Understanding Weak Low-Latitude SST Gradients and the Ocean Warm Pool **Expansion in the Early** Pliocene

Alexey Fedorov & Chris Brierley (Yale)

PP11G-08, AGU fall meeting 2009

Fedorov, A., C. Brierley, and K. Emanuel, (2010). Tropical cyclones, permanent El Niño and the climate of the early Pliocene. *Nature*, in press.

Brierley, C. and A. Fedorov, (2010). The relative importance of meridional and zonal SST gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution, *Under revision for Paleoceanography*.

Brierley, C., A. Fedorov, Z. Lui, T. Herbert, K. Lawrence and J. LaRiviere. (2009). Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene, *Science*, Vol. 323. no. 5922, pp. 1714 – 1718

Fedorov, A.V., P. Dekens, A. C. Ravelo, P. deMenocal, R. Pacanowski and S. G. Philander, (<u>2006</u>). The Pliocene paradox (mechanisms for a permanent El Niño). *Science* 312, 1437-1443.

Alexey Fedorov & Chris Brierley (Yale)

Understanding Weak Low-Latitude SST Gradients and the Ocean Warm Pool Expansion in the Early Pliocene (PP11G-08, AGU fall meeting 2009)

Outline

- Introduction to the early Pliocene climate
 - When & why should we care?
 - Tropical SST patterns
- Pliocene Paradox and missing heat transport?
- A tropical cyclone feedback?
 - The subtropical ocean circulation
 - Warming of the cold tongue
- Does this feedback explain the Pliocene warm pool?

Why care about the early Pliocene?

Natural global warming stabilization experiment

Pliocene CO₂ was 300 – 400 ppm

Continental configuration & orbital forcings similar

Permanent El Niño (No Zonal SST Grad.)

for a permanent El Niño)

Reduced Meridional SST Gradient

Brierley et al., Science. 2009

Reconstructed Pacific SST profile

Extend zonally across Pacific

Shift meridionally to replicate the seasonal cycle

Expansion of Warm Pool

(a) Present-Day SSTs

(b) Early Pliocene SSTs

Expansion of Convection

Use AGCM (CAM3 T85) with fixed SSTs to find impacts of warm pool

1990 CO2 levels, modern orography, only SST (and sea ice) diff.

Brierley et al., Science. 2009

Weak Hadley Cell

Brierley et al., Science. 2009, Fedorov et al, Science. 2006

The Pliocene Paradox

Fedorov et al, Science. 2006

Tropical Cyclone Feedback

Fedorov et al., Nature. 2010

Synthetic Tracks for Present-day

Synthetic Tracks for Pliocene

Fedorov et al., Nature. 2010

Modeling "tropical cyclone" mixing

Preindustrial SST

We impose enhanced ocean mixing between 8-40° latitude (K_v =1cm²/s)

Impact of "tropical cyclone" mixing

Conclusions

- The Tropical Pacific had a different SST distribution in the early Pliocene than at Present
 - One vast warm pool stretching from Indonesia towards California
- This vast warm pool created a sluggish atmospheric circulation.
- Sustaining the warm pool needs an additional physical process included in climate models
- Tropical cyclone feedbacks could be that process
- This feedback could be important in future projections