Neutrino mass from cosmological surveys

Dark Matter Map with 3 Methods

Ofer Lahav (UCL)

The Big Neutrino Questions

- What is the absolute sum of neutrino mass?
 -upper limit of about 0.2 eV from Cosmology
 - lower limit 0.06 eV from oscillations
- What is the hierarchy Normal or Inverted?
- Is N_{eff} = 3.045,
 or larger (Sterile neutrino /'dark radiation')?
- Is the neutrino its anti-particle (Majorana)?
- Neutrino properties from Cosmology: a crucial test of our data and methodology

Brief History of 'Hot Dark Matter'

* 1970s : Top-down scenario with massive neutrinos (HDM) - Zeldovich Pancakes

- * 1980s: HDM Problems with structure formation
- * 1990s: Mixed CDM (80%) + HDM (20%)
- * 2000s: Baryons (4%) + CDM (26%) +Lambda (70%):

But now we know HDM exists! How much?

Neutrino Mass from Cosmology

Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales $k > k_{nr} = 0.018 (m_v / 1 eV)^{1/2} \Omega_m^{1/2} h/Mpc$

 $\Omega_{\rm v} h^2 = M_{\rm v} / (93 \text{ eV})$

Agarwal & Feldman 2010 Cf. Krishna Naidoo's talk

CDM+ 1.9 eV neutrinos. structure `washed out' CDM

"Back of the envelope" (cf. Boltzmann solver CAMB)

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} = 4\pi G\rho_0 (1 - f_\nu)\delta.$$

$$f_\nu = \Omega_\nu / \Omega_m$$

$$\frac{P(k, f_\nu) - P(k, f_\nu = 0)}{P(k, f_\nu = 0)} \simeq -\frac{6}{5}f_\nu \ln(1 + z_{eq}).$$

$$= -8 \Omega_\nu / \Omega_m$$

$$\frac{\Delta P(k)}{P(k)} = \frac{P(k; f_{\nu}) - P(k; f_{\nu} = 0)}{P(k; f_{\nu} = 0)}$$

(although not valid on useful scales)

Kiakotou, Elgaroy, OL astro-ph 0709.0253, PRD

Why do we need bigger surveys?

- Error on power spectrum of density fluctuations
- Suppression due to neutrino free streaming
- So measurement of neutrino mass improves

as inverse

 $\Delta P(k)/P(k) \propto 1/\sqrt{V_{\mathrm{eff}}}.$

 $\Delta P(k)/P(k)$ = -8 Ω_v/Ω_m

e.g. 2dF : 0.2 (Gpc/h)^3 DES: 20 (Gpc/h)^3 So a factor 10 improvement on neutrino mass

2-sigma Neutrino mass upper limits from existing data

Data	Authors	$M_v = \Sigma m_i$
2dFGRS	Elgaroy, OL et al. (2002)	< 1.8 eV
MegaZ-LRG + WMAP	Thomas et al. (2010)	< 0.28 eV
Planck13+robust surveys	Leistedt et al. (2014)	< 0.3 eV
Planck15++	Planck collaboration 2015	< 0.23 eV
BOSS Ly-alpha + Planck15	Palanque-Delabrouille etal. (2015)	< 0.12 eV
DES Y1 + Planck15+JLA+BAO	DES collaboration (2017)	< 0.26 eV

All upper limits 95% CL, but different assumed priors !

Neutrino mass from DES Y1 clustering+ weak lensing (3x2pt)

To fix or not to fix to minimal oscillations $M_v = 0.06 \text{ eV}$?

from DES+Planck+BAO+SNIa w= $-1.00_{-0.05}^{+0.04}$ Neutrino mass < 0.26 eV (LCDM, 95% CL)

arXiv:1708.01530 (revised)

2-sigma errors on Neutrino mass – forecast for future surveys

Data	Authors	Error (Σ)
DES (LSS) + Planck	OL et al. (2010)	0.1 eV
DES (LSS+WL) + Planck	Font-Ribera et al. (2014)	0.08 eV
Euclid (LSS/WL) + Planck	Amendola et al. 2016	0.04 eV
		0.05 eV
LSST (WL) +Planck	Abazajian et al. 2014	0.04 eV
DESI++	Font-Ribera et al. 2014	0.04 eV
SKA++	Abdalla & Rawling 2007	0.05 eV

Errors 95% CL, but different assumed priors !

DESI Corrector Optical corrector just completed at UCL

- Six huge lenses (one-meter class) are required for the DESI corrector
- => Spectra of 35M galaxies & QSOs

Rotation of ADC1 wrt ADC2

Methodology: health warnings

- Analysis is done within the $\Lambda\text{-CDM}$ scenario, subject to priors.
- Some probes are sensitive to the neutrino mass directly (e.g. the shape of the power spectrum).
- Other probes just constrain better the other N-1 parameters in the cosmological model (eg SN Ia, BAO).
- The selection of "best data sets" is somewhat subjective.
- Mismatch of data sets could lead to spurious "new Physics".

Could Cosmology tell the Hierarchy?

 $\Delta = (M - m) / \Sigma$ for normal hierarchy

Jimenez et al. 2010

A global Bayesian analysis of neutrino mass from Double Beta Decay, Oscillations & Cosmology

Cf. Host, OL et al (2007) on Planck+Katrin

Caldwell et al., arXiv:1705.01945

Cf. Agostini et al. arXiv:1705.02996

Summary

- Current upper limits on sum neutrino mass
 < 0.2 eV (2-sigma)
- Future surveys will improve it by factor 5, reaching the lower limit of 0.06 eV from oscillations
- So far no tension in neutrino mass between cosmology and terrestrial experiments: to meet soon!
- Hopefully a reliable neutrino mass measurement coming years!
- Controlling systematics is crucial
- Great prospects from new surveys for neutrino cosmology