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- When was the Pliocene?

1 What did the Pliocene climate look like?

1 Why was the Pliocene climate like that?
a) Carbon dioxide increase
b) Movement of Indonesia and New Guinea
) Emergence of Isthmus of Panama
d) Increase in Tropical Cyclones

e) Cloud property changes

- Summary



When?¢

1 Time period spanning
5.3~2.6 million years
ago

0 I'll use 4Ma in this talk

1 A relatively-short and
recent period in the
geological past.

-1 Deep time in view of
most climate scientists

inc. IPCC
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Before the onset of N. H. Glaciation
s
1 Glaciation starts at ~3Ma

0 Part of gradual amplification
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Compilation of PaleoSST data

__ (alkenone and Mg/Ca only)
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High Latitudes
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* High latitude warm across the board, by ~5°C
* Very little data from the South Atlantic



Subtropical Coastal Upwelling
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* Lots of warming, but depends on location

* All approaching 24°C



Equatorial /Tropical Upwelling
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* Lots of warming, but depends on location
* Removal of upwelling

e All increase at similar rate
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- Three conditions

1. No increase in peak temperature
2. Reduction in zonal temperature gradient

3. Reduction in meridional temperature gradient



Prior Work
-

Greatly Expanded Tropical Warm Pool
and Weakened Hadley Circulation
in the Early Pliocene

Chis M. Brierley,* Mesey V. hdu-rur."'l Thonghui Lin,™ Timothy 0. Herbert,
Kira T. Lawrence.” Jomathan P. LaBiviere

The MEctene marm infered] has been difficult 1o eaplain. We recombucted the latitudina
diitribution of sed suface bempersture mound 4 million year ago. during the eady Pliscens. Dur
reoonaruction shows that the mevidicnal temperature gradient between S eguator and subtropics
wars greatly reduced, implying a vast polesard expansion of the ocean tropical warm peal.
Cormbarating evidenoe indicaied that the Pacilic tempavatune contrast between the squater and
1N ha evolved from ~2°C 4 million years ago o -E°C today. The meridional warm poal
expareion evidently had encrmous impacts on the Pliocene climate, including a dowdown of the
atmospheric Hadley ciroelation and El Mifie=tke conditions in the egeatoriad reglon. Ultimaiely,
ustaining a dimate state with weak tropboal sea surface temperature gradients may erguire
additionsl mechanisim of soean hest uptake Budh a3 enhanoed oosin vertical mixdng),

80S 60S 40S 205 EQ 20N 40N S0N BON VAAAS
Latitude (degrees) .'

1 Brierley et al. (2009) - paleobs. & modeling study
-1 Reduced Meridional SST Gradient (Eq-Subtropics)



Whate — A quick summary

o A warm world in geologically recent past

0 Significantly warmer poles (without ice)

0 Very weak temperature gradients in the Tropics
Vast Warm Pool

71 Change in structure of climate:

High sensitivity of climate structure



Why?

1 Probably unrelated to solar forcing (too long/stable for
orbital variability, but too short for stellar evolution)
-1 At least 5 possible explanations hypothesized:
a) Carbon dioxide increase
b)  Movement of Indonesia and New Guinea
¢ Emergence of Isthmus of Panama
d) Increase in Tropical Cyclones
e) Cloud property changes

- But which, if any, can explain the vast warm pool?



Model Framework

0 Test sensitivity of tropical climate to each hypothesis
individually

0 Using NCAR’s Community Earth System Model
(CESM)

O Newly released model to be included in next IPCC

O Atmosphere (CAM4), ocean (POP2), sea ice (CICE) and
land surface (CLM4) models coupled together

O Low resolution version aimed at Paleoclimate work
O T31 in atmos. (~3.75°) and ~3° in ocean (better at Eq)

71 All simulations for 500 years starting from
preindustrial control conditions (figures show
average of last 50yrs)



A) Carbon Dioxide
N

0 Still large uncertainty as to the actual value

- Small carbon dioxide increase up to at most 400pm
(comparable to today’s elevated value)

Raymao at al, b”ﬂ
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CO, in a climate model

+100ppm SAT CESM IPCC, Ensemble Mean Pattern

Adding 100ppm CO2 - CESM CTL

mean = .98 rmse = 1,13 K
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IPCC, AR4, fig 10.8



Impact on Trop. Pac.

Carbon Dioxide - Preindustrial
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Model Dependent?

The majority of climate
models show weakening of
the Equatorial SST gradient
with increasing CO,, but not
all.

This is an area of active
resecarch

However, changes are an
order of magnitude less than
Pliocene paleo-obs, and come
with warming of west Pacific

Ratio of El Nifio varishiity

1.5
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IPCC, AR, fig 10.8



B) Indonesia
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Prior Studies
N

Cane & Molnar (2001) Ocean-only Jochum et al (2009) — Coupled

71 Reduction in total
Indonesian Throughflow

-1 Some changes in source
water to Southern
Hemisphere

. o1 Only found SST changes
EEwE we we e w ww ww e of <0.3°C in Pacific

Hlm .
.qﬂ-{ _ o Changes in ENSO

statistics




Impact on Trop. Pac.

Indonesia - Preindustrial
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C) Isthmus of Panama

Central American Seaway slowly *
constricted during Miocene

No flow between Atlantic &
Pacific sometime in Pliocene

Proposed as trigger for glacial
cycles at 2.7Ma, but now thought 2
to have shut earlier

Tested in a variety of models

I've removed Panama to a depth
of Tkm, so a very strong
perturbation :

Kirby et al. (2008), PLoS One



Shutdown of AMOC

The Atlantic Meridional
Overturning Circulation i I ..

(AMOC) is has sinking in
North Atlantic to ~1.5km
and then flowing southward

Li L
L1 E.

Depends on salinity

difference between N Atl. 00 S D | / I
and N Pac. which is driven o oo
by flow of atmospheric
water over Panama to Pac.

Allowing ocean return flow
in Northern hemisphere kills

the AMOC

Figure after 1000 yrs of
simulation rather than 500

¥rs




Impact on Trop. Pac.
—

Panama - Preindustrial
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D) Tropical Cyclones

4NN 1 When we created
ture reconstruction of vast warm
pool, we suggested that an
% increase in ocean vertical
mixing would deepen

AstnseoF W thermocline and lead to
oimaquaity ———— | reduced SST gradients

5'.1.‘?.“‘;‘.‘""'”'"" W () Later suggested this mixing may

be from tropical cyclones (a.k.a.

WINDS OF ok hurricanes)
CLIMATECHANGE

Troplcal cyclonas maintained permanont
El Nifio-like conditions in the early Plliocene m




Synthetic Tracks




Model hurricanes
—

i

Latiudn (degress)

Ly 02 @ Q4 05 08 07 08 08 10 1 12 13
Diffusivty fome’ 571

11 Observations indicate hurricanes
give vertical mixing up to

Tem?s! (Sriver & Huber, 2007)

=1 As first order, include 2 broad
stripes of mixing in upper ocean

(Fedorov et al. 2010)
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Impact on Trop. Pac.
—

Hurricanes - Preindustrial
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e) Cloud Properties

-~ Cloud properties and feedbacks
are the largest cause of
uncertainty in climate projections

- Their properties are influenced
by the amount of aerosols in the
air (called aerosol indirect
effects)

-1 The aerosols are not well
constrained in the past and could
change with land surface and
ocean conditions

a) Clhoud radialiee forcing

18 =

;- JJTTTo

- T r I rrrrI
2 OFN MBS T 0I5 @

IPCC fig 10.11a). Global mean cloud
radiative forcing from coupled models

under A1B scenario — not even the sign
is certain



Cloud Albedo

21 Barreiro & Philander
(2008) use a simple climate
model to test sensitivity of |
climate to reduction in BO°N
cloud albedo in
extratropics 40°N

a) ssr
|

difference
|

21 Find a weakening of
equatorial SST gradient 0°

71 Their method is not
applicable in a more

complex model like CESM

-1 Reduce the cloud liquid
water to 80% polewards 50°E 150°E 110°W 10°W

of 35°N/S in the shortwave

radiation code

40°5

2805



Impact on Trop. Pac.

Cloud Properties - Preindustrial
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Comparison

. Ln-u-klng fnr
Reduction in equatorial 55T gradient of
~4°C

+ Mo warming in West Pacific
Reduction in meridional gradient in both
hemispheres

* No single pattern does this



Combination
=

* If none of the hypotheses Present Day Obeanaticns s St & P
explain the pattern ‘
individually, perhaps they all
combine together

* Ran for 200 yrs from end of
Panama simulation, but
skipped Indonesian changes

Padias-CiEnsirmhire 4 000D yri Ao

* There is some improvement in
the model simulations (right), | ]'
but it certainly does not reach i JI
the flatness of the
reconstruction (left)

25 26 27 28 29 30 31
Temperalure in "C



Summary

0 There is no silver bullet to explain the vast warm pool
of the Early Pliocene among the hypotheses already
out there

-1 A combination of all the hypotheses approaches the
reconstruction, but most of the impacts are pushing the
envelope

0 We may need another explanation — be it a new
climate mechanism, new forcing or reinterpretation of
the paleo-observations: any suggestions?



BEYOND CONVENTIONAL
CLIMATE SENSITIVITY:
UNDERSTANDING EARLY
PLIOCENE WARMTH

Chris Brierley — UCL Geography

With Alexey Fedorov (Yale), Kira Lawrence
(Lafayette), Zhonghui Liv (Hong Kong), Petra
Dekens (San Fran. State) and Christina Ravelo

(UC Santa Cruz)




