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Parameter perturbations
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Global mean effects on transient climate change
Regional climate change

Effects on the thermohaline circulation.
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Uncertainties in Projections

Each projection has 3 forms of uncertainty:

A Imitial Condition uncertainty (sampled 1n ensemble
weather prediction)

A Scenario uncertainty (how much GHG will be emitted,
when will volcanoes go off, etc.)

A Model uncertainty (from errors in the model)
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Impertect Models

Numerical Models have a finite grid spacing - can’t
resolve everything.

Need to parameterise sub-grid scale processes.

The values of parameters 1n these schemes are not
well known.

However hard we try, there will always be

approximations, and therefore errors (although they
can be reduced).

Useful to know how big the errors are.
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Multi-Model Ensembles

TAR uses multi-model ensemble to estimate 1nitial
condition and model uncertainty combined.
A Models not chosen to sample phase evenly.
A Can’t provide error estimates for a single model run,
only considered as a whole.
More rigourous approach needed to provide
probability climate forecasts
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[PCC Models
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Types of Model Uncertainty

Model uncertainty can be sub-divided into
manageable chunks:

A Uncertainty in parameterisations of the physics in the
Atmosphere model.

A Uncertainty in parameterisations of the physics in the
ocean model

A Structural uncertainty from the way the model 1s built
and coupled.
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QUMP and climateprediction.net

Both perturb parameters with a range constrained
by observations

Both started off using a slab model, so only
considered parameters 1n the atmosphere.

Looked at uncertainty in equilibrium global mean
temperature response to a doubling of CO2
(climate sensitivity).
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More Slab-Model Ensemble

Simulations

128 HadSM3
(atmosphere-slab
ocean model)
ensemble with
parameters
perturbed
simultaneously

Additional
simulations
underway to
explore more of
parameter space

Murphy et al., 2004
LKL Webb et al., 2006
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Transient Projections

The atmosphere equilibriates quickly compared to
the ocean, because of 1ts smaller heat capacity.

So need an ocean model for a transient projection.

The ocean model will have its own
parameterisations, and therefore uncertainties.

[’ve set out to investigate the ocean model
uncertainty.
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Questions

1.Can we detect the effects of ocean model
uncertainty in a climate change experiment?
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Method I

Create a perturbed ocean physics ensemble, to
sample the ocean model uncertainty.

Perform a transient climate change experiment

Compare the spread in the ensemble to the spread
expected from internal (natural) variability.

If the ensemble spread 1s larger, ocean model
uncertainty has detectable effects.
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Problems

Many parameters, each with many values, that can
be combined in many ways.

But limited computer resources.
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Method 11

Try to sample the largest extent

So perturb most important parameters to their
maximum and minimum.

Can’t get probability from answers, only an 1dea of
envelope caused.
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Expert Elicitation

Ask lots of experts 1n ocean modelling, what the
most important parameters are.

Find a range for those parameters (either from the
observational studies or asking experts).

Prioritise the parameters by their expected effect on
transient climate change.
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Isopycnal diffusion
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line of constant density

Parameterises effects of Mesoscale Eddies
Mainly horizontal
Vertical transters possible at high latitudes

Largest in Southern Ocean
SR
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Vertical Diffusion
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velocity
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Molecular Diffusion Eddy Diffusion

Small compared to 1sopycnal diffusion.

However all mixing 1s small vertically, due to
stratification.

Diffusivity varies with depth.
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Mixed Layer

% Parameterise the
74 mixed layer by
working out MLD and

then mixing above
(Kraus-Turner).

Wind
Mixing | |
Energy Mixed Layer Depth 1s

when turbulent energy

runs out.

_____ Scheme has 2

| -Mixed Layer parameters - fraction
YDepth and a decay length
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7 Ensemble Members

Isopycnal Background Vertical | Mixed Layer
Diffusivity Diffusivity profile Parameters,
WEN (x10° m2s-1) fraction, depth
(M)

Standard 1000 1-15 0.7 100
Low ISO 200 1-15 0.7 100
High I1ISO 40]0]0 1-15 0.7 100
_ow VDiff 1000 0.5-4 0.7 100
High VDIff 1000 2-50 0.7 100
_ow LAM 1000 1-15 0.3 100
Med LAM 1000 1-15 0.5 50
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Experimental Setup

500 year spin-up to let the perturbations take effect.
80 year control run.

80 year run with COz increasing by 1% per year
A CMIP idealised scenario

A Equivalent to a linear increase in radiative forcing
A COz levels are doubled 1n year 70.
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Global Mean Temperature in Spin Up

The grey bar marks the beginning of the experiment, and
dotted lines are the increasing CO; runs
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Temperature 1n Increasing CO2 Run

Change in Global Temperature in Inc. CO2Z Run
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Not all temperature responses are the same

q. Chris Brierley - 27th June 2006 -Departmental Seminar - Slide 22



Transient Climate Response

Change in Global Temperature in Inc. COZ2 Run
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2xCO,

Difference between 20 year average centred on time of 2xCO»
sAA in 1% and the control state (IPCC, 2001)
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Detection

Variations in Transient Climate Response 1n

ensemble.
Ensemble mean of 2.10K

Range of 0.48K
Standard deviation of 0.14K

Standard deviation of modeled internal variations
in 20 yr average global mean temp. 1s 0.05K.

Ensemble variations are larger than those expected
from natural variability at 5% confidence.

A Ocean model uncertainty has a detectable effect on

climate projections.
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Questions

1.Can we detect the effects of ocean model
uncertainty in a climate change experiment?

= Ycs

Which leads us to ask some further questions about
the ocean model uncertainty.....
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Questions 11

2. How important 1s this uncertainty?

3. What are the mechanisms by which the ocean
model uncertainty causes uncertainty in the
transient response?

4.1s 1t spatially uniform? If not what shape does it
take?
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Comparison of TCR Ranges
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Using standard deviation instead of range gives a
e substantively similar plot
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Relative Size

TCR Range of 1.8-2.3K from Ensemble
25% of ensemble mean signal.

Smaller than range from atmosphere model
uncertainties (Collins et al., 2006).

Smaller than multi-model range.

Smaller than scenario uncertainty.

A Range after 80yrs of 1.9K 1n HadCM3 for SRES
scenar1os (Johns et al., 2003)
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RGIETAGINIVGR

Ocean ensemble 1s created with maximum and
minimum perturbations only.

Larger ensembles are more likely to find outliers.
However ensemble 1s only 7 members.

Comparison of variances with f-tests confirms
results at 5% level.

A Ocean Model Uncertainty 1s relatively small
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Questions 11

2. How important 1s this uncertainty?
A Small in global mean.
3. What are the mechanisms by which the ocean

model uncertainty causes uncertainty in the
transient response”?

4.1s 1t spatially uniform? If not what shape does it
take?
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Global Energy Balance

\ /

Increase in CO; causes an
increase in the net flux entering
the earth system

The properties of the earth
respond to restore the system to
balance

Imbalance = Forcing - Response
F = Q - H
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2 Climate Diagnostics

Primarily response of earth system 1s a change 1n
the global mean temperature, AT.

Observed that both imbalance and response are

linearly proportional to AT (Gregory and Mitchell,
1997)

KAT = Q - vyAT
v 1s the climate feedback parameter (3.75/climate
sensitivity)

K 1s the ocean heat uptake efficiency
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Diagnosing these parameters

Take 20 year averages and remove control mean
(like the TCR).

AT =TCR, Q=3.75 Wm and F 1s a model
diagnostic.

TCRi = Q/(xi+ i)
TCRsm + 0TCR — Q/ (KSTD + 0K + YSsTD T S'Y)
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Relative Eftects
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Feedbacks or Ocean rates?

Changes 1n y are most important (= equilibrium
feedback strengths).

Changes 1n « (strength of ocean heat uptake) are
less important in determining the transient
temperature response.

A Largest effect of ocean model uncertainty 1s

through feedback strengths (parameterised in the
atmosphere model) rather than the ocean physics.

Compensation between the two diagnostics 1s not
the reason for the small effect of ocean model

uncertainty.
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Questions 11

2. How important 1s this uncertainty?

A Small in global mean.

3. What are the mechanisms by which the ocean
model uncertainty causes uncertainty in the
transient response?

A Primarily changes in climate sensitivity, but also

changes in ocean heat uptake efficiency.
Compensation does not explain its small magnitude.

4.Is 1t spatially uniform? If not what shape does it
take?
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Uniform Spatial Pattern?

Range in SST Signal in Ocean Ensemble
(only shown when greater than natural variability)

Percentage of Ensemble Mean Climate Change Signal

I

10 25 50

Ensemble spread in SST signal, as a percentage of

- the ensemble mean signal.
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Questions 11

3. What are the mechanisms by which the ocean
model uncertainty causes uncertainty in the
transient response?

A Primarily changes in climate sensitivity, but also
changes in ocean heat uptake efficiency.
Compensation does not explain 1ts small magnitude.

4.1s 1t spatially uniform? If not what shape does it
take?

A No.
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What Shape?

Range in Control from Ocean Model Uncertainty,
(only shown when greater than natural variability)

SST range in °C

L .

1

- Ensemble spread in SST 1n the control simulation
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Questions 11

3. What are the mechanisms by which the ocean
model uncertainty causes uncertainty in the
transient response”?

A Primarily changes in climate sensitivity, but also
changes in ocean heat uptake efficiency.
Compensation does not explain 1ts small magnitude.

4.Is 1t spatially uniform? If not what shape does it
take?

A No. The same pattern as the uncertainty in the
control climate.
X
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Questions 111

5. Are there changes 1in the Thermohaline
Circulation?

6.Is the small global mean temperature spread due to
regional compensation?

7. Climate sensitivity and ocean heat uptake
efficiency are global mean diagnostics - what
physical processes are behind the spread in them?
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Ensemble Mean Atlantic Changes
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Thermohaline Circ.
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Thermohaline Circ.

I
)

=
)
5
>
=
=
o |
=
o
=
Q
-
.S
O
a2

Meridional Overturning, Sv

L
-
-

The same figure with the ensemble mean + 2
sa» standard deviations of natural variability overplotted.
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THC Spread

There 1s ensemble spread 1in the magnitude
reduction 1n the thermohaline circulation due to an

increase 1n CO2.

The spread 1s hard to differentiate from natural
variability.
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Conclusions

Ocean model uncertainty has a detectable effect on
the transient climate response.

This effect 1s small compared to other
uncertainties.

Changes to climate sensitivity are more important
in determining these effects than changes to the
vertical heat transfers in the ocean 1tself.
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Conclusions II

The spatial patterns of climate change are not
1dentical throughout the ensemble (unlike with
forcing uncertainty).

Significant differences in the response where there
are differences 1n the control climate.

Thermohaline signals hard to detect, but all
reductions seem similar.
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Future Work

Two unanswered questions:

A Is the small global mean response due to spatial
compensation?

A What are the physical process behind changes in climate
sensitivity and ocean heat uptake efficiency
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