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Abstract

Partial identification approaches have seen a sharp increase in interest in econometrics due to im-

proved flexibility and robustness compared to point-identification approaches. However, formidable com-

putational requirements of existing approaches often offset these undeniable advantages—particularly in

general instrumental variable models with continuous variables. This article introduces a computation-

ally tractable method for estimating bounds on functionals of counterfactual distributions in continuous

instrumental variable models. Its potential applications include randomized trials with imperfect compli-

ance, the evaluation of social programs and, more generally, simultaneous equations models. The method

does not require functional form restrictions a priori, but can incorporate parametric or nonparametric

assumptions into the estimation process. It proceeds by solving an infinite dimensional program on the

paths of a system of counterfactual stochastic processes in order to obtain the counterfactual bounds. A

novel “sampling of paths”- approach provides the practical solution concept and probabilistic approxima-

tion guarantees. As a demonstration of its capabilities, the method provides informative nonparametric

bounds on household expenditures under the sole assumption that expenditure is continuous, showing

that partial identification approaches can yield informative bounds under minimal assumptions. More-

over, additional monotonicity assumptions lead to considerably tighter bounds, which constitutes a novel

assessment of the identificatory strength of such nonparametric assumptions in a unified framework.

1 Introduction

In recent years, a trend in the literature in econometrics has been to obtain bounds on causal effects in

general instrumental variable models (e.g. Chesher & Rosen 2017, Demuynck 2015, Kitagawa 2009, Man-

ski 1990, Torgovitsky 2016). The arguments put forward in favor this partial identification approach are

higher flexibility and robustness compared to point-identification approaches (Chesher & Rosen 2017). How-

ever, general and widely applicable partial identification approaches are often too complex for practical
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applications, which limits their broader use in general models, as noted in Beresteanu, Molchanov & Moli-

nari (2012). Existing methods have therefore almost exclusively focused on the case of a binary treatment

(e.g. Fan, Guerre & Zhu 2017, Lafférs 2015, Mogstad, Santos & Torgovitsky 2018) or have been intractable

in practical settings, in particular when the endogenous variable has many points in its support. A practical

method that provides a flexible approach for partial identification in general instrumental variable models

with potentially continuous endogenous variables has so far been unavailable.

This paper introduces such a method for obtaining bounds on functionals of counterfactual distributions in

instrumental variable models with arbitrary unobserved heterogeneity and potentially continuous variables.

The method does not require structural assumptions per se, but allows to incorporate them rather intuitively

into the model. This way, the researcher can include assumptions about particular individual behavior. The

basic idea for this is to represent the instrumental variable model as a system of stochastic processes. The

method then proceeds by solving an infinite dimensional program on the paths of these processes, which

provides the bounds on the desired causal effects. Its potential applications include randomized trials with

imperfect compliance, the evaluation of social programs and, more generally, simultaneous equations models.

Further, it allows the researcher to only focus on a minimal model since it accounts for arbitrary forms of

unobserved heterogeneity by default.

A novel “sampling of paths”-approach provides a convergent sequence of approximate solutions to these

infinite dimensional programs. The idea for this approach is to sample a set of (shape-preserving) basis

functions and to solve the (then semi-infinite dimensional) optimization problems on this sample. This

introduced randomness is crucial, because it permits the derivation of probabilistic approximation guarantees

of the unobserved heterogeneity by using large deviations results (Vapnik 1998, van der Vaart & Wellner

2013). In particular, a researcher can use these results to gauge how well the semi-infinite dimensional

program approximates the infinite dimensional program for a given sample of basis functions. Furthermore,

the sampling approach allows to determine the identificatory content of (nonparametric) shape restrictions

in the model by sampling paths under these additional restrictions.

As a demonstration of its capabilities, the method estimates bounds on expenditure differences using

the 1995/1996 UK family expenditure survey. This problem is well suited for demonstrating the method’s

capabilities in practice as it (i) is nonlinear with continuous variables, (ii) allows to gauge if the program ac-

tually obtains reasonable results1, and (iii) provides a setting not directly related to causal inference, showing

the scope of potential applications. In particular, the method provides the first informative nonparametric

bounds on household expenditures under the sole assumptions that expenditure on goods is continuous with

respect to the budget set, corroborating the nonparametric and semi-nonparametric approaches in Imbens

& Newey (2009), Blundell, Chen & Kristensen (2007), de Nadai & Lewbel (2016), and Song (2018), which

assume monotonicity or additive separability in the unobservables in the first- or second stage. This demon-

strates that it is possible to obtain informative bounds on the causal effects of interest, even in general

nonlinear problems and without introducing many functional form restrictions. Moreover, when including

monotonicity assumptions in the model, the counterfactual bounds become more informative. This consti-

tutes the first instance where the identificatory strength of monotonicity assumptions can be assessed in a

unified manner. The practical estimation method is hence a first step to determine the identificatory strength

1In particular, the method should produce results which show that food is a necessity- and leisure is a luxury good, as
these are well-established economic facts. Anything else would indicate the method’s insufficiency. This application is actually
more challenging than a Monte-Carlo approach, as the method needs to replicate known facts on real data under minimal
assumptions (Advani, Kitagawa & S loczyński 2019). A priori, it is not even clear that any approach can deliver informative
enough bounds to check its validity. The fact that this method does provide informative bounds is a testament to its potential
usefulness.
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of frequently made (non-) parametric assumptions on the model.

The focus in this article lies on estimation. Still, large sample results are derived, for each bound

separately. They prove directional Hadamard differentiability (Bonnans & Shapiro 2013, Shapiro 1991)

of the value functions which correspond to the counterfactual bounds, and provide the respective large

sample-distributions. This also makes recently developed bootstrap methodologies (Dümbgen 1993, Fang

& Santos 2018, Hong & Li 2018) applicable in this setting.2 Based on these large sample results, one can

obtain coverage results of the identified set by relying on established results from the literature on partial

identification such as Imbens & Manski (2004) and Stoye (2009).3 In combination with these inference

results, the proposed method therefore provides a practical approach for estimation and inference in general

instrumental variable models.

2 Setup

This article deals with general instrumental variable models with no a priori assumptions on the functional

relations between the variables and unrestricted unobserved heterogeneity. These instrumental variable mod-

els have many (almost) equivalent representations (Imbens 2019, Pearl 1995b), for instance as nonseparable

triangular models of the form

Y = h(X,W )

X = g(Z,W ) Z ⊥⊥W,
(1)

where, Y is the outcome variable, X is the endogenous treatment in the sense that it depends on the

unobservable variable W , and Z is the instrument.4 Throughout, Y , X, and Z lie in the unit interval [0, 1],

while W is infinite dimensional.5 Alternative ways to represent the instrumental variable model are directed

acyclic graphs (Pearl 1995a) and the counterfactual notation PY (x) and PX(z) (Rubin 1974). The latter

representation is rather useful in the current setting.

In fact, the main idea for the approach is to interpret the counterfactual laws PY (x) and PX(z) of the

instrumental variable model as laws of counterfactual stochastic processes Yx and Xz, where the randomness

is induced by the unobservable W . Each element w ∈ W indexes one path Yx(w) of the process. This

representation allows to optimize over the unobserved heterogeneity W directly instead of the laws PY (x)

and PX(z) induced by it, which is the key for making the approach feasible.

It has been shown in Gunsilius (2019) that model (1) without structural assumptions is too general in

the case when X is continuous: it can replicate any data generating process for which PX|Z=z is absolutely

continuous with respect to Lebesgue measure. This directly implies that without restricting the functional

forms h and g, any approach for estimating sharp bounds will give trivial bounds. In particular, completely

unrestricted functions h and g correspond to a set of stochastic processes defined in [0, 1][0,1], i.e. all possible

2One challenge is the computational burden of resampling methods in this setting, which can be substantial for complex
problems. The derived large sample distributions can potentially be helpful in such cases.

3The results for inference and estimation of Chernozhukov, Lee & Rosen (2013) do not seem to be applicable in this setting
as they deal with optimization problems with a Euclidean parameter space. In contrast, the proposed optimization method is
defined over an infinite dimensional path space.

4Z ⊥⊥W means that Z is independent of W , i.e. PZ,W = PZPW . This model is often written with two separate unobservable
variables V and U in the second- and first stage (e.g. Imbens & Newey 2009). This is an equivalent model to (1) as one can
define the two dependent variables U and V on the same probability space and combine them to one variable W .

5The requirement of all random variables to the unit interval is a normalization of the observable random variables is
made due to practical considerations and for theoretical convenience. Theoretically, one can extend the results by allowing for
multivariate Y , X, and Z on compact sets, in which case the counterfactual processes YX and XZ would actually be random
fields. In practice, the variables are currently required to be univariate, however, as the practical solution approach is subject
to a curse of dimensionality as no sparsity or factor-model assumptions are placed on the stochastic processes.
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paths mapping the unit interval to the unit interval, equipped with the standard Borel σ-algebra. From a

mathematical perspective, [0, 1][0,1] is too big and the Borel σ-algebra is too coarse in the sense that many

subspaces of interest like C([0, 1]), the space of continuous functions on [0, 1], are not even measurable in the

Borel σ-algebra on [0, 1][0,1] (Bauer 1996, Corollary 38.5).

It is here where the stochastic process representation is useful for the first time, as it allows to introduce

very weak but easy to understand assumptions which restrict the unobservable heterogeneity W . In fact,

in order to obtain a theoretical and practical useful method, one needs to restrict the space of all possible

paths. A rather weak but restrictive enough assumption for this is to only consider stochastic processes that

possess almost surely càdlàg paths, i.e. paths that are continuous on the right with limits on the left. The

standard space for these paths is the Skorokhod space D([0, 1]) under the Skorokhod metric

dS(Yx, Y
′
x) := inf

λ∈Λ
{max{‖λ− I‖∞, ‖Yx − λY ′x‖∞}} ,

where Λ is the set of all strictly increasing and continuous functions λ : [0, 1]→ [0, 1], I : [0, 1]→ [0, 1] is the

identity function on [0, 1], and ‖ · ‖∞ is the supremum norm (Billingsley 1999, Section 12). One sufficient

and necessary condition for a function f : X → R to lie in the Skorokhod space is that its extended modulus

of continuity ω′f (δ) satisfies ω′f (δ) → 0 for any δ ↓ 0 (Billingsley 1999, p. 123).6 The following assumption

holds throughout.

Assumption 1 (Skorokhod space). Y , X, and Z take values in [0, 1]. Moreover, for every δ > 0 with δ → 0

it holds that

lim
δ→0

sup
w∈W

ω′Yx(w)(δ) = 0 and lim
δ→0

sup
w∈W

ω′Xz(w)(δ) = 0.

Assumption 1 only allows paths Yx(w) and Xz(w) that have finitely many discontinuities which exceed

any given real number. This assumption is weak enough in all practical settings. For instance in the setting

of randomized controlled trials with imperfect compliance, where Z is the initially randomly assigned dose of

the treatment and X is the actual dose taken, each path Xz(w) defines one response profile of a hypothetical

participant in this trial, for instance the never taker has a path which is zero for every dose z. Then

Assumption 1 restricts the model to response profiles which jump finitely often with the initially assigned

dose—this allows to model drop-outs for instance, which are paths Xz(w) which drop to zero at a certain

z ∈ [0, 1] and stay zero for all z′ ≥ z. W denotes the support of W .

Under this assumption, one can formally introduce the stochastic process representation of model (1).

Throughout the article, these stochastic processes are defined for “deterministic time”, even though X and

Z are random variables. This is achieved by assuming that X and Z have a fixed (i.e. deterministic) support

in [0, 1]. This is without loss of generality in this model; in fact, all of the results in this article go through

almost verbatim under the assumption that X and Z have random support in [0, 1]. The only difference will

be the slight formal complication of working with stochastic processes in random time.7

Proposition 1 (Stochastic process representation). For fixed supports X and Z in [0, 1], model (1) is

equivalent to a system of counterfactual stochastic processes Yx and Xz on [0, 1][0,1] equipped with the Borel

σ-algebra on the cylinder sets and with corresponding laws PY (x) and PX(z). These processes are measurable

6ω′f (δ) := inf{xi}maxi∈N supx,x′∈[xi−1,xi)
|f(x)− f(x′)|, where the infimum extends over all δ-partitions {xi}i∈N, i.e. par-

titions where the values xi are at a distance of at least δ > 0 from each other, see Billingsley (1999, p. 122). This definition
extends the modulus of continuity for continuous functions to càdlàg functions.

7In this case, one would need to replace Kolmogorov’s extension theorem by the random version provided in Theorem 1 of
Hu (1988).
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in D([0, 1]) under Assumption 1. The exclusion restriction implies that (i) Xz(w) is a stopping time for the

process YXz(w)(w) and (ii) the laws PY |X=x and PX|Z=z induce a joint law

P[Y,X]∗(z)(Ay, Ax) =

∫
Ax

PY (x)(Ay)PX(z)(dx), Ay ∈ BY , Ax ∈ BX ,

which corresponds to a joint counterfactual process [Y,X]∗z in ([0, 1]× [0, 1])[0,1].8 Furthermore, [Y,X]∗z can

be defined on D([0, 1]) with codomain [0, 1]2 and is measurable with respect to the filtration F
[Y,X]
z of all

events of [Y,X]∗z that have happened before z ∈ Z ⊂ [0, 1]. The independence restriction Z ⊥⊥ W allows to

compare the counterfactual process [Y,X]∗z to the stochastic process [Y,X]z corresponding to the observable

joint law PY,X|Z=z.

Proposition 1 states that the counterfactual probability measures PY (x) and PX(z) are the laws of Yx

and Xz, where the randomness is captured by some general probability space (Ω,BΩ, P ). In model (1),

this randomness stems from the unobservable confounder W . Since W is unobserved, one can identify

the abstract probability space (Ω,BΩ, P ) with the probability space ([0, 1],B[0,1], PW ), i.e. to identify the

support W of W with the unit interval.9 Then the elements w ∈ W index the paths Yx(w) and Xz(w) of

the respective stochastic process.

This representation allows one to set up an infinite dimensional program for obtaining bounds in these

general instrumental variable models. The idea for this is standard in the counterfactual partial identification

literature10: one maximizes (for an upper bound) or minimizes (for a lower bound) some functional of the

counterfactual law PY (x) under the restriction that the counterfactual laws PY (x) and PX(z) together replicate

the observable distribution FY,X|Z=z. The innovation of this article is that by considering PY (x) and PX(z)

as the laws of corresponding counterfactual processes Yx and Xz, one can make this approach tractable in

practice even in the setting where all variables are continuous.

Proposition 1 implies that it is equivalent to find an optimal measure P ∗W on all paths of the processes

Yx(w) and Xz(w) to obtaining an optimal combination of the laws PY (x) and PX(z). Therefore, instead of

optimizing over combinations of laws PY (x) and PX(z), one optimizes over the index set W ⊂ [0, 1] of the

corresponding stochastic processes. Intuitively, optimizing over the unobserved heterogeneity directly permits

the approximation of the structure of the unobservable heterogeneity by sampling elements w ∈ W ⊂ [0, 1].

The method works for general linear and nonlinear operators K : (W,BW) → (Y × X ,BY ⊗BX ). In

many settings, one can write the objective function as a linear operator of the form11

KPW (Ay, Ax) := EPW [K(Yx, Ay, Ax)]

=

∫
K(Yx(w), Ay, Ax)PW (dw), Ay ∈ BY , Ax ∈ BX .

(2)

For fixed Ax, Ay this operator reduces to a functional, a one-dimensional quantity, which is currently required

8BY denotes the Borel σ-algebra of all open subsets of Y.
9This follows from standard isomorphism results, see for instance Bogachev (2007, Theorem 9.2.2). It is in fact possible

to construct these explicit isomorphisms between general Borel measures on Polish spaces and Lebesgue measure on the unit
interval based on the approach laid out in Kuratowski (1934). One standard application of these isomorphisms is the construction
of Wiener measure, see for instance Hess (1982). The difference to other existing identification results in the literature is that
W is always infinite dimensional in this article: only the cardinality of W is important, which needs to be such that each path
Yx(w) and Xz(w) in the Skorokhod space—a Polish space under the Skorokhod metric—can be indexed by one w. By the
above isomorphism results, this is already possible if W ⊂ [0, 1].

10See the discussion in section 6 for a brief overview of applications of linear programming in econometrics.
11Throughout, the integral operator and its kernel are denoted by the same letter K.
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by the method.12 Sharp upper and lower bounds on the functional KPW (Ay, Ax) can then be obtained as

solutions to the following infinite dimensional linear programs:

minimize/maximizePW∈P∗(W) KPW (Ay, Ax)

s.t. FY,X|Z=z(y, x) = PW (Yx ≤ y,Xz ≤ x)
(3)

for all (y, x, z) ∈ Y × X × Z and fixed Ay, Ax. FY,X|Z=z is the distribution function corresponding to the

observable law PY,X|Z=z.

P∗(W) denotes the set of all measures PW on (W,BW) which induce paths on the Skorokhod space

defined in Assumption 1. All additional functional form assumptions on the model will be made by shrinking

P∗(W). For instance, making continuity assumptions between Y and X or X and Z in (1) translates to

continuity assumptions on the paths Yx or Xz. In this case, P∗(W) contains only measures PW onW which

put positive probability on continuous paths.13

3 Method

This section introduces a probabilistic approach to solve the problems (3) approximately in practice with

probabilistic finite sample guarantees for the validity of the approximation.14 The method proceeds by

sampling bases of the path space and solving semi-infinite dimensional analogues of (3) over this sample

of basis functions. The randomness introduced by sampling the paths permits the use of standard large

deviation results (Vapnik 1998, Chapter 5) which provides probabilistic guarantees for the approximation of

(3) via a random sample.

The idea is to approximate the infinite dimensional problems (3) by their semi-infinite analogues

min/max
P̂W∈P̂∗(W)

1

l

l∑
i=1

K(Ỹ κx (i), Ay, Ax)
dP̂W

dP̂0

(i)

s.t.

∥∥∥∥∥FY,X|Z=z −
1

l

l∑
i=1

1[0,·]×[0,·](Ỹ
κ
x (i), X̃κ

z (i))
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]2)

≤ ε

(4)

for some small ε > 0 and all z ∈ [0, 1], and where the L2-norm is taken with respect to y, x.15 Underlying

the approximations (4) is a sample of size l of a number of κ basis functions which approximate the path

12Thus, quantile effects cannot be established directly through the form of the objective functions, as they require knowledge
of the complete counterfactual distribution. It is, however, possible to approximate bounds on the counterfactual quantile
functions by solving the optimization problems (3) for many different values y and a fixed value x0. This will give an approxi-
mation of the upper- (for maximization) and lower- (for minimization) “envelopes” of the counterfactual distribution FY (x0)(y).
Respective bounds on the quantile distributions can then be obtained by inverting these envelopes.

13Since under Proposition 1 all processes are progressively measurable with respect to their natural filtration, one can even
introduce dynamic assumptions this way, like mixing properties.

14One can in fact only approximate the solutions to (3) (Kappen 2007, p. 152) since one cannot solve the problem over all
possible paths on a space.

15Rewriting the programs (4) in their Lagrangian form later on will reveal that ε fulfills the same purpose as a penalty
term/Lagrange multiplier for the constraint. In this sense, ε is a penalty parameter of the program which needs to be chosen
appropriately. See the next section for a discussion. Overall, the relaxation of the linear constraints to an L2-constraint is made
exclusively based on finite sample considerations. In the population ε = 0.
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space of the processes Yx and Xz. These approximations are denoted by

Ỹ κx (i) :=

κ∑
j=1

βj(i)bj(x) and X̃κ
z :=

κ∑
j=1

αj(i)aj(z) (5)

for coefficients β, α and basis functions b(x), a(z). Of particular convenience are basis functions used in

Sieves estimation such as (trigonometric) polynomials, splines, wavelets, and neural networks (Chen 2007).

This articles works with a shape-preserving wavelet basis, which is defined as

ϕκj(x) := 2
κ
2 ϕ(2κx− j) κ, j ∈ Z

with ϕ : R→ [0, 1] of the form

ϕ(x) :=


x+ 1 if −1 ≤ x ≤ 0

1− x if 0 < x ≤ 1

0 otherwise

.

Based on this the notation for the paths sampled via this wavelet basis for dilation κ is

Ỹ κx (i) :=

∞∑
j=−∞

αj(i)ϕκj(x) and X̃κ
z (i) :=

∞∑
j=−∞

βj(i)ϕκj(z), (6)

where the sums in the definition are both finite since the unit interval is bounded. This wavelet basis

preserves shapes in the sense that an approximation of a monotone (convex) function via this basis will itself

be monotone (convex), see Anastassiou & Yu (1992b) and Anastassiou & Yu (1992a); this is an important

feature when introducing shape assumptions into the model in practice.

The dependence of Ỹx(i) and X̃z(i) on the index i shows that the problems (4) are indeed semi-infinite

dimensional. In particular, the index i now runs over finitely many elements l and replaces the variable

w ∈ W on the state space of PW . In this respect, the term dP̂W
dP̂0

(i) is fundamental. In particular, the

empirical sampling law P̂0 ∈ P̂∗(W) is one representative law on the paths of stochastic processes, which is

used for sampling the basis functions. The optimization is then over all P̂W which are absolutely continuous

with respect to P̂0, so that dP̂W
dP̂0

(i) is the Radon-Nikodym derivative. This construction arises naturally, as

the empirical sampling law P̂0 determines the universe of all l paths, over which an optimal law P̂W will be

chosen to solve the programs. P̂W must by construction be absolutely continuous with respect to P̂0 as it

can only place positive mass on the i sampled paths, which have been determined via P̂0. In other words,

P̂∗(W) is the set of all probability measures which do not put positive measure on paths other than the l

paths sampled via P̂0. This implies a natural assumption on the data-generating process in the population.

Assumption 2 (Representer P0 of P∗(W)). The sampling law P0 is a representative law of P∗(W) in the

sense that (i) P0 ∈ P∗(W) and (ii) every PW ∈ P∗(W) is absolutely continuous with respect to P0 with

β-Hölder continuous (β > 1
2) Radon-Nikodym derivative satisfying supw∈W

dPW
dP0

(w) ≤ CRN < +∞ for a

fixed constant CRN .16

Assumption 2 is the theoretical analogue to the fact that all P̂W are absolutely continuous with respect

to P̂0 by construction. Since by the finite dimensional construction all measures P̂W are automatically

16A function f : X → R is β-Hölder continuous if supx 6=x′∈X
|f(x)−f(x′)|
‖x−x′‖β < +∞ (Folland 2013, p. 138).
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absolutely continuous with respect to P̂0, theoretical measures PW which are not absolutely continuous to

P0 can never be detected. This implies that Assumption 2 is non-testable. It is an assumption on P∗(W)

which necessarily follows from the approximation argument. Below, we will argue that it is similar in spirit to

smoothness assumptions when estimating probability densities by kernel density estimators, but on measures

with an infinite dimensional support.

In practice, it is through P0 that the researcher introduces functional form restrictions into the model.

For instance, if one wants to assume continuity in the relation between Y and X, one will choose a P0 which

only puts positive measure on continuous paths. P̂0 will then only sample continuous paths in practice.

This way, one can theoretically introduce any form of functional form restriction into the model. These

restrictions will rule out certain paths (for instance the assumption of an increasing relationship between Y

and X will rule out all paths which are non-increasing) in the model and therefore restrict the unobservable

heterogeneity captured by W over which the programs need to optimize.

One also needs to impose some regularity on the objective function.

Assumption 3 (Regularity of objective function). For every fixed Ay ∈ BY and Ax ∈ BX , the kernel

K(Yx(w), Ay, Ax) is either

(i) bounded and Lipschitz continuous in Yx(w) with Lipschitz constant L < +∞ or

(ii) takes the form of an indicator function, i.e. 1G(Yx(w)) for some event G.

The following theorem gives probabilistic guarantees of for the approximation of the infinite programs

(3) by the semi-infinite programs (4). Denote by V ∗ and V∗ the value functions of(3) and by Ṽ ∗l,κ and Ṽ∗,l,κ

the value functions of (4).

Theorem 1 (Probabilistic approximation via the “sampling of paths”-approach). Under Assumptions 1 –

3, with probability 1− ρ,

max{|V ∗ − Ṽ ∗l,κ|, |V∗ − Ṽ∗,l,κ|} < C sup
w∈[0,1]

ω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1) +

√√√√ log
(
C̄
ρ

)
D̄l

+ o(1). (7)

0 < C < +∞ is a constant depending on κ and 0 < C̄ < +∞ and 0 < D̄ < 2 are constants depending on

κ, β, ε, FY,X|Z=z, CRN and L. The o(1)-term appears from a logistic approximation of the indicator functions

from the constraint (and potentially the objective function).

Theorem 1 jointly provides a lower bound on the number of sampled paths l as well as the number of

terms in the wavelet decomposition κ for the semi-infinite program to provide a good approximation to the

infinite dimensional program for a requested probability ρ. The result follows from large deviation results

for empirical processes with functions of finite entropy numbers (van der Vaart & Wellner 2013, chapter

2.14). The main assumptions for this are the Lipschitz continuity of the kernel K(Yx, Ay, Ax) and especially

the and Hölder continuity of the Radon-Nikodym densities dPW
dP0

(w). The constants C̄ and D̄ are a result of

these large deviation results, which depend mostly on the smoothness parameters involved.17

The introduction of the randomness via sampling the paths permits the use of statistical procedures for

the purpose of function approximation. The idea is to perform statistical estimation with respect to the

17Under stronger assumptions—like a finite Vapnik-Chervonenkis dimension (Vapnik 1998)—on the Radon-Nikodym deriva-
tives and K, one can achieve an even better convergence by using the results in Vapnik (1998, chapter 5). These assumptions
are often unreasonably strong (in particular the assumption that the densities have finite V C dimension). The focus in this
article hence lies on the weaker assumption which give slightly worse approximation guarantees.
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counterfactual elements via sampling. In this respect, Assumption 2 is important for obtaining the rate of

convergence in Theorem 1: if all Radon-Nikodym derivatives dPW
dP0

(w) are smooth and have support in all

of [0, 1], one does not need many draws l to approximate the optimization problem. For more concentrated

densities, the approximation can be much worse in the sense that one needs a substantially larger sample

l to approximate the optimal density. The approach proposed via Theorem 1 can hence be seen as a

nonparametric estimation of a probability density with infinite dimensional support and where one has

complete control over the data sample.

The method proposed here differs from existing approaches for partial identification in infinite dimensional

spaces that rely on specifying the identified set via a set of inequalities (Chesher & Rosen 2017). By

exploiting the optimization structure, the proposed method has a straightforward way of “selecting the

binding inequalities”. Intuitively, instead of having to specify the complete set of inequalities describing the

identified set (via Artstein’s inequality for instance), the method “puts a probability measure on the set of

inequalities” and samples from these. This, coupled with the optimization problem, allows the program to

sample the “probably binding” constraints in the optimization and reduces the infinite dimensional—and

unsolvable—problem of specifying all inequality constraints in the infinite dimensional space down to a finite

set.

Theorem 1 complements existing results on the approximation of infinite dimensional (linear) programs

by semi-infinite dimensional programs by explicitly introducing randomness via sampling. While articles

which employ probabilistic arguments exist in the general mathematical literature on function approximation

(e.g. Girosi 1995, Pucci de Farias & Van Roy 2004), Theorem 1 samples the state space of the problem,

whereas other approaches sample constraints (Pucci de Farias & Van Roy 2004); moreover, Theorem 1 does

so without the introduction of dynamic assumptions (Kappen 2007). For the types of problems considered

here, the randomness introduced is actually required, because one can never optimize over the complete

path space directly and is hence forced to sample. In this respect, note that standard solution concepts for

infinite dimensional programs work on a Euclidean state space (Anderson & Nash 1987), so that sampling

is not actually necessary for solving these programs.

4 Inference

The statistical randomness follows from approximating the population distribution FY,X|Z by a finite-sample

estimator F̂Y,X|Z;n, potentially smoothed via some bandwidth hn, where n denotes the size of this sample.18

This subsection introduces large sample results which enable the researcher to perform inference on the

solution of the programs (4). These results are only derived for each bound separately and for fixed l and

ε. In order to derive inference bounds on the whole identified set, one can use well-established results from

the literature, such as Imbens & Manski (2004) and Stoye (2009) as the outcomes of interest are univariate

and hence form an interval.

Even though the theoretical programs (4) have relaxed constraints, it could potentially still be the case

that for very small ε > 0 there exist data-generating processes FY,X|Z that no PW ∈P∗(W) can replicate;

this is especially true in the case where many additional form restrictions are imposed on the model. In this

case, however, the data-generating process directly introduces testable assumptions on the model (Gunsilius

18The theoretical results in this section are derived for the standard empirical cumulative distribution function F̂Y,X|Z;n.

They extend straightforwardly to smoothed estimators F̂Y,X|Z;hn . For this, all one has to do in the proofs is to replace the
classical Glivenko-Cantelli and Donsker theorems by analogous versions for smoothed empirical processes. These results (and
the corresponding weak assumptions) are contained in Giné & Nickl (2008) for instance.
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2019), as the model under the respective assumptions is not able to replicate the observed data. In this

sense, obtaining bounds is complementary to testing the instrumental variable model. Since the focus of this

article is on estimation of bounds, it is convenient to introduce an assumption on the data-generating process

which guarantees that the constraint is non-empty. In the following, FY,X|Z=z denotes a set of all conditional

cumulative distribution functions on [0, 1]2 satisfying certain assumptions the researcher is comfortable to

assume for the given data-generating process. This set is equipped with the L∞([0, 1]2)-norm.

Assumption 4 (Non-emptiness of the constraint set). For given FY,X|Z=z ∈ FY,X|Z=z there exists a ball

Br ∈ FY,X|Z=z of radius r > 0 such that the constraint set C̃ :=P̂W ∈ P̂∗(W) :

∥∥∥∥∥F ′Y,X|Z=z(y, x)− 1

l

l∑
i=1

1[0,·]×[0,·](Ỹ
κ
x (i), X̃κ

z (i))
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]2)

≤ ε


is non-empty for some small ε > 0 and all F ′Y,X|Z=z ∈ Br, z ∈ [0, 1].

Assumption 4 is deliberately high-level, because (i) specific assumptions on the data-generating process

FY,X|Z=z and the model P∗(W) usually come from economic theory, (ii) an empty constraint for a given

data-generating process corresponds to the existence of testable implications on the model, and (iii) As-

sumption 4 is only required to obtain regular and well-behaved asymptotic results, but not for any other

results in this article. It is also straightforward to derive a low-level sufficient condition on FY,X|Z=z im-

plying Assumption 4 in the case where only Assumption 1 but no other shape restrictions are imposed on

P∗(W). For instance, when the set FY,X|Z=z consists only of distribution functions FY,X|Z=z which are

laws to stochastic processes [Y,X]z whose paths have an extended modulus of continuity ω′[Y,X]z
(δ) satisfying

lim supδ→0 ω
′
[Y,X]z

(δ) = 0, then Assumption 4 is fulfilled. This follows directly from the fact that this con-

dition on the extended modulus of continuity implies that almost all paths of the observable process [Y,X]z

lie in the Skorokhod space defined by Assumption 1, which is the assumption made on the latent process

[Y,X]∗z.
19

From now on F̂Y,X|Z;n denotes the conditional empirical distribution function, the terms Ṽ∗,l,κ(FY,X|Z)

and Ṽ ∗l,κ(FY,X|Z) denote the minimal and maximal value functions of (4), and ˆ̃V∗(F̂Y,X|Z;n) and ˆ̃V ∗(FY,X|Z;n)

their empirical counterparts. The first result concerns the consistency of these value functions. The idea is

to use the Glivenko-Cantelli theorem (van der Vaart 2000, Theorem 19.1) which provides the convergence

F̂Y,X|Z;n to FY,X|Z in L∞([0, 1]2)-norm. Then the Berge Maximum theorem (Aliprantis & Border 2006,

Theorem 17.31) provides the consistency results for the value function.

Proposition 2 (Consistency). Under Assumptions 1 – 4 it holds that

| ˆ̃V∗(F̂Y,X|Z=z;n)− Ṽ∗,l,κ(FY,X|Z=z)| → 0 and | ˆ̃V ∗(F̂Y,X|Z=z;n)− Ṽ ∗l,κ(FY,X|Z=z)| → 0

for almost all z ∈ Z almost surely as n→∞.

The derivation of the large sample distribution of ˆ̃V ∗ and ˆ̃V∗ follows form Donsker’s theorem (van der

Vaart 2000, Theorem 19.3) in combination with standard sensitivity arguments in optimization problems,

in particular Theorem 4.26 and Proposition 4.47 in Bonnans & Shapiro (2013), and the functional delta

method (Shapiro 1991, Theorem 2.1). The formal result is captured in the following

19Proposition 2 in Gunsilius (2019) contains a smoothness assumption on FY,X|Z which guarantees that the theoretical
constraint in (3)—and therefore the constraint in (4) for every ε > 0 and large enough sample l—is satisfied when the paths of
the counterfactual processes Yx and Xz have almost surely continuous paths.
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Proposition 3 (Large sample distribution). Under Assumptions 1 – 4 it holds that

√
n( ˆ̃V∗(F̂Y,X|Z=z;n)− Ṽ∗,l,κ(FY,X|Z=z))⇒ dṼ∗,FY,X|Z=z

(GFY,X|Z=z
) and

√
n( ˆ̃V ∗(F̂Y,X|Z=z;n)− Ṽ ∗l,κ(FY,X|Z=z))⇒ dṼ ∗FY,X|Z=z

(GFY,X|Z=z
),

for almost all z ∈ Z as n→∞.

Here, dṼ∗,FY,X|Z=z
(F ′Y,X|Z=z) is the directional Hadamard derivative of Ṽ∗ at FY,X|Z=z, GFY,X|Z=z

is a

Brownian bridge with covariance function

CovGFY,X|Z=z
= FY,X|Z=z(min{y, y′},min{x, x′})− FY,X|Z=z(y, x)FY,X|Z=z(y

′, x′)

for all (y, x), (y′, x′) ∈ [0, 1]2, z ∈ Z, and “⇒” denotes weak convergence.

For nonlinear objective functionals KPW , the directional Hadamard derivative takes the form

dṼ∗,FY,X|Z=z
(F ′Y,X|Z=z) = δFY,X|Z=z

L(P̂1, λ(P̂W ), FY,X|Z=z)(F
′
Y,X|Z=z),

where L(·, ·, ·) denotes the Lagrangian of the program (4), λ(P̂1) denotes the respective Lagrange multiplier

(which is unique for given P̂1 by Proposition 4.47 in Bonnans & Shapiro 2013), and δFY,X|Z=z
L is the

directional derivative of L in its third argument in direction F ′Y,X|Z=z at FY,X|Z=z. In many cases, one can

say a little more about the form of the Lagrangian under Assumption 3, as the objective functional then

becomes linear in PW . In this case, the directional Hadamard derivative takes the of an optimization over

an inner product between the Lagrange multiplies λ and the direction F ′Y,X|Z=z in some instances (Bonnans

& Shapiro 2013, Theorem 4.27).20

Proposition 3 implies that the rate of convergence is parametric, which is a sensible result as the quantity

of interest is univariate and uniformly bounded. Moreover, even though the large sample distribution of

the value functions is not a standard Brownian bridge process, it still has a relatively common form from a

purely statistical perspective, as it takes the form of the first-order directional Hadamard derivative of the

value function taken at FY,X|Z=z in directions F ′Y,X|Z=z ∈ FY,X|Z=z. In addition, there are several results

in the literature (Dümbgen 1993, Fang & Santos 2018, Hong & Li 2018) which establish bootstrap methods

for estimating this type of large sample distribution in practice. In particular, they deal with general

directional Hadamard differentiability (Shapiro 1991), which conforms with Proposition 3, so that these

subsampling/bootstrap results are directly applicable to the problems (4). These bootstrap-type arguments

are convenient in models with a light computational burden mostly. In more complex models one should use

the analytically derived large sample theory.

Together, Theorem 1 and Proposition 3 provide a general overview of the approximative behavior of

the programs (4). In conjunction with these subsampling results and the existing inference results for

partial identification (Imbens & Manski 2004, Stoye 2009), the proposed method covers partial identification,

practical estimation, and inference of bounds on functionals in general instrumental variable models.

20Proposition 3 works equally well with a smoothed estimator F̂Y,X|Z=z;hn of FY,X|Z=z and bandwidth hn. The only
important requirement is that the respective empirical process converges to a Brownian bridge. In the smoothed case, these
results—which allow for bandwidths obtained via cross-validation—have been derived in Giné & Nickl (2008) for instance.
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5 Implementation

The programs (4) are semi-infinite programs (Anderson & Nash 1987), which naturally reduce to finite

dimensional problems in practice by approximating the space [0, 1]3 where Y , X, and Z live. One can

do this in two general ways. The first is to simply evaluate F̂Y,X|Z=z;n on the values taken by the sample

(Yi, Xi, Zi)i=1,...,n. The second is to evaluate F̂Y,X|Z=z;n on a finite grid that spans [0, 1]3. This article focuses

on the latter part as a grid approach gives more flexibility with respect to the computational requirements:

one can make the grid coarser or finer, depending on the available memory.21 Throughout this section, the

index ι captures the degree of approximation of the grid. For instance, ι = 11 means that this approximation

decomposes the unit interval into 11 points 0, 0.1, 0.2, . . . , 0.9, 1, which will be taken to be equidistant without

loss of generality. Also, all three intervals for Y , X and Z are decomposed in the same way, so that ι is the

only necessary parameter controlling the approximation.

The practical implementation deviates from the theoretical approach in that it uses a smoothed variant

F̂Y,X|Z=z;hn of the empirical conditional cumulative distribution function, where the bandwidth is determined

via cross-validation. Heuristically, it seems as the introduced smoothness gives more robust results compared

to the standard empirical cumulative distribution function.22

Under a given finite approximation, the programs take the form

minimize/maximize
µ≥0, ~1′µ≤1

K̃ ′µ

s.t. ‖Θ̃µ− F̂Y,X|Z;hn‖
2
2 ≤ ε

(8)

where µ is a l × 1 vector which corresponds to the Radon-Nikodym derivative dP̂W
dP̂0

(i) with row-dimension

equal to the number of sampled paths l23, ~1 denotes the vector of the same dimension as µ containing all

ones, K̃ ′ is a 1 × l vector, and ‖ · ‖2 denotes the Euclidean norm.24 Θ̃ is a ι3 × l2-matrix which maps the

realization of the stochastic processes to the distribution F̂Y,X|Z;hn . The L2([0, 1]2)-norm from (4) reduces

to the Euclidean norm due to the approximation of [0, 1]3 by a finite grid.

In practice, it is convenient to write the programs (8) in their penalized form as

minimize/maximize
µ≥0,~1′µ≤1

K̃ ′µ+
λ

2
‖Θ̃µ− F̂Y,X|Z;hn‖

2
2 (9)

for some penalty λ corresponding to the original constraint qualification ε > 0. Intuitively, a larger λ

corresponds to a tighter ε. The choice of the Euclidean norm ‖ · ‖2 for the constraint is convenient, as (9)

21This is also a difference to the computational approach in Kitamura & Stoye (2018), who set up their problem based on
the observed realizations in the data and not a grid. This is a direct consequence of their finitary approach. In contrast, the
infinite approach in this article allows arbitrary discretization of Y,X, and Z and is therefore also a potential complementary
approach to Kitamura & Stoye (2018) in their setting.

22For the practical estimation of F̂Y,X|Z=z;hn the method uses the “np”-package in R (Hayfield & Racine 2008) with a
standard cross-validated bandwidth.

23Note that all elements in µ must lie in [0, 1], as dP̂W
dP̂0

(i) is defined on the finite and discrete space of l paths which were

sampled by some P̂0. This means that dP̂W
dP̂0

(i) can only put non-negative probabilities of at most one on the occurrence of

each path. Intuitively, this follows from the fact that dP̂W
dP̂0

(i) is a probability mass function. These bounds on µ are included

as additional constraints using ~1.
24A′ denotes the transpose of the matrix A.
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can be rewritten as

min
µ≥0,~1′µ≤1

λ

2
µ′Θ̃′Θ̃µ−

(
λΘ̃′F̂Y,X|Z;hn − K̃

)′
µ+

λ

2

(
F̂Y,X|Z;hn

)′
F̂Y,X|Z;hn

min
µ≥0,~1′µ≤1

λ

2
µ′Θ̃′Θ̃µ−

(
λΘ̃′F̂Y,X|Z;hn + K̃

)′
µ+

λ

2

(
F̂Y,X|Z;hn

)′
F̂Y,X|Z;hn .

(10)

The programs (10) are quadratic due to the Euclidean norm used and can easily be solved. This article uses

the alternating direction method of multipliers (ADMM) (Boyd, Parikh, Chu, Peleato & Eckstein 2011 and

Parikh & Boyd 2014) for optimization. This algorithm is known to converge rather quickly to reasonable

approximations of the optimum, which makes it a perfect tool for this purpose. The algorithm requires

two more parameters, the augmented Lagrangian parameter ρ and an over-relaxation parameter α, which

control the convergence of the ADMM algorithm to the optimum. In practice, an over-relaxation parameter

of α = 1.7 and an augmented Lagrangian parameter of ρ between 100 and 500 leads to fast and robust

convergence.

The computational bottleneck in a practical implementation is the construction of the matrix Θ̃, whose

dimension grows polynomially with the granulation of the grid ι and the number of paths sampled l. In the

case where (3) and a fortiori (4) and (8) are have linear objective functions, it is convenient to let Θ̃ take

the form of a binary sparse matrix: for each point (yι, xι, zι) ∈ [0, 1]3 in the grid a given combination of

paths Yx(i) and Xz(i) either gets assigned a 0 if they jointly “do not go through” the intervals [0, yι]× [0, xι]

for given values zi or a 1 if they jointly do.25 This sparseness is helpful as sparse matrices can be stored

efficiently. In addition, the process of setting up Θ̃ can be parallelized, which abates the computational costs

even further if the researcher has access to several cores.

In many cases, however, a researcher might only have access to computational resources with very limited

working memory. In such situations, it is still possible to apply the proposed method by a “sampling trick”

which trades off memory requirements for time. In particular, the idea is to iteratively (i) sample with

replacement a relatively small initial number l0 of paths (depending on the available memory), (ii) optimize

the programs (10) on this sample, (iii) obtain the value functions as well as the optimizers µ, (iv) drop all

paths which were assigned a probability of (close to) 0 by the optimizer µ, (v) sample another relatively

small number ls, add these paths to the already existing paths and go back to (ii). The idea of this “sampling

trick” is that paths which were assigned a probability of (close to) 0 by the optimal µ do not matter for

the optimal value. By dropping these paths before sampling new ones, the memory requirements do not

grow or only grow modestly in practice—at the additional cost of having to run this optimization for many

iterations.26

When applying this sampling trick, the solution will be expressed as a solution path over the sampling

iterations. This solution path in general will be erratic due to the nature of the sampling approach, but has

the added benefit over the “static” direct method where all relevant paths are sampled immediately that

25In the case where the indicator function in the constraint (3) is approximated by a logistic function, the matrix Θ̃ is no
longer binary sparse.

26Discarding elements ex-post in optimization routines is not new. For instance Wu, Fang & Lin (2001) use discards in solving
the general capacity problem on Euclidean state space. Currently, the approach is rather näıve as it performs a “random grid
search” over the infinite dimensional path space. A more efficient implementation uses ideas from sequential MCMC approaches
(see Schweizer 2012 for a recent overview): in the first iteration, randomly sample paths. Then optimize and discard all paths
which were assigned a probability of zero. When sampling new paths, do not just sample randomly, but sample a fraction of
paths which are close to the paths that were assigned a positive probability and sample another fraction of paths randomly to
find other, different binding constraints. This approach is currently implemented for fixed fractions. An interesting question in
this setting is to optimize this procedure, i.e. to optimize the fraction of randomly sampled paths compared to paths which are
close to others. Intuitively, there seems to be an “exploration-exploitation-tradeoff”, which one could optimize.
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Figure 1: Depiction of convergence of the solution path for estimating FX=0.75(0.75) for λ = 100 (left)
and λ = 600 (right) for a coarse approximation of length 5 of the unit interval, i.e. a decomposition
0, 0.25, 0.5, 0.75, 1. 16 new paths are sampled at each iteration. The average of the values over the last
500 iterations in the left panel is nontrivial at 0.065.

one can gauge if the solutions “converge” to some stable limit after a “burn-in” period. This convergence

relies on the choice of the penalty parameter λ. The larger λ is chosen, the more it forces the optimizer µ

to replicate the observable F̂Y,X|Z;hn . In fact, in the limit λ → +∞, the program forces to replicate the

constraint perfectly. If λ is too low, the program ignores the constraint, which will always result in trivial

bounds.

This implies that there exists a range of λ-values for which constraint and objective function are balanced.

Figure 1 depicts the behavior of the solution paths of this “sampling trick” in a stylized setting of the

household expenditure application in the next section, where the coarseness of the approximation of the

unit interval makes it possible to sample all possible paths in order to see whether convergence still occurs

if one is able to sample the “whole universe of paths”. The left panel depicts a solution path which looks

like it converges, while the right panel depicts a case of non-convergence for estimating a lower bound on

FY (X=0.75)(0.75).

In this form, these solution paths are reminiscent of the solution paths of regularized linear programs

such as LASSO. The difference, however, is that the paths induced by this program are for a fixed λ, while

the actual LASSO solution paths are traced out while varying λ. In order to have an analogue of the LASSO

solution paths in the current method, one would have to solve the program for many different values of λ,

which would generate a system of solution paths. Then one could choose the largest lambda for which the

corresponding solution path converges to a stable value.27

6 Discussion

The setting for the method introduced in this article is that of a general instrumental variable model which

can be represented as a nonseparable triangular model. This article is hence closely related to the literature

on (partial) identification in these models, in particular to Imbens & Newey (2009). There, the authors

27It is an intriguing question how to determine an appropriate λ by data-driven methods. Such a data-driven method might
open up the way for solving other infinite dimensional programs on path spaces in statistics and mathematics via a “sampling
of paths”-approach.
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introduce a flexible partial- and point identification approach in these models under a strict monotonicity

assumption of the first stage in the instrumental variable model. In contrast, the current approach does not

require monotonicity or other functional form restrictions and does not rely on a control function approach.

This method is also connected to the literature on causal inference with instruments (Angrist, Imbens &

Rubin 1996, Balke & Pearl 1994, Imbens & Angrist 1994), simultaneous equation models (e.g. Blundell &

Matzkin 2014, Matzkin 2003), and partial identification in demand estimation and welfare analysis (Dette,

Hoderlein & Neumeyer 2016, Hausman & Newey 2016, Kitamura & Stoye 2018).28 In particular, the setting

in this article can be seen as an infinite analogue to the finitary approach in Kitamura & Stoye (2018). This

infinite dimensional analogue is likely to be helpful in two settings which Kitamura & Stoye (2018) cannot

address: first, the proposed method allows to incorporate structural nonparametric assumptions such as

continuity into the model. This can be helpful in demand analysis, where smoothness assumptions allow

to work with restrictions on the Slutsky matrix directly (Hausman & Newey 2016). Second, it allows for a

grid-approach and smoothing for the practical estimation, which makes the method applicable in settings

with a massive number of observations. In contrast, it seems as if Kitamura & Stoye (2018) need to include

all data-points in their analysis, which makes the computational burden too high in data sets with many

observations.

From a theoretical perspective, the most closely related article is Chesher & Rosen (2017) which intro-

duces a general framework for partial identification using the Aumann integral and Artstein’s inequality.

This approach is situated within a general model that can incorporate any structural assumptions, and is

theoretically more general than the method presented here, which works within the setting of nonseparable

triangular models. What distinguishes the proposed method from their approach is the applicability in

practice. In fact, results relying on Artstein’s inequality run into severe curses of dimensionality for endoge-

nous variables with more than a few points in their support, as the number of inequalities describing the

identified region grows very rapidly (Beresteanu, Molchanov & Molinari 2012). This is a main reason for the

often unsurmountable challenges current approaches based on specifying the identified set via inequalities

face in many models of interest. In contrast, this article proposes to solve an infinite dimensional program,

which handles the complexity of the model automatically. Another intuitive reason for the tractability of the

proposed method even in models with continuous variables is its exclusive focus on estimating functionals

of counterfactual distributions (a one-dimensional quantity), i.e. the “endpoints” of the identified set; in

contrast, Chesher & Rosen (2017) also identify the model parameters such as the production functions (an

infinite dimensional quantity), i.e. the complete identified set.29

This article is not the first to propose an optimization approach for obtaining bounds in partial iden-

tification models in a counterfactual setting, see for instance Aguiar, Allen & Kashaev (2019), Chiburis

(2010), Demuynck (2015), Hansen, Heaton & Luttmer (1995), Honoré & Tamer (2006), Honoré & Lleras-

Muney (2006), Manski (2007), Manski (2014), Molinari (2008), Norets & Tang (2013), Lafférs (2015), Kamat

(2017), Torgovitsky (2016), Kitamura & Stoye (2018), Mogstad, Santos & Torgovitsky (2018), Tebaldi, Tor-

govitsky & Yang (2019), but it is the first to present an infinite dimensional optimization problem for doing

so. The infinite dimensionality is key in order to solve models with a continuous endogenous variable the-

oretically as well as practically. Furthermore, in combination with the “sampling of paths”- approach, it

allows researchers to solve complex but finitary models by considering random variables with many points

28By introducing Slutsky-type assumptions on the stochastic processes introduced in this article, one can potentially apply
the proposed method to estimate bounds in welfare analysis in the most general setting, complementing the results in Hausman
& Newey (2016). See the discussion in the conclusion.

29This fact was pointed out by Arie Beresteanu and Francesca Molinari.

15



in their support as continuous. Garen (1984) for instance treats years of schooling as a continuous variable

for similar reasons.

The most closely related articles in terms of underlying ideas are Balke & Pearl (1994) and Balke &

Pearl (1997) which provide tight upper and lower bounds when all variables are binary. In particular, the

proposed method in this article reduces to their approach in the binary case. These results strengthen the

original results in Robins (1989), Manski (1990), and Manski (1997), who found upper and lower bounds on

causal effect also in the setting where the treatment is binary. They also enabled Kitagawa (2009) to derive

closed-form solutions for sharp bounds on causal effects for a continuous outcome and binary treatment

and instrument. Recently, Russell (2017) derived sharp bounds on causal effects for discrete outcome and

treatment using Artstein’s inequality and optimal transport theory similar to Galichon & Henry (2011).

The proposed infinite dimensional optimization program is similar in form to—but more general in its

state-space dimensionality and objective function than—the general capacity problem (Anderson & Nash

1987, Anderson, Lewis & Wu 1989, Lai & Wu 1992), which itself is a generalization of Choquet’s capacity

theorem (Choquet 1954). Interestingly, two other existing articles dealing with partial identification in

general models (Beresteanu, Molchanov & Molinari 2012, Galichon & Henry 2011) both directly deal with

Choquet’s capacity theory and Aumann integrals. Their focus is somewhat different as the first article

assumes discrete treatment, while the second deals with partially identifying unknown parameters in a

structural setting, but the connection via capacity theory seems worth mentioning.

The proposed “sampling of paths”-approach allows the researcher to introduce assumptions on the model

by choosing an appropriate sampling distribution on the paths of the stochastic processes. In practice,

the optimization over probability measures on the paths of stochastic processes then exclusively considers

probability measures which possess a Radon-Nikodym derivative with respect to this proposed sampling

measure. This solution approach is reflective of the ELVIS estimator (Schennach 2014), which exponentially

tilts a user-chosen probability distribution to satisfy given population moment conditions. In the proposed

method, the applied researcher can introduce structural assumptions into the model (e.g. allowing for only

increasing paths, equivalent to a monotonicity assumption on the instrumental variable model) by setting the

probability of certain paths (e.g. all non-increasing paths) to zero a priori. The method then automatically

only optimizes over the sampled paths. Similarly, the ELVIS estimator also requires a reference measure

whose support must contain the support of the tilted probability measures. Notwithstanding this connection,

both approaches are complementary: the proposed method works with problems without the necessity to

introduce moment conditions, whereas the ELVIS estimator efficiently addresses models that can be written

in terms of moment restrictions which contain unobservables.

Other identification results in nonseparable triangular models often focus on the production function h

and require monotonicity assumptions (e.g. Chesher 2003, Chernozhukov & Hansen 2005, Shaikh & Vytlacil

2011, Torgovitsky 2015, d’Haultfœuille & Février 2015) or presuppose some other general structural rela-

tionship (Florens, Heckman, Meghir & Vytlacil 2008). Recently, Heckman & Pinto (2018) introduced the

concept of unordered monotonicity in the case where endogenous variable is discrete and unordered.

7 Demonstration

This section presents practical settings for testing the method. The first is a small Monte-Carlo simulation,

where the focus lies on the sensitivity of the method to the choice of the number of basis functions κ and the

penalty term λ. The second is an application to real data, where the method manages to obtain informative
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bounds under minimal assumptions.

7.1 Simulation

The idea for generating the data in this simulation exercise is to (i) generate paths of stochastic processes

Yx and Xz for a given set {zi}i=1,...,m ∈ [0, 1], (ii) combine the two processes to a joint process [Y,X]∗z,

(iii) randomly sample points z and corresponding points (y, x) induced by the paths of [Y,X]∗z to obtain

the data (Y,X) for the given set of {zi}. The processes Yx and Xz are Gaussian processes with mean 0.5

and a squared exponential covariance kernel of the form kSE(z − z′) := σ2 exp
(
− (z−z′)2

`2

)
, where the length

parameter ` is 0.5 for Yx and 0.2 for Xz, and the variance parameter σ2 is 0.2 for Yx and 0.15 for Xz. All

paths of these processes are restricted to lie within [0, 1]. 2500 paths were sampled, generating 5000 random

data points from it on a relatively coarse grid based on a dyadic approximation of order 3, i.e. grid points

at k
8 for k = 0, . . . , 8. The values z were drawn uniformly on the unit interval.

The goal is to estimate E[Y (0.5)], which is equal to 0.5 by construction. F̂Y,X|Z=z;hn is estimated by

kernel density methods with a cross-validated bandwidth using the np-package in R. The only assumption

on the paths made for estimation is continuity. The hat-functions defined in (6) form the basis for different

levels of κ and λ. Figure 2 depicts the convergence of the bounds in the “sampling trick” approach. The left
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Figure 2: Convergence of upper (black) and lower (gray) bounds on E[Y (X = 0.5)] = 0.5. The penalty term
is λ = 5 for an equidistant approximation of the unit interval by 9 points. At each iteration the method
samples 10 new continuous paths. In the left panel the paths are constructed by summing over the wavelet
basis with κ = 1, . . . , 5. In the right panel the paths are constructed for fixed κ = 8.

panel depicts the convergence of the bounds on E[Y (X = 0.5)] for λ = 5 and a sieve basis which consists

of a sum of the basis functions for κ = 1, . . . , 5. The method seems to converge nicely to bounds which

contain the true value and are actually reasonably tight, especially for such a coarse grid and the fact that

no functional form restrictions are imposed on the model except continuity. The right panel depicts the same

thing, only there the paths Yx(w) and Xz(w) are constructed for one form of basis functions corresponding

to κ = 8. Clearly, the method obtains biased results in this case, as the true value does not lie between the
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upper- and lower bound. Intuitively, this bias stems from the fact that the paths generated for fixed κ = 8,

despite being continuous, are not smooth and very erratic, while the paths generated in the simulation are

exceptionally smooth due to the choice of the squared exponential covariance kernel and relatively large

length parameters `. This bias can be understood as a “nonparametric misspecification bias” by sampling

paths which are very different from the paths in the true data generating process. Fortunately, the left

panel shows that already summing over only a few different basis functions removes this bias in this stylized

example, which most likely also holds in more realistic settings (Chen 2007).
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Figure 3: Convergence of upper (black) and lower (gray) bounds on E[Y (X = 0.5)] = 0.5. The penalty
terms are λ = 0.1 (left panel) and λ = 50 (right panel) for an equidistant approximation of the unit interval
by 9 points. At each iteration the method samples 10 new continuous paths. The paths are constructed by
summing over the wavelet basis with κ = 1, . . . , 5.

Figure 3 depicts the sensitivity of the method to choosing different penalty terms λ in this setting. In the

left panel λ = 0.1 while in the right λ = 50. The bounds in the left case are significantly wider than on the

right, but both estimators are unbiased. Interestingly, and in contrast to Figure 1, even larger λ does not

lead to erratic behavior of the paths. This is most likely a result of the smoothness of the simulated paths

in combination with a very high signal-to-noise ratio of the simulated data, which implies that there always

exists an optimal µ in the finite dimensional problems (9). In contrast, when the signal-to-noise ratio is low,

which is often the case in real-world applications, then the behavior of the solution paths will become too

erratic as depicted in Figure 1. Another interesting fact is that the bounds do not tighten much when going

from λ = 5 to λ = 50, which most likely is a result of the coarse approximation of the unit interval.

7.2 Application

As a demonstration of its capabilities, the method estimates bounds on expenditure differences using the

1995/1996 UK family expenditure survey. This problem is well suited as it (i) is nonlinear with continuous

variables (Blundell, Chen & Kristensen 2007, Imbens & Newey 2009), (ii) allows to gauge if the program

actually obtains reasonable results, and (iii) provides a setting not directly related to causal inference,
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showing the scope of the proposed method. Therefore, in the following the focus will be on the outcomes

food and leisure.

Analogous to Blundell, Chen & Kristensen (2007) and Imbens & Newey (2009), the outcome of interest

Y will be the share of expenditure on a commodity and X will be the log of total expenditure, scaled to

lie in the unit interval. The instrument used in this setting is gross earnings of the head of the household,

which assumes that the way the head of the household earns the money is (sufficiently) independent of the

household’s expenditure allocation; this instrument is used in both Blundell, Chen & Kristensen (2007) and

Imbens & Newey (2009). All three variables are inherently continuous which makes this problem a nice

setting for demonstrating the practical implementation of the method.

The sample is restricted to the subset of married and cohabiting couples where the head of the household

is aged between 20 and 55, and couples with 3 or more children are excluded. Also excluded are households

where the head of the household is unemployed in order to have the instrument available for each observation.

The final sample comprises 1650 observations.30 Table 1 gives a summary of the outcome distributions,

Leisure Food

mean 0.143 0.182
standard deviation 0.110 0.0723

skewness 1.83 0.686
min 0.00122 0.00946

lower quartile 0.0689 0.131
median 0.111 0.176

upper quartile 0.183 0.225
max 0.831 0.657

Table 1: Summary statistics for the outcome distributions

showing that the relative expenditure on leisure is much more skewed towards zero but with a higher variance

than the distribution for food.

The only shape restriction on the instrumental variable model is continuity, i.e. h and g are continuous

functions in X and Z, respectively. This is a natural assumptions since Engel curves are usually believed to

be continuous. It implies that almost all of the paths of Yx and Xz lie in C([0, 1]), the space of continuous

functions. No other assumptions are upheld. The most general current approaches either require continuity

and strict monotonicity of g (Imbens & Newey 2009) or of h (Blundell, Chen & Kristensen 2007) in the

unobservable W . In contrast, the proposed method does not require any monotonicity assumptions and

hence intuitively gives an indication of how much information is available in the data to solve this problem.

Surprisingly, there seems to be a substantial amount of information, as the obtained bounds indicate that

food is a necessity- and leisure is a luxury good without any assumptions on the model besides continuity.

Furthermore, when introducing monotonicity assumptions in the observable variables, the bounds become

significantly tighter, showing the identificatory strength of these assumptions in this setting.

Figure 4 depicts the solution paths for obtaining bounds on the counterfactual difference FY (X=0.75)(0.15)−
FY (X=0.25)(0.15) for a reasonably fine approximation of the unit interval into 17 equidistant points (which

corresponds to a dyadic approximation of order 4).

Here the penalization parameter λ = 1, which seems to provide reasonable convergence to the solution, in

particular for the food data. Remarkably, the estimated bounds in this setting are qualitatively informative

30The data used in both Blundell, Chen & Kristensen (2007) and Imbens & Newey (2009) is based on the 1994/1995 UK
family expenditure survey. Under the same restriction they end up with 1655 observations.
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Figure 4: Convergence of upper (black) and lower (gray) bounds on FY (X=0.75)(0.15) − FY (X=0.25)(0.15)
for Y being the relative spending on food (left panel) and leisure (right panel). The solid lines indicate
the bounds under no additional assumptions on the model, the dashed lines indicate the bounds under the
additional assumption that Y is decreasing (food) or increasing (leisure) in overall expenditure X and that
X is increasing in income of the head of the household Z. The penalty term is λ = 1 for an approximation
of the unit interval by 17 points. At each iteration the method samples 25 new paths, of which 6 satisfy the
respective monotonicity requirement.

for the problem. The left panel depicts the households’ expenditures on food and the right depicts their

expenditures on leisure. The solid lines are the upper- and the lower bound for a model without further

assumptions, while the dashed lines are the upper- and lower bounds for a model with the additional

assumption that Y is increasing for leisure and decreasing for food in overall expenditure X and that X is

increasing in income of the head of the household Z.

Consider the left panel first, which depicts the expenditures on food. Here, the general bounds seem to

converge and the average values of the bounds over the last 200 iterations are 0.84 and 0.26 for the general

upper- and lower bound, and 0.78 and 0.50 for the corresponding upper- and lower bounds for the monotone

model. All four bounds are positive, which indicates that families that spend a lot in general (X = 0.75) and

spend up to 15% on food (Y ∈ [0, 0.15]) would spend much more on food relatively to overall expenditure

if they spent much less overall (X = 0.25). Put differently, families are much more likely to lie in higher

quantiles for expenditure on food if they lie in the lower quartile in overall spending than families that lie in

the upper quartile in overall spending, which is the defining characteristic of a necessity good at this given

level y∗ = 0.15.

It is rather striking that even the model without monotonicity assumptions produces bounds which

reflect this fact via a positive lower bound. In this regard, note that the monotonicity assumptions do not

only tighten the bounds, but also shift up the lower bound, indicating that monotonicity has a stronger

identificatory content in this setting. In particular, they imply that more families (between 50% and 78%)

in the upper quartile of overall spending (X = 0.75) spend only up to 15% on food compared to families in

the lower quartile of overall spending (X = 0.25). As mentioned, without monotonicity assumptions, these

differences can be as high as 84% and as low as 26%, but all positive.
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The results for expenditure on leisure for this given scenario are similar, but more erratic. For a clear

indication of a luxury good at the given levels, one would expect both bounds to be negative. In fact, these

would imply that families in the upper quartile on overall spending (i.e. X = 0.75) who spend up to 15%

of their overall expenditure on leisure (Y ∈ [0, 0.15]) are very likely to spend even less on leisure, relatively,

if they had a negative shock to overall spending (X = 0.25). Put differently, families should be more likely

to spend only up to 15% of overall expenditure on leisure (Y ∈ [0, 0.15]) if they lie in the lower quartile

in overall spending (X = 0.25) than families that lie in the upper quartile in overall spending (X = 0.75).

The obtained results do reflect this circumstance at this level. In particular, the averages of the last 500

iterations of the general bounds are −0.032 and −0.31, implying that typically more families (up to 31%) in

the lower quartile of overall spending (X = 0.25) spend only up to 15% of their overall on leisure compared

to families in the upper quartile of overall spending.

The overall convergence for the leisure data is more erratic compared to food, which is rather illuminating

for the purpose of this article. In particular, the main culprit for the poor performance is most likely the

fact that the data is highly skewed towards zero in the leisure case, while the grid placed uniformly over the

unit interval is too coarse to “measure” the behavior of the data around zero. Note that the method did not

manage to sample enough monotone paths which correspond to the respective events of interest do to this

reason, so that no bounds for monotonicity exist in this setting. In order to circumvent this, one can simply

put a non-uniform grid on [0, 1] which has more points close to zero and fewer points further away.

One can perform this exercise for different levels of y∗ in order to gauge the behavior of the bounds at

different quantiles. Figure 5 depicts the same exercise for y = 0.25, i.e. looking at families that spend up

to a quarter of the overall expenditures on food and leisure. Here, the method managed to sample enough

relevant monotonic paths in the leisure setting despite the coarser grid around zero. These bounds converge

to some value in the more general bounds. One important fact to point out is the behavior of the solution

path in the leisure case. At a certain point around the 1000 iterations mark a path is sampled which forces

the solution path to jump up dramatically, i.e. a path which contains a lot of information for the given

problem. However, the good news here is that over time the paths approach the previous level as more and

more paths are drawn and add to the information from the one path. This is an important property to note,

as it shows that the solution paths do not monotonically increase in the number of samples, and that even

if paths are sampled which contain a lot of information for the respective program, will the method still

converge to sharp bounds in the long run. In particular, it is the choice of the penalty term which forces to

solution path to approach zero again after the jump.

The results are qualitatively similar to the ones for y∗ = 0.15, which is not surprising as one is now

comparing more families, i.e. all families that spend up to a quarter on food/leisure. The more families one

compares, the less pronounced the effects become. The following table provides an overview of the results

at the levels y∗ = 0.15, 0.25, 0.5, 0.75, which shows exactly this. At y = 0.75 one is basically comparing all

existing families, so that one does not obtain any effects, another sanity check for the method.

Overall, these estimation results are remarkably informative from a qualitative perspective. Recall that

the instrumental variable model allows for general unobserved heterogeneity, in particular measurement error

in the treatment variable X, which indicates that the ratio of information to noise in the data for answering

these questions is rather high. These qualitative results not only corroborate the theoretical predictions for

expenditure, but also the previous results obtained in Blundell, Chen & Kristensen (2007), Imbens & Newey

(2009), and Song (2018). During their estimation process Imbens & Newey (2009) and Song (2018) assume a

univariate and strictly monotonic production function g(z,W ) between X and W for all z and use a control
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Figure 5: Convergence of upper (black) and lower (gray) bounds on FY (X=0.75)(0.25) − FY (X=0.25)(0.25)
for Y being the relative spending on food (left panel) and leisure (right panel). The solid lines indicate
the bounds under no additional assumptions on the model, the dashed lines indicate the bounds under the
additional assumption that Y is decreasing (food) or increasing (leisure) in overall expenditure X and that
overall expenditure X is increasing in income of the head of the household Z. The penalty term is λ = 1 for
an approximation of the unit interval by 17 points. At each iteration the method samples 25 new paths, of
which 6 satisfy the respective monotonicity requirement.

Food Leisure
y∗ Lower Lower Upper Upper Lower Lower Upper Upper

monotone monotone monotone monotone
0.15 0.26 0.50 0.78 0.84 −0.31 0 0 −0.032
0.25 0.008 0.31 0.67 0.88 −0.28 −0.18 −0.17 0.028
0.5 −0.33 0.0063 0.072 0.34 −0.34 −0.22 −0.19 0.09
0.75 −0.021 0 0 0.0075 −0.072 −0.046 0 0.0029

Table 2: Upper- and lower bounds for FY (X=0.75)(y
∗)− FY (X=0.25)(y

∗) for different values y∗.

variable approach to estimate the production function h; Blundell, Chen & Kristensen (2007) estimate Engel

curves semi-nonparametrically, imposing monotonicity in the second stage, and obtaining similar results.

de Nadai & Lewbel (2016) work with an additively separable first stage and allow for the outcome Y to

be measured with error. This is more general than what the proposed method can handle, which can only

encompass measurement error in the dependent variable, but not the outcome. Nonetheless, their results are

similar to the ones obtained here. In this sense these qualitative results are a “robustness check” for other

non- or semiparametric approaches.

Moreover, this method makes it possible to gauge the identificatory content of monotonicity assumptions

in the current model. In all cases is this content rather high. Imposing monotonicity between the observables

makes the results much more clear-cut and in turn leads to rather strong implications in the cases considered.

In this setting, monotonicity is a plausible assumption based on economic theory, but it is important to be

aware of the strength of this assumption in other settings.

22



8 Conclusion

This article introduces a novel method for estimating bounds on functionals of the counterfactual distribution

in instrumental variable models with general heterogeneity. Its main distinguishing feature is its applicability

in practice, even for the most general models with continuous endogenous variables. The idea is to write

the respective instrumental variable model as a system of counterfactual stochastic processes and to solve

for an optimal probability measure on the paths of these processes subject to the constraint that the law of

the joint processes induced by this probability measure replicates the observable distribution. The resulting

optimization problem takes the form of an infinite dimensional (often linear) program on path spaces.

The main contribution of this article is to introduce the “sampling-of-paths” approach to solve these

types of infinite dimensional programs. The underlying idea is to reduce the infinite dimensional program

to a semi-infinite program (Anderson & Nash 1987) by only sampling a subset of the paths over which the

program optimizes. Then an approximation of the (finite dimensional) state-space of the random variables

leads to a finite dimensional program which can be solved efficiently. The main idea for reducing the

infinite dimensional program to a semi-infinite dimensional one is to explicitly introduce randomness by

sampling paths. This, in conjunction with large deviation results (Vapnik 1998) allows to obtain probabilistic

approximation guarantees of the semi-infinite program to the infinite dimensional program. In particular,

these guarantees imply a lower bound on the number of paths required for achieving a good approximation

with high probability.

The focus of this article is on estimation, but large sample results are derived. In fact, the value functions

corresponding to the counterfactual bounds are shown to be directional Hadamard differentiable (Bonnans

& Shapiro 2013, Shapiro 1991). The directional Hadamard differentiability allows one to use the recently

established subsampling results in the statistical literature (Dümbgen 1993, Fang & Santos 2018, Hong &

Li 2018) to perform inference on each bound separable in practice. Since the bounds are univariate, one

can then use established methods for obtaining confidence sets which cover the whole partially identified

interval (Imbens & Manski 2004, Stoye 2009). Resampling methods might be too computationally expensive

for general complex problems, in which case one should rely on the analytical expressions derived. In

this regard, the proposed estimation method fits perfectly into the already established theory on inference

in partially identified models. Together, they enable researchers to perform causal inference in the most

general instrumental variable models.

A remaining challenge is to obtain an efficient data-driven method for choosing an appropriate penalty

term λ for the practical optimization routine. This is a similar challenge to finding good penalty terms in high-

dimensional regularized regression estimators, but more general, as the setting here is infinite dimensional

in a counterfactual path space. Some heuristic guidelines can be given: one should choose the largest λ

such that the “solution paths” of the sampling method converge to a fixed value after a “burn-in” period.

If the solution path is “too erratic”, then one should lower the value of λ. Formally establishing what

“convergence”, “burn-in period”, and “too erratic” mean would not only solve this issue, but would open up

potentially novel approaches for data-driven validation approaches in counterfactual settings. In particular,

an analogue to the data-driven method for `1-regularization in high-dimensional regression models as put

forward in Belloni & Chernozhukov (2011) could be valuable.

The current practical implementation of the program works for univariate variables. Moreover, the only

currently implemented additional nonparametric restriction which can be placed on the model is monotonic-

ity. The program can straightforwardly be extended to higher dimensional settings, but runs into the curse

of dimensionality as the stochastic processes become high-dimensional random fields. One standard way to
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circumvent the curse of dimensionality is to introduce sparsity- and factor assumptions on the stochastic

processes in a higher-dimensional setting. Furthermore, it is also imperative to allow for a wide variety of

additional (non-) parametric assumptions in the model, like convexity, bounds, reflection processes, Slutsky-

type conditions, first-passage times, martingale properties, etc. Furthermore, the current “sampling-and

discarding” approaches are not efficient. From a computational perspective, it would be interesting to ob-

tain more efficient resampling methods. One promising approach is to use ideas from sequential Monte-Carlo

approaches (see e.g. Schweizer 2012), which need to be extended to the infinite dimensional path spaces con-

sidered here. Another idea is to directly use diffusion- or Levy-processes in the generation of the paths and

use the Karhunen-Loève transform to generate a basis for the paths. An extension of the current program

which already accommodates some of these additions is in the works.

Finally, the method allows researchers to compare the identificatory content of different frequently upheld

(non-) parametric assumptions in instrumental variable models. For instance, one can run the method on a

data set while only assuming continuity of the respective production functions. In general, this will lead to

rather large counterfactual bounds. Then, one can run the same method again, but requiring the production

of the first- or second stage to be monotone or convex, or bounded, etc. The bounds will then be rather

different and give an indication of how much identificatory content the respective assumption has for the

given model. In this sense, the method provides a general setting for evaluating the strength of different

(non-) parametric assumptions on a model. A researcher can compare different structural assumptions and

even dynamic assumptions within the same setting. This feature might potentially be also relevant for

sensitivity arguments in structural models (e.g. Andrews, Gentzkow & Shapiro 2017, Bonhomme & Weidner

2018, Christensen & Connault 2019). In particular, it might be interesting to think about the strength of

the instrument: intuitively, one would think that weaker instruments will in general lead to wider bounds.
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A Proofs

A.1 Proof of Proposition 1

Proof. The construction of the counterfactual processes Yx(w) and Xz(w) on [0, 1][0,1] with laws PY |X=x

and PX|Z=z follows immediately from Kolmogorov’s extension theorem (Karatzas & Shreve 1998, Theorem

2.2.2).

Together, the two laws PY (x) and PX(z) generate the joint law P[Y,X]∗(z) as

P[Y,X]∗(z)(Ay, Ax) =

∫
Ax

PY (x)(Ay)PX(z)(dx), (11)

which follows from the exclusion restriction: PY (x) does not depend on Z. The fact that this joint law

corresponds to a stochastic process [Y,X]∗z on ([0, 1]× [0, 1])[0,1] again follows from Kolmogorov’s extension

theorem. Intuitively, [Y,X]∗z is constructed as (YXz , Xz), i.e. as the Cartesian product of the composed

process YXz and the process of the first stage Xz.

The next thing to show is that under Assumption 1, the processes Yx(w), Xz(w), and [Y,X]∗z(w) are

measurable as stochastic processes on the smaller space D([0, 1]). Note that the measure space (W,BW) is

large enough to accommodate all paths Yx(w), Xz(w) satisfying Assumption 1. This follows from the fact

that finite powers of the cardinality of the continuum are of the cardinality of the continuum themselves.

Consider Xz(w). Since Z is fixed, under Assumption 1 this stochastic process is progressively measurable

with respect to its natural filtration {FX
z }, which is the smallest σ-algebra with respect to which Xz for

non-random z is measurable. Indeed, by definition of the natural filtration, Xz is adapted to it. Moreover,

under Assumption 1 every sample path is right-continuous. Then under Assumption 1 by Proposition 1.1.13

in Karatzas & Shreve (1998), it holds that Xz is also progressively measurable with respect to its natural

filtration {FX
z }. The same argument shows measurability of Yx(w) with respect to the σ-field {FY

x } under

Assumption 1.

Now focus on the joint process [Y,X]∗z. It is right-continuous under Assumption 1 on its codomain [0, 1]2,

as the Cartesian product of two continuous functions on the real line is continuous by a projection argument,

so that its paths lie in the respective Skorokhod space D([0, 1]) with codomain [0, 1]2. Therefore, and

since z is nonrandom, Proposition 1.1.13 in Karatzas & Shreve (1998) implies that Xz is also progressively

measurable with respect to its natural filtration {F [Y,X]
z }. Now the key for showing measurability of [Y,X]∗z

is to show that the random process Xz(w) is a stopping time for the process YXz (w), as this is how part of

[Y,X]∗z is constructed under the exclusion restriction: [Y,X]∗z ≡ (YXz , Xz). But this fact follows from the

exclusion restriction: the path YXz (w) only depends on the current position x of Xz(w) for each fixed z and

not on the actual path Xz(w), which means that Yx does not depend on future values of x and x does not

depend on future values of Yx, or more formally, it holds that {Xz ≤ x} ∈ FY
x . Therefore, it follows again

from Proposition 1.2.18 in Karatzas & Shreve (1998) that YXz (w) is measurable with respect to the σ-field

F
[Y,X]
z of all events prior to z.

Finally, the independence restriction Z ⊥⊥W implies that one can compare the properties of the stochas-

tic process [Y,X]z induced by the observable distribution PY,X|Z=z to the stochastic process [Y,X]∗z(w)

corresponding to P[Y,X]∗(z).
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A.2 Proof of Theorem 1

The proof of the theorem requires the following lemma, which bounds the approximation of the paths Yx

and Xz by the wavelet basis.

Lemma 1. The wavelet operators Wκ acting on a càdlàg function f ∈ L2(R) through

Wκ(f)(x) :=

∞∑
j=−∞

〈f, ϕκj〉ϕκj(x),

where

〈f, ϕκj〉 :=

∫ ∞
−∞

f(t)ϕκj(t)dt

and ϕ is the hat-function wavelet basis defined in the main text, satisfy

|Wκ(f)(x)− f(x)| ≤ ω′f (2−κ+1) for all x ∈ R and k ∈ Z,

where ω′f is the extended modulus of continuity.

Proof. The proof is analogous to the proof of Theorem 1 in Anastassiou & Yu (1992b), but for càdlàg

functions instead of continuous functions. The hat-function wavelet basis satisfies
∑∞
j=−∞ ϕ(x − j) = 1 on

R (Anastassiou & Yu 1992b), so that for a square integrable function f(x) we have

Wκ(f)(x)− f(x) = 2κ/2
∞∑

j=−∞

[
〈f, ϕκj〉 − 2−κ/2f(x)

]
ϕ(2κx− j).

The hat-function wavelet basis also satisfies
∫∞
−∞ ϕ(u− j)du = 1 , j ∈ Z (Anastassiou & Yu 1992b). Based

on this, and by a change of variables, we have

〈f, ϕκj〉 − 2−κ/2f(x) = 2κ/2
∫ ∞
−∞

f(t)ϕ(2κt− j)dt− 2−κ/2f(x)

= 2−κ/2
∫ ∞
−∞

f(2−κu)ϕ(u− j)du− 2−κ/2f(x)

= 2−κ/2
∫ ∞
−∞

[f(2−κu)− f(x)]ϕ(u− j)du.

Since the support of ϕ is [−1, 1] and ϕ ≥ 0, we have for 2−κ(−1 + j) ≤ x ≤ 2−κ(1 + j)

|〈f, ϕκj〉−2−κ/2f(x)| = 2−κ/2
∣∣∣∣∫ 1+j

−1+j

[f(2−κu)− f(x)]ϕ(u− j)du
∣∣∣∣ ≤ 2−κ/2

∫ 1+j

−1+j

|f(2−κu)−f(x)|ϕ(u−j)du.

The integral on the right is a Riemann integral, so that we can write it in terms of the upper Darboux

integral of the function as

2−κ/2
∫ 1+j

−1+j

[f(2−κu)− f(x)]ϕ(u− j)du = 2−κ/2 inf
Π[2−κ+1]

η∑
i=1

(ui − ui−1) sup
s∈[ui−1,ui)

|f(2−κs− f(x)|ϕ(s− j),

where Π[2k−1] denotes a partition 2−κ(−1 + j) = u0 < u1 < . . . < uη−1 < uη = 2−κ(1 + j) of the interval

[2−κ(−1 + j), 2−κ(1 + j)] of length 2κ−1, and where the infimum is taken over all partitions Π[2k−1] of
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arbitrary η.

Then we can bound the upper Darboux integral by

2−κ/2 inf
Π[2−κ+1]

η∑
i=1

(ui − ui−1) sup
s∈[ui−1,ui)

|f(2−κs− f(x)|ϕ(s− j)

≤2−κ/2 inf
Π[2−κ+1]

η∑
i=1

(ui − ui−1) sup
s∈[ui−1,ui)

|f(2−κs− f(x)| sup
s∈[ui−1,ui)

ϕ(s− j)

≤2−κ/2 inf
Π[2−κ+1]

η∑
i=1

(ui − ui−1)

{
max

1≤i≤η
sup

s∈[ui−1,ui)

|f(2−κs− f(x)|

}
sup

s∈[ui−1,ui)

ϕ(s− j)

≤2−κ/2 inf
Π[2−κ+1]

max
1≤i≤η

sup
s∈[ui−1,ui)

|f(2−κs− f(x)|
η∑
i=1

(ui − ui−1) sup
s∈[ui−1,ui)

ϕ(s− j).

The first inequality follows from the fact that ϕ ≥ 0, the second inequality follows by choosing the largest dif-

ference over all intervals for a given partition, and the third by the fact that max1≤i≤η sups∈[ui−1,ui) |f(2−κs−
f(x)| does not depend on i anymore.

The following is the crucial argument for bounding the integral. By the fact f is càdlàg, it only has finitely

many jumps that exceed any σ > 0, so that in order to minimize the expression, any partition Π[2−κ+1]

has to partition the interval in such a way that the intervals [ui−1, ui) line up with the points x where f(x)

jumps, i.e. is only continuous on the right with limit on the left. That is, if x is a point of discontinuity

of f in the considered interval, then any partition that minimizes max1≤i≤η sups∈[ui−1,ui) |f(2−κs − f(x)|,
needs to have x = ui for some i. Now since ϕ(· − j) is continuous on the given interval, the upper Darboux

integral converges to the Riemann integral as the partition becomes finer. This still holds if we only consider

partitions which have x = ui for points of discontinuities of f , since the points of discontinuity are countable

and hence of (Lebesgue-) measure zero—note that Lebesgue-and Riemann integral coincide. Therefore, the

infimum over all partitions Π[2κ−1] for the upper Darboux integral

η∑
i=1

(ui − ui−1) sup
s∈[ui−1,ui)

ϕ(s− j)

coincides with the infimum over all partitions Π[2−κ] which minimize

max
1≤i≤η

sup
s∈[ui−1,ui)

|f(2−κs− f(x)|,

so that we can write

2−κ/2 inf
Π[2−κ+1]

max
1≤i≤η

sup
s∈[ui−1,ui)

|f(2−κs− f(x)|
η∑
i=1

(ui − ui−1) sup
s∈[ui−1,ui)

ϕ(s− j)

=2−κ/2 inf
Π[2−κ+1]

max
1≤i≤η

sup
s∈[ui−1,ui)

|f(2−κs− f(x)| inf
Π[2−κ+1]

η∑
i=1

(ui − ui−1) sup
s∈[ui−1,ui)

ϕ(s− j)

=2−κ/2ω′f (2−κ+1)

∫ 1+j

−1+j

(ui − ui−1)ϕ(u− j)

=2−κ/2ω′f (2−κ+1)

∫ ∞
−∞

(ui − ui−1)ϕ(u− j)
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=2−κ/2ω′f (2−κ+1)

by the definition of ω′f (2−κ+1), the fact that ϕ(·− j) is Riemann and hence Darboux integrable, and the fact

that ϕ integrates to 1 as argued above.

By the fact that the support of ϕ is [−1, 1], it holds that

|Wκ(f)(x)− f(x)| ≤ 2κ/2
∑

j:2κx−j∈[−1,1]

∣∣∣〈f, ϕκj〉 − 2−κ/2
∣∣∣ϕ(2κx− j)

= ω′f (2−κ+1)

∞∑
j=−∞

ϕ(2κx− j)

= ω′f (2−κ+1).

Proof of Theorem 1. The proof is split into two parts. The first part uses Lemma 1 to reduce the complexity

of the paths Yx and Xz via their wavelet approximations Ỹx and X̃z, which will make the second part easier

to handle. In fact, the second part consists of considering an approximated version of the programs (3) as an

M -estimator in the sense of van der Vaart & Wellner (2013, chapter 2.14) and derives a lower bound on the

number of paths l to be sampled by using the associated large deviation results from empirical process theory.

Part 1:

Focus on the constraint first. Using the notation from (4), one can write it as∥∥∥∥FY,X|Z=z(·, ·)−
∫
1[0,·]×[0,·](Ỹ

κ
x (w), X̃κ

z (w))PW (dw)

∥∥∥∥2

L2([0,1]2)

=

∥∥∥∥∫ [1[0,·]×[0,·](Yx(w), Xz(w))− 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))]
dPW
dP0

(w)

∥∥∥∥2

L2([0,1]2)

,

where the second line follows from the population constraint in (3) and the L2([0, 1]2) is taken with respect

to Lebesgue measure over y, x. The existence of the Radon-Nikodym derivative is guaranteed by Assumption

2. The goal is to bound this distance, so that one can work with the wavelet basis in part 2. So write this

difference as∥∥∥∥∫ [1[0,·]×[0,·](Yx(w), Xz(w))− 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))
]
PW (dw)

∥∥∥∥2

L2([0,1]2)

=

∥∥∥∥∫ 1[0,·]×[0,·](Yx(w), Xz(w))PW (dw)− S(Yx(w)), ·, α)S(Xz(w)), ·, α)PW (dw)

∥∥∥∥2

L2([0,1]2)

+

∥∥∥∥∫ S(Yx(w)), ·, α)S(Xz(w)), ·, α)PW (dw)−
∫
S(Ỹ κx (w)), ·, α)S(X̃κ

z (w)), ·, α)PW (dw)

∥∥∥∥2

L2([0,1]2)

+

∥∥∥∥∫ [S(Ỹ κx (w)), ·, α)S(X̃κ
z (w)), ·, α)− 1[0,·]×[0,·](Ỹ

κ
x (w), X̃κ

z (w))
]
PW (dw)

∥∥∥∥2

L2([0,1]2)

,
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Here, S(Yx(w)), y, α) is the logistic approximation of 1[0,y](Yx(w)) on [0, 1] of the form

S(Yx(w), y, α) :=
1

1 + exp
(
−α

(
y − Yx(w) + α−1/2

)) ,
and analogously for S(Xz(w), x, α). The reason for this simple form is that Yx(w) ∈ [0, 1] for all x and

Xz(w) ∈ [0, 1] for all z and all w, so that one only needs to take care of the upper bounds y and x,

respectively. S(Yx(w), y, α)→ 1[0,y](Yx(w)) as α→∞, so that the first and third term are of the order o(1).

S(Yx(w)), ·, α)S(Xz(w)), ·, α) is infinitely often differentiable, so that by the mean-value theorem it holds

for every y, x ∈ [0, 1] and w ∈ [0, 1] that∣∣∣S(Yx(w)), y, α)S(Xz(w)), x, α)− S(Ỹ κx (w)), y, α)S(X̃κ
z (w)), x, α)

∣∣∣ ≤ C ∣∣∣Yx(w)− Ỹ κx (w)
∣∣∣ ∣∣∣Xz(w)− X̃κ

z (w)
∣∣∣ ,

where C < +∞ is a positive constant. By Lemma 1 it holds∣∣∣Yx(w)− Ỹ κx (w)
∣∣∣ ≤ ω′Yx(w)(2

κ+1),
∣∣∣Xz(w)− X̃κ

z (w)
∣∣∣ ≤ ω′Xz(w)(2

κ+1) for all w ∈ [0, 1],

so that∣∣∣S(Yx(w)), y, α)S(Xz(w)), x, α)− S(Ỹ κx (w)), y, α)S(X̃κ
z (w)), x, α)

∣∣∣ ≤ Cω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1)

for all w ∈ [0, 1]. By Hölder’s inequality, Assumption 1, and the fact that PW is a probability measure∫
Cω′Yx(w)(2

κ+1)ω′Xz(w)(2
κ+1)PW (dw) ≤ C sup

w∈[0,1]

ω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1).

Therefore, integrating both sides of the above inequality gives∫ ∣∣∣S(Yx(w)), y, α)S(Xz(w)), x, α)− S(Ỹ κx (w)), y, α)S(X̃κ
z (w)), x, α)

∣∣∣PW (dw)

≤ C sup
w∈[0,1]

ω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1).

The right hand side of the last inequality does not depend on x and y anymore, so that taking the L2-norm

with respect to Lebesgue measure on [0, 1]2 on both sides gives∥∥∥∥∫ S(Yx(w)), ·, α)S(Xz(w)), ·, α)PW (dw)−
∫
S(Ỹ κx (w)), ·, α)S(X̃κ

z (w)), ·, α)PW (dw)

∥∥∥∥
L2([0,1]2)

≤ C sup
w∈[0,1]

ω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1). (12)

The first term can hence be bounded by∥∥∥∥∫ [1[0,·]×[0,·](Yx(w), Xz(w))− 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))
]
PW (dw)

∥∥∥∥
L2([0,1]2)

≤ C sup
w∈[0,1]

ω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1) + o(1), (13)
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where the o(1) terms captures the logistic approximation of the indicator function.

The same decomposition can be achieved for the objective function. Fix Ay and Ax throughout and for

some arbitrary PW ∈P∗(W) consider∥∥∥∥∫ [K(Yx(w), Ay, Ax)− K̃(Ỹ κx (w), Ay, Ax)
]
PW (dw)

∥∥∥∥2

L∞([0,1])

A bound on this follows exactly as the bound for the constraint for each PW ∈P∗(W):∥∥∥∥∫ [K(Yx(w), Ay, Ax)− K̃(Ỹ κx (w), Ay, Ax)
]
PW (dw)

∥∥∥∥2

L∞([0,1])

≤ C sup
w∈[0,1]

ω′Yx(w)(2
κ+1) + o(1),

where the o(1) appears by a potential approximation of K by K̃ in the case where K is an indicator function.

Part 2:

Therefore, from now on, the idea is to consider dPW
dP0

as an M-estimator of the problem

minimize/maximize
dPw
dP0

P0,PW∈P∗(W)

∫
K̃(Ỹ κx (w), Ay, Ax)

dPW
dP0

(w)P0(dw)

s.t.

∥∥∥∥FY,X|Z=z −
∫
1[0,·]×[0,·](Ỹ

κ
x (w), X̃κ

z (w))
dPW
dP0

(w)P0(dw)

∥∥∥∥2

L2([0,1]2)

≤ ε∗
(14)

for some fixed κ and ε∗ > 0 and to obtain a large deviations result which will result in a lower bound on the

number of samples l needed for an approximation of the value function of the infinite programs (3) by the

value function of the semi-infinite programs (4).

Rewrite the programs (14) as penalized programs. For this, the key is bounding the constraint.∥∥∥∥FY,X|Z=z −
∫
1[0,·]×[0,·](Ỹ

κ
x (w), X̃κ

z (w))
dPW
dP0

(w)P0(dw)

∥∥∥∥2

L2([0,1]2)

≤ ε∗

⇐⇒
∥∥∥∥FY,X|Z=z −

∫
1[0,·]×[0,·](Ỹ

κ
x (w), X̃κ

z (w))
dPW
dP0

(w)P0(dw)

∥∥∥∥
L2([0,1]2)

≤
√
ε∗,

so that one can work with the L2-norm instead of the squared L2-norm. It holds that∥∥∥∥FY,X|Z=z −
∫
1[0,·]×[0,·](Ỹ

κ
x (w), X̃κ

z (w))
dPW
dP0

(w)P0(dw)

∥∥∥∥
L2([0,1]2)

=

(∫ 1

0

∫ 1

0

[
FY,X|Z=z(y, x)−

∫
1[0,y]×[0,x](Ỹ

κ
x (w), X̃κ

z (w))
dPW
dP0

(w)P0(dw)

]2

dydx

)1/2

=

(∫ 1

0

∫ 1

0

[∫ {
FY,X|Z=z(y, x)− 1[0,y]×[0,x](Ỹ

κ
x (w), X̃κ

z (w))
dPW
dP0

(w)

}
P0(dw)

]2

dydx

)1/2

≤
∫ (∫ 1

0

∫ 1

0

[
FY,X|Z=z(y, x)− 1[0,y]×[0,x](Ỹ

κ
x (w), X̃κ

z (w))
dPW
dP0

(w)

]2

dydx

)1/2

P0(dw)
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=

∫ ∥∥∥∥FY,X|Z=z − 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))
dPW
dP0

(w)

∥∥∥∥
L2([0,1]2)

P0(dw),

where the second to last line follows by Minkowski’s inequality for integrals (Folland 2013, Theorem 6.19).

Therefore, there must exist some ε0 > 0 such that if∫ ∥∥∥∥FY,X|Z=z − 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))
dPW
dP0

(w)

∥∥∥∥
L2([0,1]2)

P0(dw) ≤
√
ε0,

then the original constraint is less than or equal to ε∗.

So from now on, the original constraint will be replaced by the last expression for ε0. This is done to

write the optimization problem (14) in the form of an empirical process with respect to P0 in order to apply

the large deviation results derived in van der Vaart & Wellner (2013, chapter 2.14). So rewrite (14) in

Lagrangian form (Rockafellar 1974, chapter 4) as

min
dPw
dP0

P0,PW∈P∗(W)

∫
K̃(Ỹ κx (w), Ay, Ax)

dPW
dP0

(w)P0(dw)

+ λ0

∫ ∥∥∥∥FY,X|Z=z − 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))
dPW
dP0

(w)

∥∥∥∥
L2([0,1]2)

P0(dw),

where λ0 is the penalty term corresponding to
√
ε0. One can write the objective function in empirical process

form used in van der Vaart & Wellner (2013) as

P0mh :=

∫
mh(w)P0(dw)

≡
∫ [

K̃(Ỹ κx (w), Ay, Ax)h(w) + λ0

∥∥∥FY,X|Z=z − 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))h(w)
∥∥∥
L2([0,1]2)

]
P0(dw),

(15)

where h(w) := dPW
dP0

(w) is a simpler notation for the Radon-Nikodym density. The same reasoning as above

holds for the empirical counterpart, i.e. the programs (4). One can rewrite them in the same way as above

in order to obtain the empirical counterpart of (15) as

P0,lmh :=
1

l

l∑
i=1

mh(i)

≡1

l

l∑
i=1

[
K̃(Ỹ κx (i), Ay, Ax)h(i) + λ0

∥∥∥FY,X|Z=z − 1[0,·]×[0,·](Ỹ
κ
x (i), X̃κ

z (i))h(i)
∥∥∥
L2([0,1]2)

]
,

(16)

where P0,l denotes the empirical law for l samples of paths.

So the key now is to bound the uniform entropy numbers31 of the set of functions Mh, i.e. the set of all

admissible functions mh. This is achieved by splitting this function into its subparts.

31The uniform entropy number relative to the L2-norm of a class F of functions is defined as
supQ logN(ε‖F‖L2(Q),F , L2(Q)), where the supremum runs over all probability measures with finite support, and

where N(ε,F , L2(Q)) denotes the ε-covering number of the class F with respect to the L2-norm of Q, see van der Vaart &
Wellner (2013, p. 84).
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Consider

Λ(w) := 1[0,y]×[0,x](Ỹ
κ
x (w), X̃κ

z (w))
dPW
dP0

(w).

To bound its uniform entropy number, note first that 1[0,x]×[0,y] are of V C dimension 3 since Y,X, and Z are

defined on [0, 1]. Furthermore, recall that Ỹ κx (w) and X̃κ
z (w) are composed of finitely many transformations

(shifted and scaled) of the hat-function ϕ, so that for fixed κ the sets of all approximations Ỹ κx and Xκ
z have

finite V C dimension. Lemma 2.6.18 (vii) in van der Vaart & Wellner (2013) then implies that the set C1(κ)

of functions of the form 1[0,y]×[0,x](Ỹ
κ
x (i), X̃κ

z (i)) has finite V C dimension. In particular, the V C dimension

is a function of κ, so that

dV C(C1(κ)) = V (κ) < +∞.

Theorem 2.6.4 in van der Vaart & Wellner (2013) then allows to bound the covering number by the V C

dimension, so that

N(ε, C1(κ), L2(Q)) ≤ CV (κ)(4e)V (κ)

(
1

ε

)2(V (κ)−1)

for every probability measure Q on [0, 1] and a universal constant C.

Under Assumption 2, the Radon-Nikodym densities are β-Hölder continuous and bounded by CRN < +∞.

Then the monotonicity of the logarithmic function in combination with Corollary 2.7.2 in van der Vaart &

Wellner (2013) implies that there exists a constant C such that

logN(ε, CβCRN ([0, 1]), L2(Q)) ≤ logN[](2ε, C
β
CRN

([0, 1]), L2(Q)) ≤ C
(

1

ε

)1/β

for every ε > 0 and probability measure Q on [0, 1]. CβCRN denotes the space of all β-Hölder continuous

functions bounded by CRN and N[] denotes the bracketing number, see van der Vaart & Wellner (2013,

p. 84).

By the fact that multiplication of functions is Lipschitz continuous on compact subsets of the real line

(van der Vaart & Wellner 2013, Example 2.10.8), it follows from Theorem 2.10.20 in van der Vaart & Wellner

(2013) that

sup
Q

logN(εCRN ,Λ, L
2(Q)) ≤ sup

Q
logN(ε, C1(κ), L2(Q)) + sup

Q
logN(εCRN , C

β
CRN

([0, 1]), L2(Q)),

as an envelope function in the term on the left and the second term on the right is the function which

is CRN1[0,1] on [0, 1] and an envelope function for the first term on the right hand side is 1[0,1]. Since

− log(ε) = o(ε−1/β) for any β > 0, it follows that

sup
Q

logN(εCRN ,Λ, L
2(Q)) ≤ C sup

Q
logN(εCRN , C

β
CRN

([0, 1]), L2(Q))

for some constant C that also depends on CRN .

From the reverse triangle inequality it follows that the L2-norm is Lipschitz continuous with Lipschitz

constant 1. Therefore, for fixed FY,X|Z=z and λ0, the set of functions

Λ := λ0

∥∥∥FY,X|Z=z − 1[0,·]×[0,·](Ỹ
κ
x (w), X̃κ

z (w))h(w)
∥∥∥
L2([0,1]2)

also has a bounded entropy number. In fact, by Theorem 2.10.20 in van der Vaart & Wellner (2013) it holds
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that

sup
Q

logN(εCRN ,Λ, L
2(Q)) ≤ C sup

Q
logN(εCRN , C

β
CRN

([0, 1]), L2(Q)),

where C is a uniform constant that also depends on κ, β, CRN , FY,X|Z=z, and λ0.

The same type of approximation holds for

ΛK(w) := K̃(Ỹ κx (w), Ay, Ax)
dPW
dP0

(w).

To see this, note that by Assumption 3 the kernel K̃ is either an indicator function, in which case it has

finite V C dimension, or is Lipschitz continuous. The case of an indicator function is perfectly analogous to

the case above, so focus on the case where K̃ is Lipschitz. Then, as before, for fixed κ, the set of functions

Ỹ κx has finite V C dimension. Since K̃ is Lipschitz continuous with Lipschitz constant L < +∞, it holds by

Theorem 2.10.20 in van der Vaart & Wellner (2013) for the class K̃ containing these Lipschitz continuous

objective functions that

sup
Q

logN(εL, K̃, L2(Q)) ≤ sup
Q

logN(ε, Ỹκx , L2(Q)),

because an envelope function for Ỹκx is 1[0,1], as all paths Ỹ κx have codimension [0, 1].

Applying Theorem 2.10.20 in van der Vaart & Wellner (2013) once again while noting that the multipli-

cation operator is Lipschitz continuous on compact intervals gives

sup
Q

logN(εCRN ,ΛK , L
2(Q)) ≤ sup

Q
logN(εL, K̃, L2(Q)) + sup

Q
logN(εCRN , C

β
CRN

([0, 1]), L2(Q)),

and so

sup
Q

logN(εCRN ,ΛK , L
2(Q)) ≤ CK sup

Q
logN(εCRN , C

β
CRN

([0, 1]), L2(Q))

by the same reasoning as before; CK is a uniform constant.

Therefore, putting everything together and using Theorem 2.10.20 in van der Vaart & Wellner (2013)

once more, it holds that

sup
Q

logN(εCRN ,Mh, L
2(Q)) ≤ C sup

Q
logN(εCRN , C

β
CRN

([0, 1]), L2(Q)) ≤ C
(

1

ε

)1/β

, (17)

where C is some constant that depends on κ, β, λ, CRN , and FY,X|Z=z.

Now the goal is to bound P ∗(supmh∈Mh
|Pl,0mh − P0mh| > t) for small t > 0, where P ∗ denotes outer

probability to avoid measurability issues. It holds

P ∗
(

sup
mh∈Mh

|Pl,0mh − P0mh| > t

)
=P ∗

(√
l sup
mh∈Mh

|Pl,0mh − P0mh| >
√
lt

)
.

The tail bound derived in Theorem 2.14.10 of van der Vaart & Wellner (2013) implies that for every δ > 0

and t > 0

P ∗
(√

l sup
mh∈Mh

|Pl,0mh − P0mh| >
√
lt

)
≤ L exp

(
D(
√
lt)U+δ

)
exp(−2lt2), (18)
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where U := 6β−1
β(2β+1) and the constants L and D depends on the constant C, β, and δ. Since β > 1

2 , there

exists a small enough δ > 0 such that U + δ < 2. Therefore, one can bound the term further by

L exp
(
D(
√
lt)U+δ

)
exp(−2lt2) ≤ C̄ exp(−D̄lt2),

for constants 0 < C̄ < +∞ and (potentially small) 0 < D̄ < 2.

Now apply inversion. It follows that

P ∗

 sup
mh∈Mh

|Pl,0mh − P0mh| >

√√√√ log
(
C̄
ρ

)
D̄l

 ≤ ρ for ρ ∈ (0, 1),

and so

P ∗

 sup
mh∈Mh

|Pl,0mh − P0mh| ≤

√√√√ log
(
C̄
ρ

)
D̄l

 ≥ 1− ρ for ρ ∈ (0, 1).

Therefore, with probability at least 1− ρ it holds that

sup
mh∈Mh

|Pl,0mh − P0mh| ≤

√√√√ log
(
C̄
ρ

)
D̄l

.

In order to put parts 1 and 2 together write (3) in penalized form as

min
dPw
dP0

P0,PW∈P∗(W)

∫
K(Yx(w), Ay, Ax)

dPW
dP0

(w)P0(dw)

+ λ0

∫ ∥∥∥∥FY,X|Z=z − 1[0,·]×[0,·](Yx(w), Xz(w))
dPW
dP0

(w)

∥∥∥∥
L2([0,1]2)

P0(dw).

Denote by V ∗ and V∗ the value function of the maximization and minimization of (3), respectively, and by

Ṽ ∗κ and Ṽ∗,κ their analogues for (15). Then by part 1 and the fact that the bound is independent of PW it

holds that

max{|V ∗ − Ṽ ∗κ |, |V∗ − Ṽ∗,κ|} ≤ C sup
w∈[0,1]

ω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1) + o(1).

Denote by Ṽ ∗l,κ and Ṽ∗,l,κ the value functions of (16). Then by part 2 it holds that

max{|Ṽ ∗κ − Ṽ ∗l,κ|, |Ṽ∗,κ − Ṽ∗,l,κ|} ≤

√√√√ log
(
C̄
ρ

)
D̄l

with probability of at least 1− ρ. Therefore, by the triangle inequality it holds that

max{|V ∗ − Ṽ ∗l,κ|, |V∗ − Ṽ∗,lκ|} ≤ max{|V ∗ − Ṽ ∗κ |, |V∗ − Ṽ∗,κ|}+ max{|Ṽ ∗κ − Ṽ ∗l,κ|, |Ṽ∗,κ − Ṽ∗,l,κ|}
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≤C sup
w∈[0,1]

ω′Yx(w)(2
κ+1)ω′Xz(w)(2

κ+1) + o(1) +

√√√√ log
(
C̄
ρ

)
D̄l

with probability of at least 1− ρ.

A.3 Proof of Proposition 2

Proof. Define the constraint correspondence C̃ : FY,X|Z=z × (0, 1)→ P̂∗
W

C̃(FY,X,Z , ε) :=P̂W ∈ P̂∗(W) :

∥∥∥∥∥FY,X|Z=z(y, x)− 1

l

l∑
i=1

1[0,·]×[0,·](Ỹ
κ
x (i), X̃κ

z (i))
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]2)

≤ ε


as in the main text, which is non-empty by Assumption 4. Note that under Assumption 2 P̂∗(W) is compact

in the weak topology since the Radon-Nikodym derivatives are uniformly bounded by CRN < +∞. To see

this, note that the set of all probability measures P̂W on the finite index set {i}i=1,...,l is tight. Hence,

by Prokhorov’s Theorem (Karatzas & Shreve 1998, Theorem 2.4.7), it is relatively compact in the weak

topology. Under Assumption 2 the set P̂∗(W) is a closed subset of this set in the weak topology, as all

Radon-Nikodym derivatives are uniformly bounded by a weak inequality.

Also note that C̃(FY,X|Z , ε) is continuous. Its upper hemicontinuity can be shown by a sequencing

argument as P̂∗(W) is compact in the weak topology (Aliprantis & Border 2006, Theorem 17.20): let

{F̂Y,X|Z;n}n∈N ∈ FY,X|Z=z be a sequence such that ‖F̂Y,X|Z=z;n − FY,X|Z=z‖L∞([0,1]2) → 0 for all z ∈ [0, 1]

as n→∞ and {P̂W ;n}n∈N ∈ P̂∗(W) be a sequence satisfying P̂W ;n ∈ C̃(FY,X|Z;n, ε). Under Assumption 4,

the continuity of the L2-norm, and the weak inequality in C̃, it holds that {P̂W ;n}n∈N must converge to an

element P̂ ∗W ∈ P̂∗(W) which satisfies the constraint, so that this sequence has a limit point in C̃(FY,X|Z , ε).
As for lower hemicontinuity, fix some sequence {F̂Y,X|Z;n}n∈N. Pick some arbitrary P̂W ∈ C̃(FY,X|Z , ε).

Under Assumption 4, there exists a ball Br around FY,X|Z such that the constraint correspondence is not

empty there. If there is only one element in the constraint correspondence for FY,X|Z , then lower hemiconti-

nuity is trivially fulfilled. So suppose there are at least two solutions P̂W and P̂ ′W in C̃(FY,X|Z , ε). Since Br
is convex, the L2-norm is continuous, and the inequality in C̃ is weak, it holds that for large enough n ∈ N
there exist also two solutions P̂W,n, P̂

′
W,n ∈ C̃(F̂Y,X|Z;n, ε) which are close to P̂W and P̂ ′W , respectively, so

that lower hemicontinuity is fulfilled.

The objective function defined by the kernel K is continuous under Assumption 3 on the graph of

C̃(FY,X|Z , ε) for fixed ε > 0. Therefore, the Berge Maximum Theorem (Aliprantis & Border 2006, Theo-

rem 17.31) implies that the value functions Ṽ ∗l,κ(FY,X|Z) and Ṽ∗,l,κ(FY,X|Z) are continuous. Now under the

Glivenko-Cantelli Theorem (van der Vaart 2000, Theorem 19.1), it holds that ‖F̂Y,X|Z=z;n−FY,X|Z=z‖L∞([0,1]2) →
0 for all z ∈ [0, 1] as n→∞ almost surely. Now by the continuity of the value functions, one can apply the

Continuous Mapping Theorem (van der Vaart 2000, Theorem 18.11), which implies that the value functions

converge almost surely.

A.4 Proof of Proposition 3

Proof. The goal is to apply the functional delta method (Shapiro 1991, Theorem 2.1), for which the key is

to prove directional Hadamard differentiability of the value functions Ṽ∗,l,κ(FY,X|Z) and Ṽ ∗l,κ(FY,X|Z). Focus

40



on the minimization problem in (4), as maximization is perfectly analogous. It is convenient to write (4) in

terms of the notation in Bonnans & Shapiro (2013):

min
P̂W∈P̂∗(W)

K(P̂W )

subject to G(P̂W , FY,X|Z=z) ∈ [0, ε],

(19)

where

G(P̂W , FY,X|Z=z) :=

∥∥∥∥∥FY,X|Z=z −
1

l

l∑
i=1

1[0,·]×[0,·]×[0,·](Ỹ
κ
x (i), X̃κ

z (i))
dP̂W

dP̂0

(i)

∥∥∥∥∥
2

L2([0,1]2)

.

Theorem 4.26 in Bonnans & Shapiro (2013) then provides conditions for directional Hadamard differen-

tiability of Ṽ∗. The main condition is a restricted version of Robinson’s constraint qualification:

0 ∈ int{G(P̂W , FY,X|Z=z) + δGP̂W (P̂∗(W), FY,X|Z=z)}, (20)

where FY,X|Z=z is the data-generating process in the population, P̂W is an argument which minimizes (19),

δGP̂W (P̂∗(W), FY,X|Z=z) is the directional derivative of G(·, ·) in its first argument at this optimal P̂W with

respect to any direction in P̂∗(W), and “int” denotes the topological interior of a set. Since G(·, ·) is a

functional mapping to [0, ε], (20) reduces to showing that δGP̂W (P̂∗(W), FY,X|Z=z) can take negative and

positive values of size less than or equal to −ε for some direction P̂ ′W ∈ P̂∗(W).

For this, calculate δGP̂W (P̂∗(W), FY,X|Z=z) as32

δGP̂W (P̂∗(W), FY,X|Z=z) = lim
t→0

t−1

∥∥∥∥∥FY,X|Z=z −
1

l

l∑
i=1

1
dP̂W + tP̂1

dP̂0

∥∥∥∥∥
2

L2

−

∥∥∥∥∥FY,X|Z=z −
1

l

l∑
i=1

1
dP̂W

dP̂0

∥∥∥∥∥
2

L2


= lim
t→0

∫
t−1

(FY,X|Z=z −
1

l

l∑
i=1

1
dP̂W + tdP̂1

dP̂0

)2

−

(
FY,X|Z=z −

1

l

l∑
i=1

1
dP̂W

dP̂0

)2
 dydx

Multiplying out the square terms and simplifying (using the linearity of the Radon-Nikodym derivative
dP̂w+tdP̂1

dP̂0
= dP̂w

dP̂0
+ tdP̂1

dP̂0
) gives

lim
t→0

∫
t−1

(FY,X|Z=z −
1

l

l∑
i=1

1
dP̂W + tdP̂1

dP̂0

)2

−

(
FY,X|Z=z −

1

l

l∑
i=1

1
dP̂W

dP̂0

)2
 dydx

= lim
t→0

∫
t−1

−2FY,X|Z=z
t

l

l∑
i=1

1
dP̂1

dP̂0

+ 2t

(
1

l

l∑
i=1

1
dP̂W

dP̂0

1

l

∑
i

1
dP̂1

dP̂0

)
+
t2

l2

(
l∑
i=1

1
dP̂1

dP̂0

)2
 dydx.

Since FY,X|Z=z,
t
l

∑l
i=1 1

dP̂1

dP̂0
, and t

l

∑l
i=1 1

dP̂W
dP̂0

take values in the unit interval, Lebesgue’s Dominated

32In the following derivation, the shorthand notation 1
l

∑l
i=1 1

dP̂W
dP̂0

, ‖ · ‖L2 and
∫
FY,X|Z=zdydx is used to denote

1
l

∑l
i=1 1[0,y]×[0,x](Ỹ

κ
x (i), X̃κ

z (i)) dP̂W
dP̂0

(i), ‖ · ‖L2([0,1]2), and
∫
[0,1]2 FY,X|Z=z(y, x)dydx, respectively.
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Convergence Theorem permits interchanging the limit and the integral, which after simplification gives

lim
t→0

∫
t−1

−2FY,X|Z=z
t

l

l∑
i=1

1
dP̂1

dP̂0

+ 2t

(
1

l

l∑
i=1

1
dP̂W

dP̂0

1

l

∑
i

1
dP̂1

dP̂0

)
+
t2

l2

(
l∑
i=1

1
dP̂1

dP̂0

)2
 dydx

=

∫
2

1

l

l∑
i=1

1
dP̂1

dP̂0

[
FY,X|Z=z −

1

l

l∑
i=1

1
dP̂W

dP̂0

]
dydx.

To see that (20) can be satisfied, ignore the “weight term” 2 1
l

∑l
i=1 1

dP̂1

dP̂0
in the last expression for a second

and note that the term in brackets is the constraint in (4), which can be rewritten as FY,X|Z=z − P̂W (Ỹ κx ∈
[0, y], X̃κ

z ∈ [0, x]). Therefore, without the “weight term”, which is always non-negative, the expression

for δGP̂W (P̂∗(W), FY,X|Z=z) takes the form of a comparison between these two probabilities in terms of

second-order stochastic dominance. Therefore, if either the cumulative distribution function induced by

the probability P̂W (Ỹ κx ∈ [0, y], X̃κ
z ∈ [0, x]) second-order stochastically dominates FY,X|Z=z by some large

enough value ζ > 0—which makes the above integral negative—or vice versa, then the requirement for

Robinson’s condition is fulfilled. This can happen in programs (4) under Assumption 4. Therefore, the

restricted version of Robinson’s constraint qualification is satisfied by the program (4).

Furthermore, note that under Assumption 4 the program (4) admits an optimal solution for FY,X|Z=z +

tF ′Y,X|Z=z where FY,X|Z=z, F
′
Y,X|Z=z ∈ FY,X|Z=z when t is small enough such that F ′Y,X|Z=z ∈ Br ⊂

FY,X|Z=z, which is the second requirement needed in order to apply Theorem 4.26 in Bonnans & Shapiro

(2013). Therefore, Theorem 4.26 in combination with Proposition 4.47 in Bonnans & Shapiro (2013) im-

plies that the value function Ṽ∗,l,κ(FY,X|Z=z) is directionally Hadamard differentiable in every direction

F ′Y,X|Z=z ∈ FY,X|Z=z and that the Hadamard derivative dṼ∗,FY,X|Z=z
(F ′Y,X|Z=z) takes the form

dṼ∗,FY,X|Z=z
(F ′Y,X|Z=z) = δFY,X|Z=z

L(P̂1, λ(P̂W ), FY,X|Z=z)(F
′
Y,X|Z=z),

where L(·, ·, ·) denotes the Lagrangian of the program (4), λ(P̂1) denotes the respective Lagrange multiplier

(which is unique for given P̂1 by Proposition 4.47 in Bonnans & Shapiro 2013), and δFY,X|Z=z
is the directional

derivative of L in its third argument in direction F ′Y,X|Z=z at FY,X|Z=z.

Now by Donsker’s theorem (van der Vaart 2000, Theorem 19.3), it holds that
√
n(F̂Y,X|Z=z;n−FY,X|Z=z)⇒

GFY,X|Z=z
, where GFY,X|Z=z

is a Brownian bridge with covariance function

CovGFY,X|Z=z
= FY,X|Z=z(min{y, y′},min{x, x′},min{z, z′})− FY,X|Z=z(y, x)FY,X|Z=z′(y

′, x′)

for all (y, x, z), (y′, x′, z′) ∈ [0, 1]3. Therefore, applying the functional delta method (Shapiro 1991, Theorem

2.1) directly yields that

√
n( ˆ̃V∗(F̂Y,X|Z=z;n)− Ṽ∗,l,κ(FY,X|Z=z))⇒ dṼ∗,FY,X|Z=z

(GFY,X|Z=z
).

The same argument holds for ˆ̃V ∗.
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