Simultaneously, mobile services generate an accurate and large amount of data from various 
sensors. Mobile app data is one of these emerging data by-products. Mobile app data are collected 
through software applications (‘apps’) that can be installed by the user on a smartphone and other 
wearable devices [2]. It comes with most minor ethical concerns as it is obtained with app users’ 
consent. The most comparable data product on the market is mobile signal data (known as call 
detail records data), which mobile operators collect without users' consent. It has often been 
criticised for lacking a universal guidance and governance framework [3]. Due to concerns about 
privacy protection, access to mobile signal data and the derived products is limited. The 
commercial products are mostly aggregated, without transparent information on technical details. 
This greatly limits the employment of the data in education, research, and industrial uses. Mobile 
app data, as an alternative, overcomes most of the limitations. Mobile app data is nowhere near 
perfect, and there are different types of data uncertainty rooted in how it is generated. The bias 
may come from the overage of smartphone users, the market share of apps, and user preferences 
(e.g., the choice of the app, usage, and whether to give consent for location tracking). The data 
quality varies from one area to another. However, the bias issues, how we can handle it, and how 
much we can stand it have not been fully addressed. 
Mobile in-app data has been explored in several studies to investigate mobility and activity 
patterns [4, 5], socio-spatial inequalities [6], disaster management [7], urban and regional 
development [8], economic activities [9], informing public health policy [10] and generic laws 
and mechanism of cities [11]. Apart from the research community, data has become a valuable 
asset in the digital economy, characterised by growing markets. Mainstream data companies, such 
as SafeGraph, CARTO, and Cuebiq, offer data products in a rather generic form and still focus on 
conventional points of interest (POI) data. Emerging location data products have been explored 
in recent years. However, due to the lack of transparent technical notes and a comprehensive 
understanding of data bias, immature business models and sometimes, regulation by GDPR, these 
types of data products are not easily recognised by the market.  
Given the overall landscape of mobile in-app data research and commercial innovation, it is time 
to explore its full potential for human mobility application, with a clear awareness of its limits. 
The open science movement has significantly changed the research culture and facilitated an open 
and collaborative scientific community for information sharing and collective efforts, particularly 
during the pandemic. Open data sets are generated from mobile app data. For instance, daily time-
series of three different aggregated mobility metrics in Italy were shared for monitoring the impact 
of the lockdown [12]; multiscale origin-to-destination (O-D) population flows across the US has 
been published for monitoring epidemic spreading [13]; a city-scale and longitudinal dataset of 
anonymised human mobility trajectories in Japan has been shared for benchmarking human 
mobility predicting models [14]. Over 11 billion geolocated cell phone records from Greater Mexico 
City were analysed dynamics before, during, and after COVID-19 [15]. In the UK, time-series counts 
data are made open at an aggregated level through national research facilities, e.g., the Consumer 
Data Research Centre (https://www.cdrc.ac.uk/about/). To promote the research community around 
mobile data for urban mobility studies, we introduce an openly available dataset at a finer level 
that provides anonymised trajectory data in the Greater London Area (GLA) and national O-D 
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data at a fine geographical scale with the consideration of data bias and usability, and potential 
applications for urban mobility. To promote the research community around mobile data for urban 
mobility studies, we introduce an openly available dataset at a finer level that provides anonymised 
trajectory data in the Greater London Area and national O-D data at a fine geographical scale with 
consideration of data bias and usability, and potential applications for urban mobility.  

Materials 
The raw data used as input are from a UK-based data service company – Locomizer, who license mobile 
GPS data sourced from 200 mobile apps and pre-processed data (e.g., anonymisation using a 
cryptographic hash function, filtering noisy points and aggregation) to ensure the data adheres to local 
privacy regulations such as GDPR and contractual obligations with the suppliers. Although the 
information generated by user interactions with mobile applications could be rich, including user 
behaviour and device information, the data we used is simple and kept minimal attributes to minimise 
ethical risks and to be in line with other primary streaming automatic human mobility data (e.g., smart 
card data, tweets).  
We used the data from November 2021 to demonstrate the workflow and share regenerated data sets for 
research use. We purposely selected the month after COVID-19 measures were completely lifted. It is 
not a holiday season and has no bank holidays. However, the Ultra Low Emission Zone (ULEZ) 
expansion was implemented on 25 Oct 2021, which may bring some unknown variability to the mobility 
patterns. Overall, the mobile app data in November covers about 1.028% of the population with variables 
across areas. i.e., 1.021% in the Great London Authority (GLA). The total number of recorded active 
devices (equivalent to users in this paper) with a significant number of points for activity identification 
and home and work detection is 793,502, and 628,649 (80%) users have records of at least 14 days. Some 
basic statistics about user counts, active user counts, and signal counts are summarised in Appendix C. 
The original location points data has minimal attributes, including anonymised device ID, latitude, 
longitude, and time tag.  

Methods  

Location data is a widely researched area with input from various domains (e.g., computer science, 
geography, urban planning, physics). The terminologies used may have different meanings in varied 
domain contexts. Therefore, we have defined the terminologies in Appendix B. Based on that, the overall 
data processing framework is presented in Figure 1, which illustrates detailed steps from original data 
sets to regenerated sharable data sets. The first step is to extract stay points by aggregating over-sampled 
noisy points. The second step combines spatial contextual information (i.e., POIs) and temporal patterns 
(e.g., visiting time) to infer activity types. It is possible to infer travel models by matching transition 
points with road networks. However, this is not scoped in this paper and is left for future updates. The 
final step summarises the processed data into commonly used data forms, e.g., OD flow matrix, 
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trajectories and counts. Each intermediate result was validated with details presented in the later section 
of technical validation. 

 

Figure 1. The overall data processing workflow. 

Extracting stay points and activity locations by clustering methods and sensitivity analysis: Extracting 
stay points removes oversampled noisy points while maintaining minimal points for trajectory 
representation. The most used method is spatial clustering of sequential points. We eventually adopted 
the Infostop Python package [16], seeing its advantages in simplicity and computation efficiency in its 
fast C++ module. Infostop is a generic clustering methods-based framework to transform dense and rich 
location time series into sequences of events. In our context, events are equivalent to activities. While 
Infostop is effective in extracting stay points, the effectiveness is still largely affected by some self-
defined critical parameters, i.e., stay as periods when an individual does not stray further than a 
maximum distance D_max for a minimum duration t_min. Previous works use spatial clustering or 
rule-based methods to set distance thresholds from 50 to 500m based on expert knowledge [17-21]. We 
propose incorporating a sensitivity analysis (shown in Appendix C) to determine the distance threshold 
rather than applying a universal setting. 
Identify home and work locations: As implemented in most literature, we applied a simple rule-based 
classification to identify home and work locations. For each device ID, we take the stay point, recorded 
within a defined temporal window (i.e., 7 PM to 7 AM), which has the longest duration of stay compared 
to other location points and the most frequent visits as the home location. Similarly, a work location is 
identified from the non-home candidate locations for only weekdays with the longest stay (between 7 
AM and 11 PM) and the most frequent visits. 
Labelling activity types: We defined six routine activity types (i.e., home, work, education, eating and 
drinking, shopping type 1, shopping type 2, entertainment, and others) and labelled all detected stays to 
one activity each. Dividing shopping activities under two categories (i.e., frequently small consumptions 
and large infrequent consumptions) aligns with the literature due to behavioural differences [22]. Home 
and work activities are labelled for any stays at home and work locations by default. Other than home 
and work activities, they were labelled using joint probabilities of spatial and temporal features 
commonly used in the relevant literature [23, 24]. We factored spatial features by counting urban context 
around stay points, delineated by Points of interest (POI) collected from the Ordnance Survey 
(https://www.ordnancesurvey.co.uk/). In particular, a buffer area (d = 500 meters) is created around each 
stay point. The probability of attending certain categories of POIs (in Appendix D )is calculated by a 
Huff model [25]. Besides, temporal features were counted as the probability of activity starting time. For 



 5 

each type of activity, we draw temporal signatures inspired by the literature [22] and customised by local 
travel surveys and time-use surveys (shown in Appendix E). The one with the highest joint probability is 
considered as the labelled activity.  

Data Records and Usage  
The dataset is available from the GitHub page (https://t.ly/dzlzB). This document could be considered 
technical notes and referenced when using the shared data. This dataset's records are composed of two 
main products: anonymised trajectories from 5000 randomly sampled users in the Greater London Area 
(GLA) and the national OD matrix at level 9 hexagon in the h3 geospatial indexing system 
(https://h3geo.org/) and the MSOA levels of the UK 2021 census geography 
(https://geoportal.statistics.gov.uk/).  
 
Trajectory datasets contain the activity-trip-chain of 5,000 individuals who travelled across the GLA in 
November over 30 days. For ethical considerations. Each record (row) refers to an observation of a device 
(individual), which consists of the following columns: 

- The device ID is the unique identifier of the mobile phone user 
- Start time – is the timestamp of the observation sampled into 15-minute intervals.  
- End time – is the timestamp of the observation sampled into 15-minute intervals 
- Location - UK census tract – MSOA 
- Activity label  
- Duration – in minutes 

 
O-D matrix data are provided in two files. One file contains travel-to-work trips only, and another 
includes all trips from all observations. Both O-D matrices are summarised at aggregated spatial units 
(i.e., hexagon and MSOA). The O-D matrix is in edge list format and contains three columns.   

- Origin MSOA ID 
- Destination MSOA ID 
- Number of trips 
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Technical validation 

Simple statistics of processed data  

 
Figure 2. Average hourly activity counts in November 2021. 

The above Figure 2 presents a simple statistical overview of processed data. The average counts of 
activities were summarised by starting time for each day of the week. All weekdays (Monday through 
Friday) show similar activity patterns with two peaks: one around 8-9 AM and another around 3-5 PM. 
In contrast, weekend activity patterns have one peak around midday. While Saturday presents slightly 
higher activity counts, the lowest activity counts are captured on Sunday counts throughout the day. The 
following three sub-sections present the validations introduced in Figure 1. 

Distance distribution between each consecutive stays  

Infostop generates stays by aggregating stationary points even though sensitivity analysis was performed 

to ensure that optimised parameters were set. We further validated that the generated stay points 

collectively follow the universal distribution. For this purpose, we measured the displacement distance 

between each consecutive stay, denoted as Δd. This distribution of displacement shall distinguish 

different types of diffusion processes, such as Lévy flights and random walk models. Although log-

normal and exponential distributions have also been reported to fit well in specific datasets, the power-

law distribution has proven more suitable for describing movement patterns over substantial distances. 

Pioneering studies utilising banknote tracking [26]  and mobile phone call records (CDRs) [27] have 

demonstrated that a truncated power-law can approximate displacement distribution. In our analysis 

(plotted in Figure 3) the distances ranged from 1 km to 1000 km, and the fitted beta value of 1.24 aligns 

with the empirical range summarised in a detailed research review [11, 28]. This consistency underscores 

the robustness of our findings in characterising human movement patterns.  
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Figure 3. Displacement of activity locations fitting into a truncated power law 

 

Correlation with usual residents, England: Census 2021 

 
Figure 4. LAD-Level Correlation between the number of residents detected from Mobile Phone App 
Data and reported from Census Data 

Figure 4 Figure 5 illustrates the  Local Authority Districts (LAD)-level Pearson correlation between two 

datasets, namely the number of users with home locations identified from the mobile app data and the 

number of usual residents estimated in the UK census 2021 (download from 

https://www.nomisweb.co.uk/sources/census_2021_bulk). The Pearson correlation coefficient is 0.905, 

indicating a decent representation. However, when we zoom into smaller areas, the correlation decreases 

https://www.nomisweb.co.uk/sources/census_2021_bulk
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to 0.52 (shown in Appendix F). The limitation is somewhat anticipated. The detected home locations are 

based on simple rules, which makes it especially challenging to capture full working scenarios (e.g., 

night-time workers and mobile workers). Tuning the parameters used in the rule-based identification may 

slightly decrease/increase the numbers. Still, our sensitivity analysis shows no significant improvement. 

Appendix G has further discussed the issue and bias with statistics of hourly user counts of stay location 

type for each day of the week. The diversity and variability of working patterns have grown significantly 

in recent years, particularly post-COVID. Developing a comprehensive approach to identifying irregular 

home and working patterns will be one of the key topics in our improvements. 

Correlation with travel to work, England: Census 2021 

We compared our derived travel-to-work O-D matrix with multiple correlation measurements (Pearson, 

Spearman, and ratio as a measure of population penetration) at two levels – the Local Authority District 

(LAD) and the Middle layer Super Output Areas (MSOAs). The census travel-to-work data was collected 

through a combination of self-reported responses to specific questions related to commuting patterns and 

details about the time and distance. The Pearson correlation at the LAD level comparison is 0.95, which 

shows good data representativeness. For MSOA level validation, we took the entire England area but 

grouped MSOAs by upper-level LADs to understand the variabilities across areas. In total, 331 LADs 

were broken down into 7264 MSOAs. A log transformation is applied to avoid the impact of zero values 

and make the data near normal distribution for correlation analysis. As reported in the table, for the LDAs 

(311 areas out of a total of 331 LADs) with significant data records and more than one MSOA, the 

Pearson correlation shows decent results that range between 0.38 and 0.87 with an average of 0.7. Figure 
5 provides further information about the spatial distribution.  
  
Table 1. Statistics of correlation between LAD-level trips between MSOAs for both the census 2021 
dataset and the mobile app dataset. 

 Pearson  Spearman  Census (C) Mobile (M) Ratio (M/C) 
mean 0.704   0.646   64944.511   1044.029   0.016   

std   0.095   0.116   45228.264   760.316   0.005   

50%   0.718   0.653   51323   790   0.016   

75%   0.778   0.74   80649.5   1298.5   0.019   
max   0.873   0.913   355566   5780   0.031 
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Figure 5. Pearson correlation and Ratio between travel-to-work trip detected from mobile app data and 
census data at LADs in England. 

Validation in the context of example urban applications: spatial interaction model  

The processed data, while not perfectly valid as documented, proves to be highly beneficial for 
various urban applications, especially at aggregated scales covering large areas. Here, we compared 
the travel-to-work data from the mobile app and census in the context of spatial interaction 
application. The four variants of the spatial interaction model were employed, including (unconstrained) 
gravity, production-constrained, attraction-constrained, and doubly constrained models. The model 
parameters (k: balancing factor, μ: production, α: attraction, β: for distance decay) were estimated, with 
two forms of distance decay functions (i.e., power and exponential) using two sets of travel-to-work data. 
We compared the performance of different models (reported in Figure 6 ) and found a very high 
correlation between the R² values estimated using both datasets. This suggests a strong relationship 
between the models' goodness of fit. The patterns observed in one dataset are mirrored in the other. This 
indicates that gravity models likely capture similar trip patterns across the datasets. 
 

 

Figure 6. Plotting R² for different models presents the trends and consistency of goodness of fit across 
different models. 
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Validation in the context of example urban applications: spatial structure 

 

Figure 7 . Modularity-based community detection was applied to O-D data of all trips, delineating urban 
functional zones at different spatial scales.  

Another commonly implemented application is to detect functional spatial structures based on flow data 
using community detection. In network science, a community refers to a sub-network that is dense 
internally and sparse externally [29]; revealing these communities allows us to understand the urban 
structure more intuitively. A further intuitive assumption is that urban networks are organised into 
hierarchically distinct communities, meaning that any given scale of community can be subdivided into 
smaller communities, which can be further subdivided, and so on [30]. One of the most widely used and 
arguably most universal methods is modularity maximisation. In recent years, modularity has been 
expanded to include a resolution parameter, which can be adjusted to discover communities at different 
scales [29]. Here, we demonstrate detected urban communities at three different resolutions (shown in 
Figure 7) The community detection results at different scales demonstrate the clustering of urban spatial 
units, which are largely explainable and overlapping with administration or social boundaries.  

Conclusions and Future Directions  

Automatically collected human location data has bias rooted in how it was generated, as mobile app data. 
When using the shared data sets, a user should bear in mind the limitations and also comply with the 
GDPR. First, a mobile app data point was collected whenever a user consented, location service was 
available, and an app was used. Different from these GPS trackers on vehicles for commercial purposes 
and continuously recording locations, the trajectories extracted from mobile app point data are meant to 
be incomplete. They should be considered sampled activities and trips from the sampled population. 
Mobility patterns or a complete travel diary should be extracted by further analysis. Second, our 
validation notes and demonstrated applications provide insights into the limitations and potential of data 
applications from the aspects of level of aggregation. More could be explored in the future. Third, to 
preserve privacy, we have aggregated the data to avoid any individuals' identification. We want to 
emphasise that sharing the data enables mobility analysis for planning purposes and can be used as 
benchmark data to compare with other cities, in a broader sense, to contribute to the culture of an open 
science community. We will continue this study dynamically and share our updates via our GitHub pages.  

Ethical statement.  
This project has received funding from the European Research Council (ERC) under the European 
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Union’s Horizon 2020 research and innovation programme (grant agreement No 949670). The study has 
been ethically approved by UCL's Research Ethics Committee (Ethics Application 21949/001) 
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Supplementary materials 
Appendix A Hourly number of device IDs (users) and points (records) in the dataset November 2021 
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Appendix B . Defining critical terminologies 

- Location points: sometimes called events, are GPS points recorded as latitude and longitude in 
the raw mobile app data. Stay: is extracted from a series of stationary points; in other words, a stay 
is defined as a device remaining stationary for an extended period. In this work, a stay is 
equivalent to an activity (e.g., working for a few hours, staying at home overnight, having lunch in 
a restaurant, exercising in a gym).   

- Activity: It is a stay labelled for travel purposes. Moving beyond the majority of the research focus 
on commuting patterns, we endeavoured to identify variable types of daily activities for a wider 
range of urban applications. Apart from primary activities, i.e., at home and work, we also labelled 
secondary activities, including education, eating and drinking, shopping (for regular daily grocery 
shopping, etc. and other shopping like outlets, etc.), entertainment, and others. 

- Trip: is generated by connecting a series of consecutive non-stationary points.  A trip means a 
move from one activity location to another associated with one or multiple travel purposes.  

- Trip-activity chain: A series of short trips linked together between activity locations, such as a 
trip that leaves home, stops to drop off a kid at school, and continues to work. In the context of this 
work, a trip-activity chain is considered equivalent to a trajectory.  

- Origin-destination matrix (O-D matrix): a matrix summarising counts of trips between defined 
spatial units (e.g., census tracts).  
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Appendix C . Sensitivity analysis of parameters used for clustering 

 
N_labels: The number of unique stops for each user 
N_counts: The number of stops for each user 
Entropy: The uncertainty of the number of stays for each user at different locations. 
Variation: The variation of the number of stays for each user at different locations. 
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Appendix D. Categories of POIs used in activity labelling 
 

Activity Types Activity Location Type 
Education  Primary, secondary, and infant schools, independent and preparatory 

schools, higher education establishments, other schools such as 
diving schools, drama schools, language schools, ballet and dance 
schools, beauty and hairdressing schools, etc. 

Eating and Drinking  Restaurants, cafes, snack bars, tea rooms, pubs, bars, fish and chip 
shops, fast food delivery services, etc. 

Shopping_type1  Grocers, markets, supermarket chains, Cash and carry, fishmongers, 
bakeries, etc. 

Shopping_type2  Clothing, footwear, jewellery and fashion accessories, books and 
maps, florists, furniture, lighting, Electrical goods and components, 
second hand vehicles, etc. 

Entertainment Theatre, cinema, recreational, gambling, sport and entertainment 
services such as gym, etc. 

Others The rest of the POIs such as sport and entertainment, health, 
transport, etc. 
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Appendix E. Probability table used for proxy temporal signal of activities 
 

Start time  Education Eating and 
Drinking 

Shopping1 Shopping2 Entertainment Others 

06:00:00 07:00:00 0.1 0.1 0.1 0.1 0.1 0.3 
07:00:00 08:00:00 0.7 0.7 0.5 0.1 0.1 0.3 
08:00:00 09:00:00 0.9 0.7 0.5 0.1 0.1 0.7 
09:00:00 10:00:00 0.5 0.5 0.5 0.5 0.3 0.5 
10:00:00 11:00:00 0.3 0.5 0.5 0.7 0.5 0.7 
11:00:00 12:00:00 0.3 0.9 0.5 0.7 0.5 0.7 
12:00:00 13:00:00 0.3 0.9 0.7 0.3 0.7 0.3 
13:00:00 14:00:00 0.3 0.7 0.7 0.5 0.5 0.3 
14:00:00 15:00:00 0.3 0.5 0.5 0.7 0.5 0.5 
15:00:00 16:00:00 0.5 0.3 0.5 0.7 0.5 0.5 
16:00:00 17:00:00 0.3 0.5 0.5 0.7 0.5 0.5 
17:00:00 18:00:00 0.3 0.7 0.5 0.7 0.5 0.5 
18:00:00 19:00:00 0.3 0.9 0.3 0.1 0.3 0.3 
19:00:00 20:00:00 0.3 0.9 0.7 0.1 0.7 0.3 
20:00:00 21:00:00 0.1 0.5 0.7 0.1 0.9 0.5 
21:00:00 22:00:00 0.1 0.5 0.5 0.1 0.7 0.5 
22:00:00 23:00:00 0.1 0.3 0.5 0.1 0.5 0.5 
23:00:00 24:00:00 0.1 0.3 0.5 0.1 0.3 0.5 
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Appendix F. MSOA-Level Correlation between the number of residents detected from Mobile Phone 
App Data and reported from Census Data.  

 
 
Modifying the rules may increase the results with loose conditions/rules and decrease them with tight 

conditions/rules for the analysis. Within this mind, in our analysis, 109,817 records from the total of 

757,811 individuals’ records do not match with the census data due to 1) Unidentified home locations 

(7,677 individuals (1.01%)), 2) Unidentified work locations (32,618 individuals (4.3 %)) and 3) 

Unidentified home and work locations (42,279 individuals (5.5%)). Besides, 2.5% of individuals’ anchor 

locations (27,243 records) do not match with MSOA spatial units due to various reasons such as border 

locations, etc. 
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Appendix G. Hourly user counts of stay location type for each day of the week.  

 
We calculated the user count by the type of stay locations. A user is considered to be staying at a location 
in a given hour only if this user has a stationary activity that covers a continuous period of at least 30 
minutes in that hour. Therefore, a user can only be counted to a single type of location in each hour. 
Because the start and end time of activity requires a record, the first and last two days of the month (i.e., 
Monday 1st, Tuesday 2nd, Monday 29th, and Tuesday 30th of November) were removed from these 
statistics as they have lower user counts, especially for overnight stays at home location.  
The plot illustrates the hourly distribution of user stay types across different days of the week, segmented 
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into home, work, and other categories. Each subplot represents a specific day of the week, from Monday 
to Sunday, displaying the median values and the min-max range for the number of users in each category. 
The blue lines and shaded areas denote the median and range for home user counts, respectively. Similarly, 
the green and orange lines, along with their corresponding shaded areas, represent the median and range 
for work and other user counts.  
From the plots, it is evident that home user counts exhibit a distinct diurnal pattern, peaking during the 
early morning and late evening hours while dipping during typical work hours. Conversely, work user 
counts show an inverse relationship, with higher counts during standard working hours between 9 AM 
and 3 PM on weekdays. We also observed significant night and weekend workers. The 'other' user counts 
demonstrate a more varied pattern, with noticeable peaks during midday on weekdays and early afternoon 
hours, Friday evenings, weekend afternoons, and Saturday evenings. Overnight stays at other locations 
are significant on Saturday nights.  
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Appendix H. Fitted parameters of spatial interaction models using travel-to-work OD matrix from census 
and mobile app.  

 
 
Examining the estimated parameters for each model, there is generally consistency in the signs of the 
coefficients. Importantly, we observed a negative distance decay value (β), which aligns with the 
literature on gravity modelling. This likely suggests an inverse relationship between the number of trips 
between regions and the distance separating them. There are significant differences in some coefficients, 
such as k (balance factor) in the model. A statistical hypothesis could be conducted to determine if there 
is significant evidence to reject the null hypothesis (no difference between coefficients from models from 
both datasets). However, conducting such tests is beyond the scope of this paper, as it heavily depends 
on the application context. Careful selection of variables and datasets is crucial in structuring the model. 
In our case, we assumed job population in employment from census data is sufficient to model trips from 
mobile data. This strong assumption could explain some discrepancies in the coefficient magnitude 
observed. 
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