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When is the early Pliocene
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Why care about the early Pliocene?

7 Natural global warming stabilization experiment
Pliocene CO, was 300 — 400 ppm
Present-Day is roughly 390 ppm
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What else do we know about the early
Pliocene?

Landmasses approximately same as today
New Guinea and Halmahera moving North (c. 5Ma)
Isthmus of Panama Closing ( c. 5Ma)
Ice Volume /Sea level
Sea Level roughly 25m higher
Reduced Greenland ice sheet
Reductions in lce on Antarctica
Vegetation
Forests on coast of Greenland

Reduced amount of Tundra

Sea Surface Temperature data



- Early Pliocene SSTs
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A vast warmpool?
—

Annual Mean Sea Surface Temperature (deg C)
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Could this just be Global Warming?
=

Present Day with Pliocene Obs.
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- Climate impacts of Vast Warmpool

Use atmosphere model to simulate response to
SST pattern



AGCM requires more than 3 SSTs

Compile PaleoSST observations to get SST profile
Use only Mg/Ca and Alkenone SSTs

Unfortunately few in Pacific so correct by removing 4°C
from North Atlantic records. Assumes THC exists. Data
at 50°N fits this adjustment.

Some records don’t extend all the way back to 4.2 Maq,
but only to 3Ma

So add further 2°C, as most SST records show this much
warming.



Reconstructed SST profile
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1 Extend zonally across Pacific
o Shift meridionally for seasonal cycle.



Expansion of Warmpool
=

(a) Present-Day SSTs (b) Early Pliocene SSTs




Pressure (mb)

Woalker Circulation Collapses
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Hadley Circulation Weakens

(wy) wbieH

Pliocene

.1(_J|_ _ —

L= = = =
uw = uw = m
— o o o0

500 =

700 =

850
1000

(qui) einssaid
(wy) wbieH

sent Day

Pre

(qui) ainssaid

6ON

30N

10

308

605

60OM
Zonal Mean Streamfunction (10 kg/s)
0

30N
-8 -6

-10

308

B80S

Brierley et al., Science. 2009



Coupled Modeling of Pliocene

Sea Surface Temperature (10x, ctl)
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Early Pliocene Summary

Early Pliocene boundary conditions similar to
anthropocene.

Observations of tropical climate differ from
projections, with a vast warmpool across the Pacific

Sluggish atmospheric circulation.

Models do not simulate vast warmpool, yet the
climate state appears to have existed for ~1Ma

Additional mixing may help sustain a Pliocene state



What would the tropical cyclone distribution have

looked like in the Early Pliocene?



Tropical Cyclone Basics
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Future behavior of tropical cyclones

Known to be controlled by SSTs and vertical wind
shear among other things

Future behavior still uncertain as residual between
SST and wind shear increases (at least over N. Atl.)

IPCC AR4 says

>66% chance increase in peak wind and rain intensity

~50% chance decrease in frequency, with regional
variations

Pliocene was both warmer with weaker wind shear



Statistical Downscaling Model

Create realization of large scale atmospheric flow

Embed weak vortex and use hurricane track
prediction model to work out where it would go

Use 2D CHIPS model to determine intensity along
track

Repeat until have at least 10,000 synthetic tropical
cyclones.

Most tracks don’t even reach tropical depression status



Synthetic Tracks for Present-day
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Synthetic Tracks for Pliocene
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Power Dissipation Index

Defined by Emanuel
(2005) as

PDI EJ Vinaxd!
0
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Increasing in recent
years in the N. Atlantic

Related to turbulent

mixing in the ocean
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Useful diagnostic to

look at spatial
distribution of TCs



PDI Patterns
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- A climate feedback

Could the changes in the tropical cyclone in the
Pliocene have provided a feedback to keep the
climate in an alternative, warm state?



Trajectories within Subtropical Cell
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Present-Day Subduction Pathways
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Pliocene Subduction Pathways
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Determining impact of closed windows

Background vertical
mixing enhanced by
x10 in top 200m
between 8° to 40°

Possibly excessive, but
guarantees that the
windows in the
subtropical pathways
are closed.

Power Dissipation Index
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Including “tropical cyclone” mixing
—
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Impact on the thermocline

Warming of

subsurface eq.

ocedan.

Deepening of
thermocline.

Suppresion of
interannual

variability.
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Impact of El Nino on Cyclones
—

— El Nifo causes
reduction in
number of
hurricanes (N. Atl.
Storms)

= Increase in
intensity of

typhoons (W.
Pac.), but reduced

amount of
Average change in PDI (in 108 m3s'') between an El Nifo
year and a neutral year, calculated from IBTrACS |C1ndfCI”S




E. Eq. Pac. Warming on Cyclones

Genesis density (storms formed per 2.5° x 2.5°)
40N . .

20N

Warming of the cold
tongue leads to:

0 Formation of more
20S

o 408 1 1 1 1 1
eastern Pacific OE 50E 100E 150E 160W 110W 60W  10W

-0.4 -0.2 0.2 0.4
Track denS|ty (storms per 2. 50 X 2 59)

storms in central and

0 More storms passing
over subtropical

overturning cell

40N
El Nino (~1yr) is much 20N
shorter than STC 0
(~20yrs) so not 20S
i 40S - ' '
expect impact on EEP 160W  110W  6OW  10W
Permanent change OB . _ - - OB

may feedback on EEP

Camargo et al., J. Clim. (2007)



Tropical Cyclone Feedback
=

Increased TC
Activity in
Central Pacific

Increased
Mixing on the
Water Pathway

Warming of
Cold Tongue

0 This feedback should exist in theory

7 Need a magnitude to determine if important in practice



Conclusions

The Tropical Pacific had a different SST distribution
in the early Pliocene than at Present.

One vast warmpool stretching from Indonesia towards
California

This vast warmpool created a sluggish atmospheric
circulation.

Sustaining the warmpool needs an additional
physical process included in climate models

Tropical cyclone feedbacks could be that process

This feedback could be important in future
projections



