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1 Speaker

 Dr Stuart E. Middleton

— Senior research engineer
— University of Southampton, Electronics and Computer
Science (ECS), IT Innovation Centre
* Research
— Computational linguistics and information extraction

* Interdisciplinary
— Disaster early warning & response (GFZ TRI@C)
— Journalists (Deutsche Welle [Aeveal )
— Archaeologists (British Museum §GRMITATE)
s Y Floraguard

— Law enforcement agencies (UK Border Force &%
UK National Crime Agency)
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'T Location Extraction & Geoparsing

* Terminology - my definitions

— Geocoding
— Address >> Spatial reference (e.g. coordinate)
— Geoparsing
— Free Text >> Location(s) >> Disambiguated location(s)
— Optionally can also provide spatial reference(s)
— Geotagging
— Free Text >> Spatial reference (e.g. coordinate)
— Location identification
— Geoparsing without location disambiguation

— Location estimation
— Geotagging to a spatial area such as a grid cell

« Location and Toponym used interchangeably

© University of Southampton, 2018
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'T Location Extraction & Geoparsing

« Case studies
— TRIDEC

— Geoparsing social media around crisis events
— Tsunami early warning >> 5 to 60 minutes coastline warnings

— Earthquake >> Tsunami wave simulation >> Coastline impact
SMS warnings via mobile phone system

— Social media flood maps >> Actual wave impact times >>
Adjust Tsunami wave simulation

© University of Southampton, 2018
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28 |ocation Extraction & Geoparsing
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'T Location Extraction & Geoparsing

 Case studies

— REVEAL
— Geoparsing social media for breaking news
— News event >> 10 to 30 minute breaking news window

— User Generated Content (UGC) >> Eyewitness images &
videos >> Need Al to filter to avoid overloading journalists

— Interactive map of real-time UGC

© University of Southampton, 2018
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Location Extraction & Geoparsing

Disambiguated Locations

innovation
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'T Location Extraction & Geoparsing

* OpenStreetMap Planet OSM Pre-processing
— OSM planet > osm2pgsqgl > PostgreSQL + PostGIS

— Area of interest for pre-processing
— Global cities and countries

— Focus area definition
— Full name, Set of relation OSMID's, Point & radius, Polygon
— e.g. Greater Paris

— SQL query to capture location data
— SQL WITH >> admin relations >> Lookup index
— SQL >> polygons (admin) in focus area >> Admin table
— SQL >> polygons (not admin) in focus area >> Admin lookup >> Polygon table
— SQL >> lines in focus area >> Admin lookup >> Line table
— SQL >> points in focus area >> Admin lookup >> Point table
— Lookup OSM relation, way, node tables to extract OSM metadata

© University of Southampton, 2018 10
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'T Location Extraction & Geoparsing

 Entity Matching - In-memory Location Cache
— Load pre-processed focus area tables

— Token expansion using location name variants
— e.g. OSM multi-lingual names, short names and acronyms

— Token expansion using location type variants
— e.g. street, st.

— Token filtering against WordNet, stoplists and lists of
peoples first names

— Prefix checking against name list
— e.g. Victoria Derbyshire = Derbyshire

© University of Southampton, 2018
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'T Location Extraction & Geoparsing

 Location Disambiguation

— Token subsumption

— Prefer full location phrases over partial ones
— ‘New York’ >> [New York, USA] better match than [York, UK]
— Spatial proximity & Geotag
— Prefer locations where a parent region OR nearby location
OR geotag is mentioned for context
— ‘New York in USA’ >> [New York, USA] better match than
[New York, BO, Sierra Leone]

— OSM admin level

— Prefer higher OSM admin levels to lower admin levels

— ‘New York’ >> [New York, USA, OSM admin level 4] better
than [New York, BO, Sierra Leone, OSM admin level n/a as
its a suburb]

© University of Southampton, 2018

12



PUBLIC

'T Location Extraction & Geoparsing

* Discussion: Velocity

— geoparsepy is naively parallelizable
— Single machine : Python multiprocessing lib
— Cluster : APACHE Storm

© University of Southampton, 2018
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'T Location Extraction & Geoparsing

* Discussion: Velocity
— Hurricane Sandy, Oct 2012, 5 days, Twitter Streaming APl (1% sample size)

— Dataset: 597,000 tweets, 4,300 location mentions, ~170 unique locations,
1% of posts geotagged
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'T Location Extraction & Geoparsing

* Discussion: Velocity
— Hurricane Sandy, Oct 2012, 5 days, Twitter Streaming API (1% sample size)

— Dataset: 597,000 tweets, 4,300 location mentions, ~170 unique locations,
1% of posts geotagged

Peak throughput
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'T Location Extraction & Geoparsing

* Discussion: Velocity
— geoparsepy throughput

— Equipment setup
— Single 2GHz CPU core
— Global country/cities, 422,946 locations, 11 Gbytes RAM
— Geoparsing throughput on UK election 2015 twitter posts
— Load cache 0.005s / loc (35min), Geoparse 0.015s / tweet (66/s)

— Scales up linearly with extra CPU cores

— Loading location cache is a one-off process setup cost
— Trade-off - large RAM footprint for higher throughput

— Options for parallelization

— Split text between processes, each process has full location set
— RAM footprint: N x locations, 1 x text
— Split location set between processes, each process has full text

— RAM footprint: 1 x locations, N x text
© University of Southampton, 2018
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'T Location Extraction & Geoparsing

* Discussion: Veracity

— Social media crisis map (right)

— Ground truth: US Federal Emergency Management Agency (FEMA)
storm surge map from aerieal photography (left)

Ground Zero
& LSty &\

Holland Tunnel

Holland Tunnel  Ground Zero

......

Governcrs

,,,,,,,,
......

Battery Place Wall Street Battery Place Wall Street

Key Expert post-event assessment Place flooded tweet(s) Clustered flood reports

storm surge inundation area Street flooded tweet(s)

Crisis map accuracy for  Threshold Places Streets Precision Recall F1
a 8x8 Map segmentation dev_sma >0 66 101 0.78 0.76 0.77
at different map thresholds ~ dev_sma > 0.016819 22 0.81 0.44 0.57
dev_sma>0.1 4 1 1.00 0.09 0.17
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'T Location Extraction & Geoparsing

* Discussion: Veracity

— Social media crisis map (right)

— Ground truth: US Federal Emergency Management Agency (FEMA)
storm surge map from aerieal photography (left)
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Location Extraction & Geoparsing

* Discussion: Veracity

— Geoparse twitter benchmark dataset
— Ground truth: Manually labelled locations within dataset
— https://lwww.southampton.ac.uk/~sem03/geoparsepy/readme.htmi

1 T

innovation

Event # Tweets Crawler Language | Date # Regions # Streets # Buildings | # Locations Spatial mention

Keywords mentioned mentioned mentioned mentioned coverage
New York, USA 1996 flood Mostly Oct 85 18 48 151 US South Coast
Hurricane Sandy hurricane English 2012

storm
Christchurch, NZ | 2000 earthquake Mostly Feb 33 24 64 121 New Zealand
Earthquake quake English 2011

#eqnz
Milan, Italy 391 blackout Mixture May 17 8 10 35 Milan
Blackout English & | 2013

Ttalian

Turkey 2000 earthquake | Mostly May 51 0 0 51 Turkey
Earthquake quake Turkish 2012

deprem

Middleton, S.E. Kordopatis-Zilos, G. Papadopoulos, S. Kompatsiaris, Y. "Location Extraction from Social Media: Geoparsing,
Location Disambiguation, and Geotagging", ACM Transactions on Information Systems (TOIS) 36, 4, Article 40 (June 2018)
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Location Extraction & Geoparsing

* Discussion: Veracity

— Geoparse twitter benchmark dataset

— Ground truth: Manually labelled locations within dataset
— https://lwww.southampton.ac.uk/~sem03/geoparsepy/readme.htmi

Event # Tweets Crawler Language | Date # Regions # Streets # Buildings | # Locations Spatial mention

Keywords mentioned mentioned mentioned mentioned coverage
New York, USA 1996 flood Mostly Oct 85 18 48 151 US South Coast
Hurricane Sandy hurricane English 2012

storm
Christchurch, NZ [| 2000 earthquake Mostly Feb 33 24 64 121 New Zealand
Earthquake quake English 2011

#eqnz
Milan, Italy 391 blackout Mixture May 17 8 10 35 Milan
Blackout English & | 2013

Ttalian

Turkey 2000 earthquake | Mostly May 51 0 0 51 Turkey
Earthquake quake Turkish 2012

deprem

Geoparse twitter benchmark dataset

4 events, 6,387 tweets, 358 locations mentioned

Middleton, S.E. Kordopatis-Zilos, G. Papadopoulos, S. Kompatsiaris, Y. "Location Extraction from Social Media: Geoparsing,
Location Disambiguation, and Geotagging", ACM Transactions on Information Systems (TOIS) 36, 4, Article 40 (June 2018)
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* Failure analysis

PUBLIC

mistaken for location
names
[very common]

ner-gazetteer

Hurricane Sandy live-
tweeting day 1

Pattern Algorithms which | Example Correct Location

[frequency seen from had trouble

manual inspection]

Common terms geocoder This is the end of my None. Mistaken location was

Hurricane, UT 84737, USA

Peoples names that are
also location names

geocoder
linked-data

Webgrrls hosting
company is flooded by

Sandy, UT, USA

[varol

[common] ner-gazetteer #Sandy

Locations without any geocoder The city has high City of London, London, UK
context ner-gazetteer winds and flooding by

[common] the coastal lines

Not in a well formatted | geocoder Street flooding #NYC: 48th St, New York, NY, USA
address 48th Ave

Spelling mistakes

map-database

earthquake in

Christchurch, New Zealand

confused with place
type abbreviations
[rarel

Vernacular names and
abbreviations

[very rare on average
but depends on event]

linked-data
Im-tags-gazetteer

map-database
linked-data
ner-gazetteer

on this topic

CHCH hospital has
been evacuated

[rare] linked-data Chrristchurch New
ner-gazetteer Zealand ghastly
lin +occn camatbonn
Saints and peoples title | geocoder I agree with St. Mary None. Mistaken location was

1928 St Marys Rd, Moraga,
CA 94575, USA

Christchurch Hospital, 2
Riccarton Ave, Christchurch
Central, Christchurch 8011,
New Zealand

Street names 1n
unpopular locations

[very rare on average
but depends on event]

inKed-data
ner-gazetteer

Anyone have news ol
St Margarets Girls
College Winchester St
Merivale

Margarets Girls Lollege, 1%
Winchester St, Canterbury
8014, New Zealand

© University of Southampton, 2018
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Lessons Learnt

« (Geoparsing experience

Social media is very noisy
— Expect spelling mistakes, bad formatting, jargon
— Eyewitnesses at serious events tend to post clear text descriptions

Entity matching algorithms scale well
— Entity matching algorithms can be naively parallelized

— Entity recognition algorithms needs POS tagging or dependency parsing,
which can be hard to parallelize

Language models train on social media tags and pickup
vernacular terms well

— YFCC 100M Flickr image dataset tags e.g. big apple

All approaches suffer from variable spatial coverage
— OpenStreetMap - low population areas often lack data
— Language models - non-tourist areas often lack data

Hybrid models give best overall performance

© University of Southampton, 2018
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'T Geosemantic Analysis

* Terminology - my definitions

— Geosemantics
— Use of context in relation to spatial data

— UGC >> Location mention(s) >> Contextual text >>
Classification of how location is being referred to

 Case studies

— REVEAL

— Geosemantic classification >> Filter UGC >> Journalist

— Especially interested in situated and timely UGC
— Eyewitness UGC for breaking news events

© University of Southampton, 2018
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! Geosemantic Analysis
 Algorithm - geoclassifier

Twitter, You Tube, Instagram

) JSON tweets

Open Street Map \L
Planet Database
Social
\L Media <— Keywords
e FEEE : Crawler
Focus : Geospatial
Area(s) ! Pre-processing ,
[}

locations &
geometry

JSON tweets
+ Locations

] 1
! 1
] 1 . .
! Geoclassify : Situation
' I
! 1

. Assessment
JSON tweets {

+ Locations
+ Class labels
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M Geosemantic Analysis

 Context window around location mention

— 12 terms either side of location >> Text context

— Text context >> weak stemming (plurals) >> Parts of Speech
(POS) tagging >> n-gram features (mix of lexical tokens & POS)

« Example feature extraction

"Oklahoma tornado filmed by Newcastle resident"
\4
\4
Oklahoma/NP tornado/NN filmed/VVN by/IN Newcastle/NP resident/JJ
\4
\4
(Oklahoma tornado filmed), (tornado filmed by), (flmed by Newcastle), ...
(NP tornado filmed), (Oklahoma NN filmed), (Oklahoma tornado VNN), ...
(Oklahoma * filmed), (Oklahoma * by), (Oklahoma * Newcastle), ...
(NP * filmed), (Oklahoma * VNN), (NP * by), (Oklahoma * IN), ...

© University of Southampton, 2018 27
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Geosemantic Analysis

Feature selection

— Calculate most discriminating features
— Remove features below 10% of max TF
— Top 20,000 features selected after TF-IDF

— Supervised learning
— J48 decision tree & IBk classifiers worked best
— Random forest, LogiBoost and NaiveBayes also tested
— Labelled training data for 4 geosemantic classes
— Confirmation >> confirm or deny incident @ location
— Timeliness >> past, present or future location reference

— Situatedness >> insitu or remove location reference
— Validity >> relevant or noise e.g. geoparse error

© University of Southampton, 2018
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M Geosemantic Analysis

« Datasets

— TREC 2012 microblog dataset (Twitter)
— Chicago Blizzard 2011

— UoS crawled events (Twitter)
— Hurricane Sandy, 2012
— Oklahoma Tornado 2013
— Ukraine Conflict 2014
— Scottish Independence Referendum 2014

 Ground Truth

— Random sample of each dataset
— 5,285 total posts, 500 to 1500 each event
— Manually labelled with 4 geosemantic classes

© University of Southampton, 2018
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* Discussion: Veracity
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1l Lessons Learnt

« (Geosemantics experience

— Geosemantic filters are useful for pre-filtering content
— Precision OK for filtering prior to human assessment
— Not good enough for fully automated work yet
— Geosemantics can help location refinement
— Relative spatial offset e.g. | am 5 miles north of London bridge
— Negatives e.g. I'm nowhere near London bridge
— Relevance e.g. | was at London bridge last year

— Training data is often needed
— Its expensive to generate and not dynamic
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'T Open Information Extraction

* Terminology - my definitions

— Open Information Extraction
— Free Text >> relation tuples e.g. (John, didn't go to, London)
— Typically unsupervised and able to scale up

 Case studies

— REVEAL
— UGC >> OpenlE >> Factual claim extraction >> Journalist

— GRAVITATE

— Artifact descriptions from text resources >> OpenlE >>
Attribute metadata >> Archaeologist

— FloraGuard

— Online marketplaces & Forums >> OpenlE >> Proposition &
Entity extraction >> Law enforcement
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Open Information Extraction

 Algorithm - moving beyond just location

— Pre-process
— Stanford Tagger and Dependency Parser

— Novel template-based OpenlE algorithm
— Template-based unsupervised OpenlE algorithm

— Able to use semi-supervised relevance feedback to
incrementally improve over time

— Propositional extraction
— e.g. (10 dead, reported in, north of Paris)

— Attribute extraction
— e.g. (Left hand, of, statue), (Left hand, missing, three fingers)

— Naively parallelizable - Python multiprocessing lib
— Set of Python libraries alongside geoparsepy
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Open Information Extraction

* Discussion: Variety

— Information extraction - context beyond location
— Locations, Times, Usernames, Products, Financial
transaction details, Topics, Actions ...
— Dynamic language patterns and/or vocabularies are
common in many use cases
— Breaking news >> trending news topics (days)
— Cybercrime >> jargon in evolving cryptolects (months)
— Artifact description >> specialist vocabulary for new
archaeological digs & exhibitions (years)
— Unsupervised (or at least semi-supervised) algorithms
are needed to handle dynamic variety of language
patterns

— Work In progress - results due early 2019
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1 Summary

 Location Extraction & Geoparsing

— Entity matching algorithms scale well

— Database models for areas with good map coverage
— Language models to capture vernacular terms

— Hybrid models give best overall performance

e Geosemantics

— Provides context for pre-filtering and location refinement
— Training data is often needed

* Open Information Extraction
— Extracting semantic context beyond location
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Thanks you for your attention!

Any questions?

Dr Stuart E. Middleton
University of Southampton, Electronics and Computer Science, IT Innovation Centre

email: sem03@soton.ac.uk
web: www.ecs.soton.ac.uk/people/sem www.it-innovation.soton.ac.uk
twitter:@stuart_e middle
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