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Greater control of AI

Overarching need for greater understanding and control of AI systems:

• Understanding and manipulating representations

• Reliability and verifiability of predictions

• Explainable and Interpretable AI

• Alignment with human judgements



Failures of commonsense knowledge

Source www. reddit. com/ r/ therewasanattempt

www.reddit.com/r/therewasanattempt


Insensitivity to context

Source www. reddit. com/ r/ therewasanattempt

See also reports of bizarre supermarket substitutions (also here)
and even poisonous recipe recommendations.

www.reddit.com/r/therewasanattempt
https://www.theguardian.com/business/2024/mar/16/mushrooms-swapped-for-tampons-among-bizarre-uk-supermarket-substitutions
https://www.theguardian.com/money/2022/feb/19/phish-food-for-fish-fillets-strangest-online-grocery-swaps-revealed?CMP=Share_iOSApp_Other
https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes


Physical impossibilities

Source www. boredpanda. com/ ai-fails/

www.boredpanda.com/ai-fails/


Situational incongruities

Source www.boredpanda.com/ai-fails/

www.boredpanda.com/ai-fails/


Interpretable and Neuro-symbolic systems

Study Objective Notes

Interpretable video
classification1

[JDG+22]

input: video, training data
includes explanation, output:
interpretable activity prediction

Bottleneck layer. Concept
discovery and extraction.
Human study. Rule extrac-
tion from predictions.

Consistency, coher-
ence and transfer2

[SDGR21, SDGR22,
Str23]

Understand and mea-
sure predictive consistency
across instances and tasks.
Improve transfer performance.

Predictions not in isola-
tion. Background knowl-
edge inform us as to how.
Consistency loss measure.

GNNs for inter-
pretable HAR 3

[XBD+24]

Predict human activities from
video, support contextual cues

Context can disambiguate.
Scene object identities pro-
vide context. GNN models
interactions between person
and objects

Repurposing 4

[BDHM21]
Various See Rob’s talk

Work with 1) JV Jeyakumar, R Parac, J Rosen, L Garcia, YH Cheng, DR Echavarria, J Noor, A Russo, L Kaplan, E
Blasch and M Srivastava; 2) H Stromfelt, A Russo and A Garcez; 3) B Xu, A Bikakis, D Onah and A Vlachidis;
and 4) A Bikakis, A Diallo, F D’Asaro, T Hunter and R Miller.



Context sensitive HAR [XBD+24]



Error alignment [XBD+24]

Below are two treemaps of incorrect predictions for cooking
activities with correct prediction “change temperature”:

GNN model without context GNN model with context

Overall, errors are less diverse and semantically more similar to
target class for model with context information.



Structured versus Semi-structured data

c0: oat milk c1: cider vinegar

a0: cream together

c2: creamed
milk and vinegar

c3: vanilla seeds
c4: dairy-
free spread

c5: self-
raising flour

c6: golden
caster sugar

c7: bicarbonate of soda

a1: combine thoroughly

c8: dry mixture

a2: beat together
until smooth

c9: vegan sponge cake mix

a3: bake for 30 minutes

c10: unfinished
vegan sponge cake

c11: strawberry jam c12: icing sugar

a4: fill and dust

c13: vegan
sponge cake
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AI for Science

Study Input Predict Notes

Cognitive
Assessment4

[IAE+19][IAE+20]

Mobile-game
interactions

cognitive function Frequent/repetitive tests.
Clinical interpretation of
features.

Social Identity5

[KRND+21]
Short text social identity /

group membership
Theory alignment.
Style only features.
Experimental study.

AI for Archaeology6

[Sip22][SSDM23]
Pollen / bone
images

species Barriers to acceptance.
CNN architectures.
Robust to OOD data.
Trustworthy/Verifiable.

Engagement for
PWD7 [in progress]

Dreem EEG,
E4 wristband

In-study activity Device signal quality.
Clinical interpretation.
Minimal underlying
signal.

Work with 4) J Intarasirisawat, CS Ang, C Efstratiou and R Page; 5) M Koschate-Reis, E Naserianhanzaei, A
Stuart, A Russo and M Levine; 6) I Sipilä, J Steele and L Martin; and 7) J Huntley, B Xu, E Cheung and CS Ang.



Relevant concerns

• Accuracy is not everything, and must be contextualised.

• Good quality data often scarce.

• Are features interpretable? Are they theoretically plausible?

• Good data handling critical, e.g. avoid information leakage.

• Nuanced relationship between training and validation/test set.

• Is prediction robust to out-of-domain (OOD) data?

• Conduct hypothesis tests and measure effect sizes.

Not just for science workflows!



Thank you for your attention!

Questions?
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[SDGR22] Harald Strömfelt, Luke Dickens, Artur Garcez, and
Alessandra Russo, Formalizing Consistency and
Coherence of Representation Learning, Adv. Neural
Inf. Process. Syst. 35 (2022), 6873–6885.

[Sip22] Ilkka Matti Veikko Sipilä, Addressing Subjectivity in
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CoDEX Architecture [JDG+22]



Consistency, coherence and transfer



Consistency, coherence and transfer

ϕ(ψ(r ), ψ( ))
• ψ embeds input to universal space.

• Function ϕr approximates relation r.

• Here r ∈ {isGreater, isEqual, isLess, isSuccessor, isPredecessor}
• Each relation exhibits individual consistency, e.g.

∀X,Y, Z : isGreater(X,Y ) ∧ isGreater(Y,Z) → isGreater(X,Y )

• Can also define consistencies across relations, e.g.

∀X,Y : ¬isLess(X,Y ) ∧ ¬isEqual(X,Y ) → isGreater(X,Y )

• Consistencies preserved even as domain changes.
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Example sheep/goat bones
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