Ocean Model Uncertainty in Transient Climate Change

Chris Brierley

University of Reading, UK

Mat Collins

Hadley Centre, Met. Office, UK

Alan Thorpe

Natural Environment Research Council, UK

Sources of Uncertainty in Forecasts

- ▲ Initial Condition Uncertainty
- ▲ Forcing Uncertainty
- ▲ Model Uncertainty
 - ▲ Structural which parameterisation?
 - ▲ Parameter what numbers to use in schemes?

Sampling Ocean Model Uncertainty

- Need ensemble with perturbed parameters
- Expert elicitation to find parameter ranges
- ▲ Spin up models (for 500 years)
- ▲ Check each model has a "realistic climate"
- ▲ Perform increasing CO₂ experiment

7 Ensemble Members

	Isopycnal Diffusivity (m ² s ⁻¹)	Background Vertical Diffusivity profile (x10 ⁻⁵ m ² s ⁻¹)	Mixed L Param fraction, (m)	eters,
Standard	1000	1-15	0.7	100
Low ISO	200	1-15	0.7	100
High ISO	2000	1-15	0.7	100
Low VDiff	1000	0.5-4	0.7	100
High VDiff	1000	2-50	0.7	100
Low LAM	1000	1-15	0.3	100
Med LAM	1000	1-15	0.5	50

Global Mean Air Temperature

Not all temperature responses are the same

Transient Climate Response

▲ Difference in 20 yr average g.m. temperature centred on time of doubling of CO₂.

Conceptual Model

$$Q = (\kappa + \Lambda)\Delta T$$

- $\triangle Q$ is the imposed radiative forcing
- $\triangle \Delta T$ is the global mean temperature change
- Λ is the climate feedback parameter
 - ▲ related to the climate sensitivity
 - ▲ measure of equilibrium warming
- ^κ is the ocean heat uptake efficiency.
 - ▲ fraction of warming realised

Hypothetical TCR

- \triangle Diagnose κ and Λ for ensemble members
- ▲ Calculate temperature changes by considering the spread in each property in isolation

	All Variations	With standard	With standard
	of Λ and κ	model's A	model's K
Ocean	1.8-2.3	2.0-2.2	1.9-2.3
Atmosphere	1.7-2.8	2.0-2.2	1.6-2.6

Find that changes in Λ (climate sensitivity) are more important than uncertainty in the rate of ocean heat uptake.

Ocean Heat Uptake

Shaded area is spread from atmospheric model uncertainty

Caveats

- ▲ It could be that the ensemble does not represent uncertainty:
 - ▲ Ranges are too conservative
 - ▲ Wrong parameters chosen
 - ▲ Single perturbations hide non-linearities
- Looking only at the global mean is masking some important regional differences.

Conclusion

- ▲ The ocean parameter uncertainty has been investigated.
- ▲ Its effects on the global mean temperature response of transient climate are small.
- ▲ The spread that does exist seems to come from changes in the equilibrium response not the rate of ocean heat uptake.
- ▲ Further work is needed to understand why the ocean physics has only a small impact on global mean ocean heat uptake.

