Relative Parameter Certainty in Ocean Models for Climate Prediction

Chris Brierley, Alan Thorpe, Mat Collins

Talk Outline

- ▲ Introduction to Uncertainty
- An ensemble to sample ocean model uncertainty
- ▲ Transient Climate Response of the Ensemble
- ▲ Ocean Heat Uptake
- ▲ Conclusions

Sources of Uncertainty

- ▲ Initial Condition Errors
 - *▶* we cannot observe the climate state exactly
 - ▲ errors caused assimilating data
- ▲ Forcing Errors
 - **▲** Cannot predict Volcanoes
 - ▲ Myriad of Economic/Social factors involved in predicting gas emissions
- ▲ Model Errors
 - ▲ Structural parameterisation scheme, grid, etc...
 - ► Parameter Which numbers to use in the parameterisation schemes?

What do I need to investigate?

- ▲ Need an ensemble that covers a spread of parameter values.
- Only oceans changed, multi-model change atmospheres too.
- Create a perturbed ocean physics ensemble
- Hundreds of possible perturbations
- A Restrict analysis to those with large climate effects
- ▲ Determined top 3 parameters

Isopycnal diffusion

line of constant density

- ▲ Parameterises effects of Mesoscale Eddies
- ▲ Mainly horizontal
- ▲ Vertical transfers possible at high latitudes
- ▲ Largest in Southern Ocean

Vertical Diffusion

- ▲ Small compared to isopycnal diffusion.
- A However all mixing is small vertically, due to stratification.
- ▲ Diffusivity varies with depth.

Mixed Layer

- ▲ Parameterise the mixed layer by working out MLD and then mixing above (Kraus-Turner).
- ▲ Mixed Layer Depth is when turbulent energy runs out.
- Scheme has 2 parameters fraction and a decay length

Experiment

- ▲ 500 years of spinup
- ▲80 year control run
- ▲80 year with CO2 increasing at 1% per year (CMIP)

Effect on Global Mean Temperature

Transient Climate Response (TCR)

▲ Difference between 20 year average global mean 1.5m air temperature centred about doubling of CO2 and the same period in the control run.

Comparison of TCR

Possible Reasons

- ▲ Ensemble does not represent uncertainty
 - ▲ Ranges are too conservative
 - ▲ Wrong parameters chosen
 - ▲ Single perturbations hide non-linearities
- Compensation is occurring:
 - ▲ between different regions
 - ▲ between different warming processes
- ▲ Ocean Model Uncertainty is just smaller!

Testing these possibilities

Only if can discount all other options can we say that the uncertainty is small.

▲ Start with reconsulting experts...

▲....can't justify extending any ranges.

Possible Reasons

- ▲ Ensemble does not represent uncertainty
 - **▲**Ranges are too conservative
 - ▲ Wrong parameters chosen
 - ▲ Single perturbations hide non-linearities
- ▲ Compensation is occurring:
 - ▲ between different regions
 - ▲ between different warming processes
- ▲ Ocean Model Uncertainty is small!

Important Processes in Heat Uptake

Possible Reasons

- ▲ Ensemble does not represent uncertainty
 - *Ranges are too conservative

 - ▲ Single perturbations hide non-linearities
- ▲ Compensation is occurring:
 - ▲ between different regions
 - ▲ between different warming processes
- ▲ Ocean Model Uncertainty is small!

Single Perturbations hide nonlinearities

- ▲ Previous studies show effects of perturbations don't just add up.
- ▲ Only way to test would be to run another ensemble with multiple parameter perturbations.
- ▲ Being investigated further by climateprediction.net (results from spinups don't show signs of any large non-linearity, but this is only for constant CO₂)

Possible Reasons

- ▲ Ensemble does not represent uncertainty
 - Ranges are too conservative—
 - *►Wrong parameters chosen*
 - Single perturbations hide non-linearities
- ▲ Compensation is occurring:

 - ▲ between different regions
- ▲ Ocean Model Uncertainty is small!

Conceptual Model of Temperature Response

$$F = Q - \Lambda \Delta T$$

F is the flux imbalance at any time

 ΔT is the change in global mean temperature

Q is the imposed radiative forcing

Λ is the climate feedback parameter, related to the climate sensitivity by:

$$\Lambda = Q_{2xCO_2}/\Delta T^{eq}_{2xCO_2}$$

Climate Sensitivity Changes

- ▲ Main feedbacks:
 - *▶ Blackbody,*
 - **►** Water Vapour,
 - *▲ Ice-Albedo,*
- ▲ Do not expect ocean parameters to have large effect on any of these.
- ► Ensemble has a range of 2.9 3.6 K
- ► Small compared to 1.5-4.5K of TAR and 2-8K of climateprediction.net

Comparison to other effective climate sensitivities

Small range of Climate Sensivities.

Effective Heat Capacity.....

$$F = Q - \Lambda \Delta T$$

A Ocean is slow to warm due to its high heat capacity:.

$$C_{eff} d\Delta T/dt = F$$

- ▲ Ensemble gives range equivalent to 230-300m of water.
- ▲ Observations gives 25-490m (from Levitus and HadCRUT Frame et al).

Effective Heat Capacity 2

▲ Is it a fair assumption that $F \propto d\Delta T/dt$?

Ocean Heat Uptake Efficiency

The heat flux into the ocean is proportional to the temperature change.

Ocean Heat Uptake Efficiency

▲ The heat flux into the ocean is proportional to the temperature change.

$$\kappa \Delta T = Q - \Lambda \Delta T$$

- *A* Range of 0.58-0.88 Wm⁻²K⁻¹ from CMIP.
- ▲ Range of 0.54- $0.73~Wm^{-2}K^{-1}$ from QUMP Atmosphere ensemble.

Hypothetical TCRs

	All Variations of A and K		With standard model's K
Ocean	1.8-2.3	2.0-2.2	1.9-2.3
Atmosphere	1.7-2.8	2.0-2.2	1.6-2.6

- A Can use κ and Λ to compare importance of these ranges.
- Changes in Climate sensitivity more important!

Depth Variation

Some compensation, esp. with green (High Vertical Diffusion)

Depth Variation

▲ Some compensation, esp. with green (High Vertical Diffusion)

Atmosphere controlling heat uptake?

- ▲ Perturbations determine at which depth the extra heat is stored.
- ▲ Does this imply a pre-determined amount of extra heat?
- ▲ If the ocean parameters are not fully determining ocean heat uptake, what is?

Regional Compensation left

▲ I haven't covered regional differences.

Conclusions

- An ensemble has been created which samples ocean model uncertainty.
- ▲ Global mean effects on transient climate change investigated.
- ▲ OMU has a small effect on TCR.
- ▲ Primarily due to changes in climate sensitivity rather than the rate of ocean heat uptake.
- ▲ Regional effects need further investigation.

