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Abstract. Monitoring and maintenance activities for bridges benefit from the use of digital twins. 
A digital twin can be defined as a numerical model of an existing structure enhanced with real-time 
data, representing the actual state of an asset. The manual preparation of the underlying numerical 
model is considered to be time-consuming, consequently automating the Scan-to-BIM process is of 
particular interest. One major challenge of automation is to segment the built asset by automatically 
detecting its components. This contribution proposes a methodology for bridge component detection 
based on a template-matching algorithm. Tests showed the accuracy of the proposed solution, even 
for incomplete point clouds, without requiring extensive input datasets. Compared to other solutions, 
this approach shows potential for adaptation to a variety of bridge designs.  

1. Introduction 
Digital twins simulate the behavior and evolution of existing physical entities through digital 
models enhanced with real-time data from sensors or external sources. A detailed definition is 
provided by Tekinerdogan and Verdouw (Tekinerdogan and Verdouw, 2020). One promising 
application in AEC industry is the automated inspection, assessment and management of built 
assets (Truong-Hong and Lindenbergh, 2022; Yang et al., 2022). BIM models expressed 
through an interoperable format like IFC (buildingSMART, 2022) are good candidates to serve 
as an integrative basis.  
Creating digital twins for bridges is of particular interest. When counting road bridges in 
Switzerland, there are more than 4500 requiring active monitoring and maintenance measures 
(OFROU, 2016). Only a minority is modeled digitally. However, such a model is needed as a 
basis for a digital twin approach for maintenance purposes. Modeling existing bridges without 
intelligent computational support is considered to be inefficient. As a consequence, researchers 
are proposing methods to automate this task and integrate maintenance activities (Opoku et al., 
2021). 
At present, 3D scanning is a fast and reliable solution to obtain digital information about the 
shape and other visual features of an existing bridge. The output is a collection of three-
dimensional data points in space known as "point cloud" (Yang et al., 2022). The process of 
creating a BIM model from a point cloud is commonly referred to as "Scan-to-BIM" process. 
The automated Scan-to-BIM process can be divided into the following steps: (1) detecting 
bridge components in point clouds (as labeled subsets), (2) generating solid geometries of 
components from their points and (3) structuring and enriching the digital model (according to 
information requirements). This paper focuses on the first step. 
The literature proposes several methods to detect specific components in point clouds. They 
can be classified into two groups: algorithm-based and learning-based. Although promising, the 
application of learning-based methods is often limited by high computational costs or the 
absence of sufficient training data (Truong-Hong and Lindenbergh, 2022; Xia et al., 2022; Yang 
et al., 2022). Prominent examples among the numerous learning-based methods are PointNet, 
PointCNN and Dynamic Graph Convolutional Neural Network (DGCNN).  
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Algorithm-based methods can be further subdivided into bottom-up and top-down approaches. 
The bottom-up approach segments first the point cloud and classifies the obtained subsets, using 
expert knowledge. Segmentation relies on geometric features including surface normals, 
meshes, patches and nonuniform B-spline surfaces (Lu et al., 2019). Despite good results 
obtained in simple scenarios, this method is judged to be difficult to apply for real-world 
bridges, since it is sensitive to noise and outliers, lacks performance, and requires substantial 
effort to formulate classification rules. This is especially true for complex geometry (Xia et al., 
2022; Yan et al., 2014).  
The top-down approach, where segmentation and classification are performed simultaneously 
(i.e. segmentation is based on expert knowledge), appears to be more promising (Yang et al., 
2022). Lu (Lu et al., 2019) developed a slicing algorithm for detecting components in point 
clouds obtained from scans of existing reinforced concrete bridges. It is proposed to separate 
deck and pier assemblies first. Then, pier caps and girders are detected and segmented, using 
surface normals and bounding box/density histograms, respectively. Although the extraction of 
the components showed to be very accurate, the method requires many input parameters and 
extensive expert knowledge related to the analyzed bridge type. This might complicate the 
adaptation to other bridge designs. In addition, only a fixed number of component types can be 
detected. Generally, the top-down approach is considered to be reliable but demanding in terms 
of preparation (i.e., manual preprocessing of the point cloud) and laborious to generalize (Xia 
et al., 2022; Yang et al., 2022). 

This paper introduces a new variant of the top-down approach addressing the above-mentioned 
challenges. Based on the work of Lu (Lu et al., 2019) and Zhao (Zhao et al., 2019), the presented 
method is intended to be flexible (i.e., easily adaptable to various bridges) and straightforward 
(i.e., simple to configure and use).  

2. Methodology 

The novelty of the proposed method (Figure 1) is to employ a template matching algorithm to 
detect occurrence(s) of bridge components within multiple cross-sectional views of a bridge.  

Template matching is a high-level machine vision technique used to find the location of a 
specific element in an image, called "source image". Required inputs are the source image and 
a "template image" containing the pattern to find in the source image (OpenCV, 2023).  

 

 

Figure 1 - Workflow for bridge component detection 
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In this work, source images are cross-sectional views of the bridge to be examined. Views are 
generated from slices (subsets) of the point cloud, each slice being linked to a different source 
image. Template images are cross-sectional views of components to be detected and defined 
manually by the user. When a component is located in a source image, points are extracted from 
the related slice and labeled. The process is repeated until all slices have been processed.  

The different stages of the methodology presented in Figure 1 are detailed in the following. 

2.1 Creation of slices 

To create a set of representative cross-sectional views of a bridge (i.e., source images), it is first 
necessary to cut the point cloud longitudinally as if using a "virtual knife". Positions of cutting 
planes can be individually defined such that geometrical variations are taken into account. 
Source images will be created from slices obtained: for n slices, n different cross-sectional 
views of the bridge will be created, each related to a part of the bridge along its longitudinal 
axis.  

Since processing a point cloud to create an image is computationally expensive, working with 
small subsets (slices) avoids high computational costs.  

2.2 Creation of source images 

Source images are raster images, i.e., they consist of a grid of square pixels. They are created 
by orthographic projection of voxelized point cloud slices (Figure 2).  

First, the slice is rotated so that its longitudinal direction is parallel to 𝑥⃗𝑥. Then, the slice is 
voxelized and voxels are "flattened" along 𝑥⃗𝑥 to obtain a two-dimensional picture composed of 
pixels. Pixels have {𝑢𝑢, 𝑣𝑣} coordinates related to {𝑦𝑦, 𝑧𝑧} coordinates of the point cloud.  

 

Figure 2 - Creation of source images 
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2.3 Creation of template images 

Template images (Figure 3) are also raster images, created manually by a domain expert using 
a raster graphics editor such as GIMP. Each template illustrates a pattern, related to a 
component type (e.g., beam, box girder, guardrail, etc.), that will be used to check if occurrences 
of that component are present in the generated cross-sectional views of the bridge (i.e., source 
images). Ideally, template sets are defined for each bridge point cloud, considering all objects 
to be detected. 

Template images can be created from scratch or derived from an existing image. Multiple 
template images can be defined for a single component type to account for variations in cross-
sectional representations from one slice to another (Figure 3). Some components, such as piles, 
can be detected using a typical and recurrent pattern. In this case, many areas are matched to 
retrieve the entire object. 

 

Figure 3 - Examples of template images 

2.4 Template matching 

Feature-based and area-based algorithms have been identified as candidates for the task of 
template matching (Swaroop and Sharma, 2016).  

The feature-based approach relies on local features (such as interest points, curves, etc.) of 
images to find matches. Since features are invariant to scale, rotation, translation and intensity, 
the detection capacity is not very sensitive to changes in the appearance of components in the 
different source images. However, this method is inefficient when input images do not have 
strong features (e.g., low resolution or level of detail) (Swaroop and Sharma, 2016). 

The area-based approach is iterative: at the beginning, the template image is positioned on the 
top-left corner of the source image and the similarity between the template and the overlapped 
area of the source image is evaluated using a comparison method (such as squared cross-
correlation) and a "matching score" is associated to the current position. In the next iteration, 
the template is moved one pixel to the right (or downwards) and a new score is calculated for 
this position. The process is repeated until the template has moved to the bottom right corner. 
Finally, the position(s) that reach a threshold score is (are) extracted. The OpenCV library 
documentation (OpenCV, 2023) details the process and the various associated comparison 
methods. 
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This approach is robust when components do not change in size or orientation. Creating rotated 
or resized versions of a template is a straightforward solution to handle geometrical variations, 
but might significantly reduce the performance of the algorithm.  

Regardless of the chosen approach, the expected result for each template matching execution is 
an image called "mapping image", in which matching regions are colored in red (Figure 4). 

 

Figure 4 - Example of mapping image (matching result) 

2.5 Mapping planar to three-dimensional regions 

Red-colored (planar) regions of the mapping image must be mapped to three-dimensional 
regions of the point cloud to label the corresponding points.  

The proposed methodology (Figure 5) is naively the inverse of the "flattening" operation 
presented in Figure 2: planar regions are extruded along 𝑥⃗𝑥 to obtain three-dimensional bounding 
boxes enclosing the points to be labeled. Extrusion length is equal to the longitudinal length of 
the slice.  

 

Figure 5 - Mapping planar to three-dimensional regions 

2.6 Points extraction and labeling 

Finally, points inside bounding boxes are extracted and integrated into a subset labeled with the 
name of the component type (Figure 5).  

If this component type is found in other slices as well, extracted points will be added to the 
same labeled subset. Finally, considering 𝑝𝑝 types of components to detect, 𝑝𝑝 labeled subsets are 
obtained, containing points from all slices where the respective component was found. 
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3. Case study 

The procedure presented before has been applied to detect and extract structural and non-
structural components from point clouds of two bridges located in Switzerland (Figure 6).  

A set of algorithms combining numpy (numerical computing), Open3D (3D data processing), 
OpenCV (computer vision) and pandas (data analysis) libraries for Python has been developed 
to generate source images (2.2), for template- (2.4) and region mapping (2.5) and the extraction 
of points (2.6). 

Test bridges are curved box girder bridges, made of reinforced concrete. They have a length of 
380 m (bridge 1) and 350 m (bridge 2). Although their geometry is relatively simple, a large 
number of voids and missing parts in their point clouds generated by 3D scans makes 
component detection challenging. This is a realistic scenario since environmental conditions 
and/or the employed survey method do not always allow the generation of clean and complete 
point clouds. 

 

Figure 6 - Test bridges 

3.1 Slices and templates images creation 

Slices (.xyz files) are created using Rhinoceros 3D and Grasshopper (34 for Bridge 1, and 51 
for Bridge 2). Some representative cross-sectional views of both bridges are generated from a 
set of slices (those with the fewest voids). These are edited in GIMP to manually produce 
template images (9 for Bridge 1, and 6 for Bridge 2). In the present case, the creation of 
templates took approximately 15 minutes per bridge. For both bridges, it is expected to extract 
the following components: bearings, box girders, drainpipes, guardrails, piles, road dividers and 
road surfaces. 

3.2 Template matching algorithm selection and configuration 

Tests were performed to determine the most suitable and robust template-matching approach 
given the incompleteness of the input point clouds (Figure 6). Feature-based matching 
algorithms yielded unsatisfactory results, likely due to the presence of noise and a too-low 
resolution of generated images. As expected, area-based matching algorithms produced more 
reliable results overall. This approach is therefore preferred and has been applied. 
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A major weakness of basic area-based matching algorithms is the increased risk of confusion 
(wrong matches) when templates become smaller since they are less likely to have particular 
and distinctive characteristics. To solve this issue, a new variant called "contextual area-based 
matching algorithm" has been implemented (Figure 7). The principle is to perform the sliding 
routine by using a "contextualized" version of the template (template + surrounding area) to 
filter and eliminate wrong candidates. Then, the area corresponding to the "original" template 
is retrieved from the previously matched region (in blue, Figure 7). The size of the surrounding 
area to consider is specific to the template and is defined by the user.  

 

Figure 7 - Contextual area-based matching algorithm 

The comparison method used is normalized cross-correlation (OpenCV, 2023), which returns 
for each candidate match a score between 0 (no match) and 1 (perfect match). Candidates are 
accepted or rejected based on the score, according to the decision intervals shown in Figure 8.  

Lower and upper thresholds are defined by the user. If the score is in the "pending" interval, the 
user is prompted to check the matching result and make corrections if necessary. Finally, a 
tolerance value (defined by the user and specific to the template) is applied to retrieve only 
matches whose score is in the interval [best score – tolerance, best score] (Figure 8).  

 

Figure 8 - Decision intervals 
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3.3 Results 

Table 1 shows detailed results obtained with a standard machine (10-core CPU - 3.0 GHz clock 
rate - and 256 Gb RAM). Classification results for the second bridge (the most incomplete point 
cloud) are presented in Figure 9. 

 

Figure 9 - Component detection results for Bridge 2 

Table 1:   Detailed results. 

 Bridge 1 Bridge 2 

Number of slices 35 46 

Execution time * 313 s 911 s 

Matching operations 204 414 

True positives + negatives ** 201 (98.5 %) 410 (99.0 %) 

False positives + negatives ** 3 (1.5 %) 4 (1.0 %) 

 
* excluding the time taken by the user for manual verification/correction, when prompted.  
** worst score obtained in the case where the user ignored manual verification requests (default threshold values). 

Obtained results are encouraging, particularly for the second bridge whose scan is incomplete 
(Figure 9). All expected component types were detected with failure rates of 1.5 % for Bridge 
1 and 1.0 % for Bridge 2. More precisely, there were no false negatives, and all potential false 
positives were identified (based on decision ranges) and submitted to the user for manual 
checking and correction. Wrong matches were mainly caused by confusing similar-looking 
components and could be minimized by refining templates and their parameters. 

Contextualized area-based template matching has shown to be efficient in identifying 
components even with a limited number of points (Figure 10). This capability is however 
conditioned by the quality and appropriate configuration of templates. 

It is assumed that the performance of the employed template matching algorithm will decline 
when components have a complicated geometry (e.g., variable section, sophisticated shape). 
Thus, the current solution seems to be appropriate for bridges having components with invariant 
geometry and where the point cloud is more or less incomplete. 
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Figure 10 - Detection of a road divider from a limited number of points 

 

The curvature of the examined bridges had no impact on component detection as the number 
of cutting planes was high enough to obtain "straight" slices, allowing to minimize "perspective 
effects" in cross-sections. However, the disadvantage of using more slices is that the process 
takes longer. In-depth analyses revealed that approximately 75% of execution time is spent on 
creating source images, generating mapping images and extracting points. Therefore, 
optimizing related algorithms bears a potential for time reduction.  

4. Conclusion and future work 

Detecting bridge components (semi-) automatically in point clouds is a challenging task of the 
Scan-to-BIM process. While most research efforts concentrate on machine learning-based 
methods, the potential of algorithm-based methods should not be neglected. 

Among major algorithm-based solutions, those by Lu (Lu et al., 2019) introducing the principle 
of subdividing a bridge into slices and analyzing their features, were found to be very accurate 
for tested bridges. However, they suffer from complicated implementation and adaptation to 
other bridge designs than those used for testing. 

The proposed solution requires subdividing the bridge as well. It employs a template-matching 
algorithm to detect bridge components in slices instead of employing complex features and 
rules. In contrast to learning-based methods, which need large training datasets, only a few 
bridge-specific templates are necessary to achieve segmentation.  

A case study showed promising results in terms of detection accuracy, even for point clouds 
with noise, voids and missing parts. Relying on a semi-automatic approach, asking for user 
intervention when the score is situated in the "Pending" interval (Figure 8), limits the number 
of false matches. First studies suggested that adaptation to other bridge types could be less 
complex than for rule-based methods since the definition of templates requires only limited 
expert knowledge and effort.  

The next step is to perform additional parametric tests to improve the proposed solution. Faced 
with the obvious limitations of area-based template matching algorithms, further tests using 
feature-based template matching algorithms will be carried out to propose an improved solution 
that better manages elements with complex geometries.  
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