IMPLICATIONS OF THE VAST
PLIOCENE WARMPOOL
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When is the early Pliocene
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Why care about the early Pliocene?

Natural global warming stabilization experiment

Previous Estimates of CO,
Roughly 420ppm (Raymo et al. 1996)
280-370ppm (van der Burgh et al. 1993)
280-300ppm (Pagani et al. 1999)

Current bels’r guess: 380 125 ppm
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What else do we know about the early
Pliocene?

Landmasses approximately same as today
New Guinea and Halmahera moving North (c. 5Ma)
Isthmus of Panama Closing ( c. 5Ma)
Ice Volume /Sea level
Sea Level roughly 25m higher
Reduced Greenland ice sheet
Reductions in lce on Antarctica
Vegetation
Forests on coast of Greenland

Reduced amount of Tundra

Sea Surface Temperature data



- Early Pliocene SSTs
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Wara’s Permanent El Nino
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California Margin
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Reduced Difference between Equator

and Californian Margin
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A vast warmpool?
—

Annual Mean Sea Surface Temperature (deg C)
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Could this just be Global Warming?
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Present Day with Pliocene Obs.
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- Climate impacts of Vast Warmpool

Use atmosphere model to simulate response to
SST pattern



AGCM requires more than 3 SSTs

Compile PaleoSST observations to get SST profile
Use only Mg/Ca and Alkenone SSTs

Unfortunately few in Pacific so correct by removing 4°C
from North Atlantic records. Assumes THC exists. Data
at 50°N fits this adjustment.

Some records don’t extend all the way back to 4.2 Maq,
but only to 3Ma

So add further 2°C, as most SST records show this much
warming.



Reconstructed SST profile
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1 Extend zonally across Pacific
o Shift meridionally for seasonal cycle.



Expansion of Warmpool
=

(a) Present-Day SSTs (b) Early Pliocene SSTs




Pressure (mb)

Woalker Circulation Collapses
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Hadley Circulation Weakens
N

Present Day Pliocene
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Precipitation Changes

Present Day
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- Sustainable Climate?¢

aModels do not simulate vast warmpool

aState appears to have existed for ~1Ma



Pliocene Paradox - Atmosphere
—

Pliocene Heat Transports

Change from Present-day
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Pliocene Paradox - Ocean
N

Idealised Tropical SSTs Ocean Heat Transport
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- Increased Vertical Mixing

Maybe the Pliocene had a different mixing
regime from the present-day?



10x Vertical Diff. throughout Tropics
—

Sea Surface Temperature (10x, ctl)
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Deeper Equator
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Additional Ocean Heat Transport
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- Tropical Cyclones

Could Tropical Cyclone changes provide this
additional mixing?



Tropical Cyclones

Roughly 90 storms occur every year.
Strong winds on scales smaller than GCMs

Known to be controlled by SSTs and vertical wind
shear among other things

Future behavior still uncertain as residual between
wind shear and SSTs increases

In Pliocene was both warmer and had weaker wind

shear



Statistical Downscaling Model

Create realization of large scale atmospheric flow

Embed weak vortex and use hurricane track
prediction model to work out where it would go

Use 2D CHIPS model to determine intensity along
track

Repeat until have at least 10,000 synthetic tropical
cyclones.

Most tracks don’t even reach tropical depression status



Synthetic Tracks

Pliocene
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Power Dissipation Index

Defined by Emanuel
(2005) as

PDI EJ Vinaxd!
0

mm Had|SST, 6°%=18° N, 20°=60° W 1
m = Atlantic PDI

Increasing in recent
years in the N. Atlantic

Related to turbulent

mixing in the ocean
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Useful diagnostic to

look at spatial
distribution of TCs



PDI Patterns
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Present Day Hurricane Power Dissipation Index

Average Annual PDI
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Trajectories within Subtropical Cell
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Present-Day Subduction Pathways
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Present Day Hurricane Power Dissipation Index
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Pliocene Subduction Pathways
N

Pliocene Hurricane Power Dissipation Index
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Tropical Cyclone Feedback
=

Increased TC
Activity in
Central Pacific

Increased
Mixing on the
Water Pathway

Warming of
Cold Tongue

0 This feedback should exist in theory

7 Need a magnitude to determine if important in practice



Determining impact of closed windows

Similar set up to
previous experiment,
but with mixing only

enhanced between
10° to 40°

This is unrealistically
large, but guarantees
that the windows in the
subtropical pathways
are closed.
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Including “tropical cyclone™ mixing
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Impact on the thermocline
—

Tropical Cyclones Mixing Mixing Everywhere
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Changes in Heat Transports

Extra mixing throughout Tropics

(from earlier)
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Conclusions

The Tropical Pacific had a different SST distribution
in the early Pliocene than at Present.

One vast warmpool stretching from Indonesia towards
California

This vast warmpool created a sluggish atmospheric
circulation.

Sustaining the warmpool needs an additional
physical process included in climate models

Tropical cyclone feedbacks could be that process

This feedback could be important in future
projections



