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Abstract 
 

Most computable urban models, designed to replicate the locational distribution of 
socio-economic activities, are based on aggregate patterns of employment, 
population and spatial interaction. Such structures often called LUTI models can 
now be built very rapidly at scale so that they can be used to simulate the impact of 
large-scale economic and demographic change on the way a city or system of cities 
is able to embrace locational economies of agglomeration. We first explore the way 
such models can be articulated as simultaneous interactions of employment and 
population, and we demonstrate how they can be solved iteratively to mirror a 
system in equilibrium. We apply the model to the CAMKOX Corridor (the 
Cambridge-Milton-Keynes-Oxford Arc) and empirically investigate the model’s 
properties, indicating how the model can be used to predict the agglomeration 
economies of changes in that region, and then illustrating how an array of possible 
solutions can be generated as different varieties of digital twin. As the aggregate 
LUTI models we develop can now be run hundreds, if not thousands, of times, we 
illustrate how sensitivity testing, scenario generation and changes in locational 
behaviour can now be tested routinely, thus developing simulations that bound 
define the wider solution space of different model types. 
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Equilibrium, Statics and Dynamics in Urban Models 
If we examine the city in history, it is clear that its physical form is relatively stable from 
generation to generation (Mumford, 1963). Cities usually grow around some central location 
that represents a confluence of forces defining a marketplace or commercial cluster, now 
generally called a central business district which represents the main sources and sinks for the 
economic energy that drives urban growth. Cities usually reach out from their cores to 
encapsulate as much space as possible, but their activities are constrained by the abilities of 
their residents and workers to interact at a distance. The forces which push and pull activities 
in successive ways lead to compaction and urban sprawl on the one hand and patterns of radial 
growth on the other and together, these define the circular, tree-like morphology that we see in 
most city plans. The general assumption is that cities preserve this morphology and that new 
activities absorbed into their fabric as they grow and evolve, maintain an equilibrium in which 
activities such as jobs, housing, and transport, balance each other out. 

There are many ways of representing cities and a simple but a convenient mode is to examine 
their patterns of employment at work and their associated population by residence. At any point 
in time, we assume these patterns are in equilibrium, if only because movement or interaction 
between their various sectors must be conserved. However, to explain the patterns of 
equilibrium that emerge, we invariably have to break into the various feedback loops that define 
how any set of activities depends on any other. This approach to defining a city tends to destroy 
its equilibrium, and many researchers arbitrarily adopt such a break, thus privileging one set of 
activities over another. The consequence of this is that the observed equilibrium is often 
ignored, and it is hard, if not impossible, to put the equilibrium back together again from the 
models that are produced. 

The first attempts at building simulation models assumed that cities manifested such an 
equilibrium whilst exhibiting a dynamic that continually changes in time, thus representing an 
evolution of this equilibrium. Models that embraced both statics and dynamics have been rare 
because data pertaining to processes of urban change has been very difficult to collect, at least 
until the recent development of the online world and big data. Models that articulated the city 
system as a comparative static structure have thus become the norm. It is easy to define this 
bias as anti-dynamics, but this is only a superficial reaction to the lack of focus on time. So far 
there has been no synthesis of different approaches from comparative statics that dominated 
the first computer models of cities to later forms of evolutionary dynamics that introduced 
many new ideas about change in terms of temporal discontinuities associated with chaos and 
bifurcation. Moreover, the notion of urban dynamics as being intrinsic to complexity science 
now suggests that statics and dynamics are part of a much wider paradigm often referred to as 
involving systems that are ‘far-from-equilibrium’ (Batty, 2005). 

The earliest urban models did in fact broach the notion of simulating a city in equilibrium. In 
the context of a model where employment 𝐸 is dependent on population 𝑃 and population 𝑃 
dependent on employment 𝐸, the generic model is to ensure that an integrated structure is built 
where 𝑃 = 𝑓(𝐸) and 𝐸 = 𝑔(𝑃) whose reduced form is 𝑃 = 𝑓(𝑔(𝑃)) and 𝐸 = 𝑔(𝑓(𝐸)). For 
example, Lowry (1964) in his Model of Metropolis suggested that such an equilibrium structure 
could be solved iteratively. At the same time, a variety of econometric models, in particular the 
EMPIRIC model by Hill et al. (1965), were initially proposed and solved using linear 
simultaneous equations whose solution was exact and independent of its starting values. Many 
other partial solution procedures have been suggested since then, but a detailed inventory of 
techniques has not been developed and most of what have been explored are theoretical 
schemes, based on a linear chaining of models with no direct closure. Some attempts have been 
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made to map these iterative processes onto pseudo-dynamic forms, but these have not been 
applied empirically and remain idiosyncratic to the main field (Batty, 1984).  

As soon as the first comparative static models were developed, there were attempts at making 
them dynamic and this was achieved by simply beginning at a cross-section in time, simulating 
the entire city at that point and then modelling subsequent increments or decrements of 
activities in small time internals usually from one to five or ten years. These models avoided 
problems of equilibrium by assuming that each time period was its own equilibrium. Since 
these first models, there has been little change in structure with respect to making these models 
fully dynamic; for example, the generic state-of-the-art LUTI (Land Use Transport Interaction) 
model currently developed in the UK for London (the so-called LonLUTI model), operates in 
this incremental fashion with only feed forward between the temporal intervals and no feedback 
to ensure a traditional equilibrium. In so far as these models embrace a wider dynamics, they 
have been linked to several other models that provide an integrated modelling environment, as 
in the suite called MOTION https://tfl.gov.uk/corporate/publications-and-reports/strategic-
transport-and-land-use-models. 

In fact, dynamic models have been linked to urban planning in a very different way, by 
developing different types of models which do not emphasise equilibrium at all. Other features 
that have dominated the development of computer models focus on changing the spatial as well 
as the temporal scale. Cellular automata (CA) models that encapsulate land development have 
emerged, and these contain a simple dynamics that relates to how the spatial units – the cells – 
change with respect to interactions with other cells. No equilibrium is assumed as growth (or 
decline) measured by the state of the cells – their attributes – can continue indefinitely. If we 
further disaggregate the cells to individual point locations and consider that each might contain 
an agent, then we can develop agent-based models (ABM) where agent or individual 
behaviours interact across space and time with respect to their spatial decision-making (Batty, 
2005). In the case of land development, an agent might be a household which requires a housing 
structure, or a landlord, a developer, and so on. We will not discuss these further here but note 
that these provide key methods for building dynamic models where households, travellers, 
vehicles and other physical objects all act as agents in various kinds of microsimulation (MS). 
There are other computable structures that pertain to urban dynamics and these build on chaos 
and bifurcation theory, elements of which can be embedded into the different urban forecasting 
models we have just indicated. In fact, as the field of urban modelling has matured, more and 
more features from different modelling types – LUTI, CA, ABM, MS and so on – are being 
merged into a rich but rather chaotic landscape of ideas that urgently requires clarification.  

Although we will be largely exploring the equilibrium properties of a generic type of LUTI 
model in this paper, we will encounter two other themes that are beginning to dominate models 
of cities. First there is the computational environment that is continuing to change very rapidly. 
It is now possible to build and continually explore quite large-scale urban models on the 
desktop, generating immediate outcomes from such simulations and thus providing an 
environment where the model builder is receiving instant feedback from his or her own 
application of the model. In this sense, large models that until quite recently took days to 
completely explore, can now be run instantly with thousands of runs being possible during the 
working day. In fact, large-scale models such as QUANT which represents the British urban 
system by over 8436 zones and over 71 million interactions can now be run in seconds using 
the latest computational architectures based on GPUs (Batty and Milton, 2023). The models 
we have developed here for the Oxford-Milton-Keynes-Cambridge Arc based on some 400 
zones runs ‘instantly’ and this means we can generate many variants that hitherto were 
impossible. This changes the entire way we are able to build models, and it opens up a 
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perspective on how we develop both theory and computation in the context of the emerging 
science of cities. 

The fact that we can now build more than one model is fast becoming the dominant style of 
application (Page, 2019). We can now elaborate and detail LUTI models in many different 
ways giving real focus to the idea that we are able to build ‘digital twins’, another theme that 
weaves its way through our exploration of models here. Digital twins are only possible if we 
are able to construct them in computational environments that allow us to explore and control 
many variants that enrich our understanding of the model and the real system, learning ever 
more about the model and its physical twin – the real system – to which it is being applied 
(Caldarelli et al., 2023). This also raises the question of not only constructing more than one 
model of the same system but also generating variants of the real system, reflecting the way 
different elements of a city, for example, can be fashioned in terms of different models. To date, 
the environment in which urban models continue to be developed has barely changed over the 
last half century apart from the fact that the models involved run faster but the organisational 
structures which are used to make them applicable in practice, is still based on the assumption 
that large models are difficult to build, take time to apply, require scientific skills that are in 
short supply, and have to take account of the inertia of current organisational and decision-
making structures. Much of this is about to change.  

In the next section of this paper, we will outline a generic land use transportation interaction 
(LUTI) model that we will elaborate with respect to its equilibrium properties in the third 
section. We will then introduce the application which here we base on data for the CAmbridge-
Milton-Keyes OXford (CAMCOX) arc of urban development which is widely regarded as one 
of very few regions of the UK with the most potential for rapid economic growth. We then 
explore the fit of a pilot version of the LUTI model to this region and then illustrate how the 
full model can be solved in terms of its stable equilibrium. We develop different equilibria from 
the basic model and show that as we iterate the solution towards a long-term equilibrium, the 
performance of the model degrades substantially. This suggests that if we are to use such 
models with respect to their equilibrium solutions, we need to choose only modest iteration and 
thus accept solutions that are not stable, as indeed are most empirical applications of LUTI 
models to date which are not formulated in equilibrium terms.  

 

A Generic Land Use Transportation Interaction (LUTI) Model 
The generic LUTI model was first developed by linking together the location of activities or 
land uses, typically employment and population sectors but also extending to retail, leisure, 
educational and health facilities, using spatial interaction models that simulate the flows of 
people, materials, and income between these sectors. The simplest models generated 
population in residential locations from locations where that population worked using models 
relating the size or attraction of the relevant locations to the cost or travel time associated with 
the distance between those locations. The typical interaction model used was initially a 
gravitational model which was often elaborated into various utility-based discrete choice 
variants, sometimes subject to income and related economic constraints. Here we will first 
subdivide the spatial system into a set of zones Ω = 𝑖, 𝑗, 𝑘, … noting that we begin with 
employment 𝐸! from which we generate 𝑃". In turn, we then generate employment 𝐸# which 
establishes the loop from which we continue to compute the equilibrium values of working 
population and employment. The essence of the model are the equilibrium conditions that we 
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noted in the first section above where we presented this in reduced form terms as 𝑃" =
𝑓 0𝑔(𝑃")1 and 𝐸# = 𝑔(𝑓(𝐸#)). 

We will define two sectors – first employment 𝐸! at workplaces 𝑖 which generates population 
in residential locations 𝑃" and second population at residential locations 𝑃" which generates 
demand for employment at workplace locations 𝐸#. In this variant of the model, we will 
disaggregate the employment into 𝐿 different types which we define as 𝐸!ℓ, ℓ = 1, 2, … , 𝐿 but 
we do not disaggregate the population into the same or different types because in the model 
here, we do not have these same employment attributes for the population. The residential 
location model which simulates the flow of workers from workplaces to residences predicts 𝑇!"ℓ  
and can be stated as 

𝑇!"ℓ = 𝐴!𝐸!ℓ 𝐹"exp(−𝛽ℓ𝑐!") = 𝐸!ℓ
%! &'()*+ℓ,#!-

∑ %! &'()*+ℓ,#$-$
 ,   (1) 

where 𝐹" is a measure of residential attraction for workers, 𝑐!" is the travel cost, time or distance 
(here distance) between 𝑖 and 𝑗, and 𝛽ℓ is the parameter on distance which varies for each type 
of employment ℓ. In spatial interaction theory, this model is referred to as singly-constrained 
(Wilson, 1971) where the model always respects the origin constraint which we define as 

𝐸!ℓ = ∑ 𝑇!"ℓ"    ,      (2) 

while the model predicts the working population in residential zones as 

𝑃" = ∑ 𝑇!"ℓ"ℓ    .      (3) 

Note that this model structure in equations (1) to (3) can be replicated as a module for any 
number of sectors where it is possible to define interactions between two sets of locations, 
origins or destinations, sources or sinks although in practice, the number of sectors tends to 
reflect the number of distinguishable land uses or activities which in aggregate terms, is rarely 
more than 10, often not more than 5.  

The reverse flow from residential locations of the population to employment at workplaces sets 
up a different pattern of demand 𝐸"#ℓ  which is not symmetric with the flow pattern 𝑇!"ℓ . This is 
the pattern of demand for products workers make at their workplace which in turn is what the 
population consumes. The flow from population back to employment is thus from zones 𝑗 to 𝑘 
and the equivalent model is  

𝐸"#ℓ = 𝐵" 𝑃"𝐹#ℓexp(−𝛾ℓ𝑐"#) = 𝑃"
%%
ℓ&'()*/ℓ,!%-

∑ %$ℓ&'()*/ℓ,$%-$
 ,   (4) 

where 𝐹#ℓ is a measure of attraction of the employment location for industry type ℓ, 𝑐"# is the 
travel cost, time or distance, and 𝛾 is the parameter on distance which varies for each type of 
employment ℓ. The model is subject to a constraint on the new origins of population at 𝑗 and it 
predicts employment demand at the new destinations 𝑘 which are the previous origins 𝑖. These 
constraints are derived as   

𝑃" = ∑ 𝐸"#ℓ#ℓ  ,   and       (5) 

𝐸#ℓ = ∑ 𝐸"#ℓ"   .       (6) 

Although these two models interface with one another through population and while also noting 
that they could be stated the other way around with the interface being though employment, 
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there is nothing in equations (1) to (6) to ensure that the employment input and then predicted 
from each sub-model are the same.  

In short, for equilibrium, equation (2) must give the same answer as (6) and equation (3) the 
same as (5). In fact, in general they do not being reflected in the inequalities  

𝐸!ℓ = ∑ 𝑇!"ℓ" ≠ 𝐸#ℓ = ∑ 𝐸"#ℓ 			"

𝑃" = ∑ 𝑇!"ℓ"ℓ ≠ 𝑃" = ∑ 𝐸"#ℓ#ℓ
		,						𝑖 = 𝑘																				D  .  (7) 

To achieve this balance, we need to couple the two models explicitly, and to do this, we define 
the relevant variables using an iteration index 𝜏 which can be interpreted as an index of 
computer time. Beginning with the residential location model in equation (1), we now write 
this as  

𝑇!"ℓ (𝜏) = 𝐴!𝐸!ℓ(𝜏) 𝐹"exp(−𝛽ℓ𝑐!") = 𝐸!ℓ(𝜏)
%! &'()*+ℓ,#!-

∑ %! &'()*+ℓ,#$-$
					 			,  (8) 

where we begin with 𝜏 = 1. Then from the predicted working population 𝑃"(𝜏) = ∑ 𝑇!"ℓ(𝜏)"ℓ , 
we compute the new demand for employment as 

𝐸"#ℓ (𝜏 + 1) = 𝐵"ℓ𝑃"(𝜏)𝐹#ℓ exp(−𝛾ℓ𝑐"#) = 𝑃"(𝜏)
%%
ℓ &'()*/ℓ,!%-

∑ %$ℓ &'()*/ℓ,!$-ℓ$
 , (9) 

while the new total employment is 

𝐸#ℓ(𝜏 + 1) = ∑ 𝐸"#ℓ" (𝜏 + 1) .      (10) 

We now substitute equation (10) into (8) and continue the iteration until a convergence 
threshold based on one of many measures we define below such as, say, a root mean squared 
error or difference  

𝜃(𝜏) = H∑ 0𝑃"(𝜏 + 1) − 𝑃"(𝜏)1
0

" /𝑁K
1/0

< 𝜀 ,   (11)  

is reached.  

We will not prove that this model converges to a stable solution in terms of its predicted 
variables, but it is intuitively obvious this must occur due to the manner in which the 
endogenous variables {𝑇!"ℓ(𝜏)}  and {𝐸"#ℓ (𝜏 + 1)} are constructed. The key issue of course is 
how close the computed equilibrium is to what is actually observed. We can in fact write the 
complete model in its most compact form as a location rather than an interaction model and 
this serves to highlight the critical coupling and feedbacks involved. This is then  

𝑃"(𝜏) = ∑ 𝐴!ℓ𝐸!ℓ(𝜏)𝐹"exp(−𝛽ℓ𝑐!")!ℓ

𝐸#(𝜏 + 1) = ∑ 𝐵"𝑃"(𝜏)𝐹#ℓ exp(−𝛾ℓ𝑐"#)"ℓ
						D .    (12) 

There are several additional features that can be added to these kinds of LUTI model. First the 
attractor variables {𝐹"} and {𝐹#ℓ} can reflect economies of scale by parameterising their form as 
(𝐹"3) and (𝐹"ℓ)4 where if 𝜃 and 𝜗 are greater than 1, this incorporates agglomeration economies 
that mean that the larger the floorspace in the location in question, the more than proportionate 
is the attraction to locate there. In the same way, it can be argued that the negative exponential 
functions in equations (12) reflects diseconomies of scale. In fact, the structure of the coupled 
model is such that it is designed to incorporate both kinds of scaling effect, which are critical 
to how the model generates urban growth in employment and population. 
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There are several variants of the equilibrium LUTI model that we will define and test in later 
sections, once we have presented the empirical application. All depend on coupling the 
residential location model in equations (1) and (2) to the employment demand model in 
equations (3) and (4). The simplest structure is to run these two models separately, uncoupled, 
while the most basic coupling is to simply chain the two models in one step starting from 
equations (1) and (2) which drive the model in equations (3) and (4). No equilibrium is 
attempted with this coupling. We could also reverse this sequence, beginning with equations 
(3) and (4) and then moving to equations (1) and (2), and we could iterate these models starting 
in this order and continuing the sequence (3) and (4) to (1) and (2) and then back to (3) and (4) 
until full convergence is reached. We will explore all these variants in the sequel but at this 
point we need to introduce the empirical application as there are several features from the case 
study that exploit different elements within the model and these first need identifying. 

 

An Initial Application: A Pilot Model for the CAMKOX Corridor 
The region we use for testing our equilibrium pilot model stretches from Oxford, which is 
north-west of Greater London, then north-east to the new town of Milton Keynes, and 
continuing in this direction to Bedford and Cambridge. The region contains about 1.5 million 
employees (see https://nic.org.uk/app/uploads/Partnering-for-Prosperty.pdf) which scales to a 
population of about 3.3 million. In size, it is about 90 miles east-west and 50 miles north-south 
and it is widely considered to be one of the most prosperous in the UK, or at least one with the 
greatest potential for economic growth (ITRC, 2020; Lomax, Smith, Archer, Ford and Virgo, 
2022). We have defined the basic spatial units of the model from the Population Census’s 
standard geography called middle layer super-output areas (MSOAs) which gives 397 zones 
which we show in Figure 1(a). From the Office for National Statistics, we are able to define 
four different categories of employment and their associated floorspace which we show in the 
heatmap alongside the spatial subdivision of the region in Figure 1(b). The physical 
morphology of the region is essentially a landscape of relatively small towns but in the last 50 
years, it has become highly urbanised, and the key settlements are beginning to merge into one 
another particularly in the central belt of the region whose orientation is north-south along the 
M1 and A1(M) motorways and the West Coast Mainline (rail). The east-west orientation of the 
region has only begun to gain significance in the last decade with the proposal that a new East-
West Rail line be restored and rebuilt between Oxford and Cambridge. 

 

Figure 1: The Basic Data (a) The CAMKOX Corridor (b) Correlation of the Model Variables 
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The distribution of employment and population is shown in Figures 2(a) and (b) and it is quite 
clear that employment is much more concentrated and polarised than population. The average 
employment in each zone is similar to the population (3865 compared to 3793) but the 
maximum employment is 28928 compared to a maximum population of 8123. If we plot the 
rank size distributions of employment (𝐸5(!) compared to its rank order 𝑟)	and population (𝑃5(") 
compared to 𝑟),	the differences are even more marked with employment being much closer to 
the classic power law compared to population which has a much flatter profile. These graphs 
are shown first in absolute terms in Figure 3(a) where the correlation between population and 
rank is -0.952 and employment and rank -0.749. When these are log-linearised, the correlations 
rise to -0.934 and -0.939 for population and employment and their logarithmic transforms in 
Figure 3(b). We also indicate the linearised rank size relations log 𝑃5(") = 11.411 −
0.686 log 𝑟 (𝑅0 = 0.884)	and log 𝐸5(!) = 9.349 − 0.228 log 𝑟 	(𝑅0 = 0.873)	in Figure 3(b) 
where it is clear that the region has a very well-defined polycentric, fractal-like structure that 
mirrors its evolution and provides a sense of how the region might continue its future growth 
(Batty, 2005). 
 

 

Figure 2: Employment and Population (a) Total Employment (b) Population 
Volumes as Overlapping Proportional Circles, Indicative of Intensity 

 

 

Figure 3: Employment and Population Rank Size Functions 
 (a) As Power Laws (b) As Log Linear Functions 
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The employment distribution is composed of four different activity types as shown in the heat 
map in Figure 1(b). The four types are: Retail Employment (EmpR), Industrial Employment 
(EmpI), Office Employment (EmpO), and Exogenous Employment (EmpX) which are 
matched against the relevant floorspaces variables: Business (Retail) Floorspace (BusF), 
Industrial Floorspace (IndF), Office Floorspace (OffF), and Exogenous Floorspace (EXF). We 
show the four types in Figures 4(a) to 4(d) where their locational differences reflect different 
physical and spatial requirements. The correlations between these four variables and others that 
we include in the heat map in Figure 1(b) are not as high as we initially assumed. Population 
and its related residential floorspace are very highly correlated but their correlations with other 
variables (that in fact are mainly employment-related) are quite low. Again, this reinforces the 
fact that in this region, the correlations between employment and population are complex in 
terms of their size although the pattern of all these variables reflects the overall morphology of 
the region that we commented on above. 

 

Figure 4: The Distribution of Employment Types 

 

Our first test of the model is based on one iteration of the coupled residential with the 
employment location model as we will illustrate for the disaggregated version of the model in 
equations (1) to (4). We refer to this as the pilot model where essentially the population 𝑃"(1) 
is first generated from the employment 𝐸!(1) = ∑ 𝐸!ℓℓ (1) and then the next iteration of 
employment 𝐸#(2)	is generated from 𝑃"(1). One cycle of the model is shown in Figure 5, and 
the predictions of total employment and population after one iteration are shown in Figures 
6(a) and 6(b). These need to be compared to their observed equivalents in Figures 2(a) and 2(b) 
where it is immediately clear that the first cycle of employment 𝐸#(2) differs substantially 
from the observed employment 𝐸!(1) in comparison to the lesser differences between the 
predicted and observed populations 𝑃"(1) and 𝑃"(0).  
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Figure 5: The First Cycle on the Path to Equilibrium 
 

 

Figure 6: (a) Predicted Employment and (b) Predicted Population 
After One Cycle on the Path to Equilibrium 𝜏 = 1, 2 

We have not calibrated this version of the model but simply set the parameters 𝛽ℓ and 𝛾ℓ equal 
to the inverse of the observed means 𝛽ℓ = 1/�̂�ℓ and 𝛾ℓ = 1/�̂�ℓ which are usually good 
estimates of their orders of magnitude (Hyman, 1969). The correlations between observed and 
predicted total employment and population are 0.658 (𝑅0 =0.433) and 0.575 (𝑅0 =0.331) 
respectively where the employment fit is a little better the population. In fact, this is consistent 
with the fact that the population is much more spread out across locations whereas observed 
employment is more polarised. Our last analysis of this phenomenon from the pilot model 
relates to the fact that the generic model generates strong agglomeration economies as we will 
now demonstrate.  

 
Figure 7: Agglomeration from Predicted Employment and  

Population at the First Iteration 
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If we examine the predicted employment 𝐸!(𝜏 + 1)	and population 𝑃"(𝜏 + 1) with respect to 
their observed values, there is a clear relationship which implies that the model generates more 
than proportionate activity with respect to its inputs. This is strongest for the relationship 
between predicted employment 𝐸!(𝜏 + 1) and the observed employment 𝐸!(𝜏) where the 
relation follows the super-linear allometric form. This is associated with agglomeration 
economies and has the form 𝐸!(𝜏 + 1) = 𝜑𝐸!(𝜏)8 where we assume that 𝜙 > 1 if there are 
any agglomeration economies associated with the generation of activities by the model. The 
idea of agglomeration in this form dates back to Marshall (1890) but it has been resurrected 
and formally linked to allometry by Bettencourt et al. (2007) (see D’Acci, 2025) and it is 
intrinsic to the way LUTI models handle attraction and deterrence in terms of spatial 
interaction. 
 
If we compare the data from the observed baseline 𝐸!(𝜏 = 1) with that which is predicted after 
the first iteration 𝐸!(𝜏 + 1), then the log linear relation log 𝐸!(𝜏 + 1) = log𝜑 + 𝜙	log 𝐸!(𝜏 =
1) can be estimated as log𝜑 = −14.253	and 𝜙 =2.599 with a goodness of fit 𝑅0 = 0.603. 
We show the scatter in Figure 7(a) and this suggests that as employment increases, it generates 
much more than proportionate additional increases in the same variable, more than 2.5 times 
for one additional unit of baseline employment. If we examine the same relation for population 
as in Figure 7(b) where log 𝑃"(𝜏 + 1) = log 𝜁 + 𝜂	log 𝑃"(𝜏), then the parameters are log 𝜁 =
−4.643	and 𝜂 =1.557 with the goodness of fit 𝑅0 = 0.623. To an extent, the fact that 
employment generates bigger ‘more than proportionate’ returns compared to population is 
consistent with the fact that employment is more polarised, and that increases in productivity 
and growth itself are more likely to be directly associated with economic than demographic 
variables. These effects appear to be quite stable when the pilot model is run through more and 
more iterations to equilibrium but further exploration of these coupling, feedback and 
confounding effects is required to get a clear understanding of how we can simulate the 
processes that lead to a stable equilibrium. We broach this in the next section. 
 

Transitions to Equilibrium 
Our main model involves iterating the two sub-models to a convergence which satisfies the 
equilibrium equations in (12). It is easy to see how the two processes associated with residential 
then employment location convolute so that every location and interaction links with every 
other, thus generating a strongly non-linear structure that emerges as the model converges to 
an equilibrium. In some respects, this process of continued iteration is a kind of machine 
learning in that it is reminiscent of continual feedback and feedforwards with the goal of 
ensuring that the model converges on a stable solution from continued reinforcement of the 
predicted locational structure so far. In some respects, the process is more complicated than 
iterative learning in that the focus on outputs is continually changing with new features being 
derived at each iteration. In fact, it might be possible to extract explicit weights with respect to 
how these iterations converge on stable solutions, but this is a direction which we have not 
explored as yet.   

We will explain this process visually with respect to the spatial pattern of employment and 
population activities below but first it is worth noting the nature of this convergence. We have 
defined 12 different measures which all show convergence to stable values as the 
computational index 𝜏 increases and we can list the statistics associated with these measures as 
follows. The first set of 6 measures pertain to the sum and average of the differences between 
predictions on each iteration. We divide these into two sets of differences: first between the 
total population at iteration 𝜏 + 1 and the previous iteration 𝜏 which get progressively smaller 
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as the iterations continue, and second, differences between iteration 𝜏 + 1 and the observed 
values at 𝜏 = 1 which converge to stable values. All these statistics are applied to total 
population, total employment and the four employment types although we will only focus on 
population here with respect to their convergence due to our need to keep the argument in this 
paper crisp. The statistics which look at differences between the variables at iterations 𝜏 + 1 
and 𝜏 get smaller while the differences between the predictions at 𝜏 + 1 and the observed 
measures at 𝜏 = 1 converge to stable values. These measures and their trajectories are fairly 
similar for each of the activities – population, employment and their four types – so we will 
only show those for population. 

The first statistic Γ(1) is the sum of the absolute differences averaged over all zones with 
second statistic Γ(2) being these same differences normalised as percentage values. These are  

Γ(1) = ∑ (f𝑃"(𝜏 + 1) − 𝑃"(𝜏)f/𝑁"   ,    (13)  

Γ(2) = ∑ (9:!
(;<1)*:!(;)9
:!(;)

)/𝑁"    .    (14) 

The third and fourth statistics have the same form as equations (13) and (14) but with the 
differences being computed from the baseline observed values at 𝜏 = 1. These statistics 
converge on stable values as the differences ultimately home in on these equilibria  

Γ(3) = ∑ (f𝑃"(𝜏 + 1) − 𝑃"(1)f/𝑁"   , and   (15) 

Γ(4) = ∑ (9:!
(;<1)*:!(1)9
:!(1)

)/𝑁"    .    (16) 

The last two statistics are root mean square errors which provide an average error for a typical 
zone. Again we define these as differences between the populations at 𝜏 + 1 and 𝜏 and then the 
same statistic but with the difference expressed as a percentage not an absolute value. These 
statistics are 

Γ(5) = H∑ 0𝑃"(𝜏 + 1) − 𝑃"(𝜏)1
0

" /𝑁K
1/0

    and    (17) 

Γ(6) = H∑ 0𝑃"(𝜏 + 1) − 𝑃"(1)1
0

" /𝑁K
1/0

        ,   (18) 

and we will demonstrate these in the convergence trajectories which we graph below. 

There are three other statistics that we have computed and we also use to illustrate the 
convergence and performance of the model. We can correlate the predicted variable – 
population – with its previous value and with its observed value using the following equations 

Γ(7) = 𝜌[𝑃"(𝜏 + 1), 𝑃"(𝜏)]    ,   (19) 

Γ(8) = 𝜌[𝑃"(𝜏 + 1), 𝑃"(1)]    .   (20) 

We can also compute the classic Kullback-Leibler (1951) information difference with respect 
to successive values of population 𝑃"(𝜏 + 1) normalised to probabilities 𝑝"(𝜏 + 1) and we can 
also do this with respect to the observed values 𝑃"(1). These equations are 

Γ(9) = ∑ 𝑝"(𝜏 + 1)𝑙𝑜𝑔
=!(;<1)

=!(;)"

∑ 𝑝"(𝜏 + 1)" = ∑ 𝑝"(𝜏) = 1" 	
					m ,  and    (21) 
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Γ(10) = ∑ 𝑝"(𝜏 + 1)𝑙𝑜𝑔
=!(;<1)

=!(1)"

∑ 𝑝"(𝜏 + 1)" = ∑ 𝑝"(1) = 1" 	
			m  .    (22) 

The final set we have computed are derived from the Sorenson-Dice statistics which determine 
the counts of the differences between population 𝑃"(𝜏 + 1) and 𝑃"(𝜏) and 𝑃"(𝜏 + 1) and 𝑃"(1) 
which differ from one another and are thus defined as  

Γ(11) = 0∑ :>!(;<1)<! ∑ :>!(;)!
∑ :!(;<1)! <∑ :!(;)!

  ,  𝑃n"(𝜏 + 1) > 𝑃"(𝜏)		, 𝑃n"(𝜏1) > 𝑃"(𝜏 + 1) , (23) 

Γ(12) = 0∑ :>!(;<1)<! ∑ :>!(1)!
∑ :!(;<1)! <∑ :!(1)!

  ,  𝑃n"(𝜏 + 1) > 𝑃"(1)		, 𝑃n"(1) > 𝑃"(𝜏 + 1) . (24) 

We define the variant of this statistic here in analogy to its use in evaluating the goodness of 
fit in gravitational models (see Masucci, Serras, Johansson, and Batty, 2013). 

 
Figure 8: Long Term Equilibrium Spatial Distributions of Population 

 

We have already illustrated the first cycle of iteration associated with the equilibrium 
conditions shown in equation (12) and we mapped the predicted and observed population and 
employment in Figures 2(a) and (b) and Figures 6(a) and (b) respectively. We have already 
noted the fact that the first cycle of the model generates more than proportionate employment 
relative to observed population, reflecting economies of scale which are a feature of the model. 
When we continue the iterations, these effects are reinforced and immediately it becomes clear 
that convergence of the activities on the final solution begins. In fact, we are able to end the 
convergence by defining thresholds on any of the 12 goodness of fit statistics but here we have 
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run the model up to 𝜏 = 100 which to all intents and purposes generate stable values of 
𝑃"(100), 𝐸#(100) and the four employment types 𝐸!ℓ(100). We show a complete equilibrium 
solution in Figure 8 for employment and Figure 9 for population. These need to be compared 
with the first iteration of the model which generated Figures 6(a) and 6(b) as well as the 
observed values in Figures 2(a) and 2(b). The correlations between the employment and 
population in the long term equilibria (𝜏 = 100) compared to their observed values (at 𝜏 = 1) 
fall to 0.519 and 0.265 respectively which implies much more spreading out but no radical 
change in their distribution over the region, despite quite large changes in the volume of 
activity predicted in different locations. 

 
Figure 9: Long Term Equilibrium Spatial Distributions of Employment 

 

In the equilibrium, we have separated out and then mapped the employment and population 
which are greater and less than the their observed values; that is, for employment, in Figure 8 
we first map 𝐸#(100), the same variable with 𝐸#(100) > 𝐸#(1) and 𝐸#(100) ≤ 𝐸#(1), and 
then these two sets of values on separate maps for 𝑘 ⊂ 𝐸#(100) > 𝐸#(1) and then 
𝑘 ⊆ 𝐸#(100) ≤ 𝐸#(1). In Figure 9, we plot the same types of maps for the relevant categories 
of population. Note that in all these maps we have used proportionate overlapping circles with 
a degree of transparency which give a much better sense of the fact that in this region, 
employments and populations are point rather than area locations and we consider these 
representations much more intuitively meaningful than their equivalent thematic maps. 

We have plotted the 12 statistics for 100 iterations of the variable total population in Figure 10 
and it is very clear that the convergence is smooth with no obvious discontinuities. For most 
measures, convergence is rapid at first and by iteration 30, most statistics are within 1% of 
their final values. The absolute and squared distance statistics Γ(𝑚),𝑚 = 1,…, 6 are easy to 
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interpret for these give the change in the average total count or percentage of population or 
employment per zone. The other six statistics – the correlations, the Kullback-Leibler 
information differences, and the Sorenson-Dice indices – all measure how close the solutions 
values are to their final solution as well as to their baselines – the observed values at 𝜏 = 1. In 
the single cycle model, which is pictured previously in Figures 6(a) and 6(b), the model 
produced more than proportionate employment and population for the first prediction. When 
we move to the final iterative solution, Figures 8(a) and 9(a) show much the same degrees of 
agglomeration and the logarithmic scatter graphs based on comparisons of 𝐸#(100) against 
𝐸#(1) and 𝑃"(100) against 𝑃"(1) are quite similar to the graphs in Figure 7(a) and (b). We will 
simply present the non-linear relationships, not the graphs as the fit; the estimated equations 
are fairly similar, with the equations estimated as log 𝐸!(100) = −13.687 + 2.494	log 𝐸!(1) 
with a goodness of fit 𝑅0 = 0.548 and log 𝑃"(100) = −3.982 + 1.445	log 𝑃"(1)	with the 
goodness of fit 𝑅0 = 0.623. The implication of these results is that the economies of scale 
generated by the model do not vary much throughout the equilibrating process, but they remain 
highly significant. 

 
Figure 10: Convergence To Equilibrium: Population Trajectories 

 

The last and perhaps most surprising feature of this process of reaching equilibrium is that 
continued iteration of the model equations leads to a succession of digital twins that might be 
considered different forecasting models in their own right. Moreover, continued iteration in 
the manner implied by equation (12) is like a sequence of forecasts which could be regarded 
as a system regenerating itself where the computable iterations 𝜏 are like time itself. In this 
sense, tracing the evolution of an equilibrium is like simulating the passage of time where the 
distribution of activities is continually changing. It is even possible to inject new exogenous 
variables into the mixture from external sources which always occur in any forecasting 
situation. To illustrate this, we simply modify the various inputs to the model by adding 
increments to any of the dependent variables but as the equilibrium model is composed entirely 
of dependent variables, the model becomes ever more complicated. To illustrate this, we take 
the first equation in (12) and modify this as 𝑃"(𝜏) = ∑ 𝐴!ℓ{𝐸!ℓ(𝜏) + ∆𝐸!ℓ} + 𝐹"exp(−𝛽ℓ𝑐!")!ℓ  
where we are adding a new component of employment ∆𝐸!ℓ at each time period and for 
𝐸#(𝜏 + 1) = ∑ 𝐵"{𝑃"(𝜏) + ∆𝑃"}𝐹#ℓ exp(−𝛾ℓ𝑐"#)"ℓ  a new component of population ∆𝑃". If 
these values were chosen as random variables, we could use this mechanism to simulate 
uncertainty in a probabilistic variant of the model, reflecting randomness in spatial behaviour. 
Such extensions, however, are currently beyond the scope of this paper but will be explored in 
later work 
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Developing Countless Digital Twins as Scenarios 
 
To conclude our illustration of new simulation environments which we can use to explore many 
variants of our generic model, we will indicate how we can continually evolve new settlement 
patterns for the CAMKOX corridor by altering many features of the model itself and many of its 
inputs. These in turn can change the structure of the model and we already have some simple 
variants that we need to test to give some sense in which we can devise new structures that we can 
develop in this new environment of multiple simulations. In fact, we will not launch into a complete 
and comprehensive demonstration of how we might use these models continually on the desktop 
for we do not have the space here to present all this. But we can use this model to devise new plans 
for locating activities and constructing new transportation routes, thus generating one digital twin 
after another. To give some sense of this, there are three simple variants we have noted for which 
we can test different causal structures, first testing separate employment and residential models 
based on how population generates employment 𝐸#(𝜏) = 𝑔[𝑃"(𝜏)] and second how employment 
generates population 𝑃"(𝜏) = 𝑓([𝐸#(𝜏)]. The first stage of the complete generic model generates 
population from employment, but we can also start this model structure by first generating 
employment from population, and as we have not yet demonstrated this, we will present this now.  

We developed the full model in the previous section from 𝐸#(𝜏 + 1) = 𝑔t𝑃"(𝜏)u = 𝑔[𝑓[𝐸#(𝜏)]] 
but we now also need to test the model starting from the population rather than the employment 
sub-model using 𝑃"(𝜏 + 1) = 𝑓[𝐸#(𝜏 + 1)] = 𝑓[𝑔t𝑃"(𝜏)u]. We show the predictions of 
employment from the single residential location model 𝑃"(𝜏) = 𝑓([𝐸#(𝜏)] in Figure 11(a) and the 
correlation with observed employment is 0.586. The predictions from the full model starting from 
the same sub-model are shown in Figure 11(b) and the correlation for this prediction is much lower 
at 0.276. This prediction is not as radically different from the existing observed distribution of 
employment as in the generic model defined in equations (12) and we speculate that this is due to 
the fact that its population input data is much flatter in terms of its spatial clustering than 
employment.  

 
 

Figure 11: Variants of the Generic Model (a) Population Generating Employment in One Cycle (b) 
Population Generating Employment in 100 Time Cycles 

 

We can also make many more changes to this model on-the-fly, and these give instant predictions 
but the advantage of the environment in which we can do these, is that we can input the data in 
single lines of code and generate immediate feedback that we can plot instantly using the simple 
nodal maps. One of the advantages in developing scenarios in this way is that it is very easy to 
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illustrate these predictions in the wider context of a dialogue between decision makers and planners. 
To impress these advantages, we will conclude with a simple example of looking at scenarios where 
single inputs of employment and population can be defined to test the impact of new growth poles 
or new towns in the wider region.  To illustrate this, we note that in the CAMKOX corridor, there 
are two new towns, Stevenage started in 1946 (https://www.tcpa.org.uk/new-town/stevenage/),   
Milton Keynes (https://www.theplanformiltonkeynes.co.uk) established in 1969, a proposal for a 
new garden city in the Oxford area in 2014 (https://www.oxfordfutures.org.uk), and a plan for 
expanding Cambridge (https://www.cambridge-connect.uk/resources/cambridge-proposals/) first 
raised in 1996  We can simply reinforce these locations by adding 50,000 new jobs in the four 
locations and run the model which produces an immediate spread of these 200,000 jobs in the 
corridor. We anticipate that these jobs would reinforce the existing pattern of population because 
we have not changed the locational attraction factors or the transportation behaviours through the 
travel times between different places. If we simply add these jobs to these four locations, the model 
gives an immediate answer which we show in Figure 12(a) where the new jobs are located and in 
Figure 12(b) where the working population is generated. We first show the model predictions after 
one cycle of the model but then in the longer term equilibrium after 100 iterations, the patterns in 
12(c) and 12(d) are quite different, reinforcing the central north-south corridor, as we also 
discovered in the various tests of the model in previous sections of the paper. 

 
Figure 12: Intensifying the Four New Town Locations 

(a) Employment 𝜏 = 1 (b) Population 𝜏 = 1 (c) Employment 𝜏 = 100  
(d) Population 𝜏 = 100 

 

In developing simulations in this way, we argue that we should begin to do this as much by trial 
and error guided by our own intuition as by any systematic variation of parameter values as we 
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have done in previous models (Batty et al., 2013). In short, the way we develop plans for cities 
before the digital age by manual sketch planning, can now be achieved on the desktop where the 
model builder can use his or her own imagination and intuition to explore multiple futures. Until 
we had environments in which to build relatively realistic models where we are able to simulate 
outcomes and scenarios almost instantly as we have done here using widely available open source 
software tools, it has not been possible to design and test anything but the most minimal of 
alternative futures using models of any kind. Until now we have not even catalogued the many 
ways, we are able to elaborate such futures as we have not had the ability to explore them other 
than in the most cursory way. As we have argued in this paper, this is now rapidly changing. 

Every element of the model that we have constructed can be altered and the fact that we are dealing 
with an equilibrium model, means that all the model’s variables are endogenous and can thus be 
manipulated; in short, this is because the inputs are also the outputs. There are some independent 
variables that we have assumed remain constant such as locational attractions and travel behaviours 
but even these can be varied to generate new scenarios. In terms of the equilibrium model which 
we defined in equations (12) as we are able to start it with assumptions about the location of 
employment and/or population, it is easy to begin to simulate alternative urban development 
patterns in a sequence which is guided by the outcomes that are simulated from changes in the 
model’s inputs. We could continue our new town examples but there are many other patterns that 
we could test and in developing future variants of the model, this will be our goal.  
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