Repurposing of Resources: from Everyday
Problem Solving to Crisis Management

A Leverhulme-funded research project in the Dept. of
Computer Science and the Dept. of Information Studies at UCL

Anthony Hunter, Antonis Bikakis, Aissatou Diallo, Luke
Dickens and Rob Miller

Duration: March 2022 - March 2025

{ K]IDS}

Knowedge Information & Data Science

Motivation: repurposing is everywhere

The human ability to repurpose objects and processes is universal:

» in everyday situations, e.g. finding substitutes for missing
cooking ingredients, or for unavailable tools for DIY.

P in professional life, e.g. clinicians often repurpose medicines
off-license
» in addressing societal challenges, e.g. finding new roles for
waste products
P in critical, unprecedented situations needing crisis
management, e.g. to make shelter, distribute food, etc after
natural disasters
Despite the importance of repurposing, the topic has received little
academic attention.

Project aims

Develop a general theory or model of repurposing
» A classification scheme of types of repurposing
> A set of properties for characterising each type
» Methods for modelling underlying mechanisms for each type
Develop computational Al-based tools for repurposing
» Combination of methods and techniques from statistical and
symbolic Al
» Machine Learning, Natural Language Processing, Word
Embeddings, Ontologies, Knowledge Graphs, Commonsense
Reasoning, Argumentation
Undertake case studies to evaluate theory and tools

» Cooking, DIY, Recycling, Crisis management, Helping
disadvantage people

Graphical formalism for human processes and substitution
within them

For human processes, such as cooking recipes, that combine and
transform resources into products and by-products:
P> Represent as a bipartite directed graph with two node types:
comestibles and actions
» Comestibles are input ingredients, intermediate items,
products and by-products.
» Actions take one or more input comestibles, and output one
or more transformed comestibles
» Both comestibles and actions might need to be subtituted for
various reasons or situations

Example recipe graph

cl: uncooked

(c0: boiling salted water) —

a0: boil for 10 min
c2: undrained c3: cold po-
cooked spaghetti modoro sauce

c6: pasta -
[] (c5. heated pasata sauce)

c7: drained
cooked spaghetti

!

a3: pour
into bowl

c8: spaghetti in bowl

a4: mix in bowl

(c9: spaghetti pomodoro)

Some Formal Definitions

Definition

A recipe graph is a tuple (C, A, E) where: (1)) ¢ C CC and

) c ACA; (2) E is a set of arcs that is a subset of
(CxA)U(Ax C); (3) (CUA,E) is a weakly connected directed
acyclic graph; (4) for all n, € A, there are arcs (n¢, n,) and (n,, nl.)
in E; and (5) for all nc € C, if (na, n¢), (n}, nc) € E, then n, = nl,.

Definition

A recipe R is a tuple (C, A, E, F) where (C, A, E) is a recipe
graph and F : CUA — Tc U7, is a typing function that assigns a
comestible (respectively action) type to each comestible
(respectively action) node in C (respectively A) s.t. for all

n,n" € C,if F(n) ~ F(n'), then n = n'. For a recipe

R =(C,A, E,F), we also define the following notation:

Graph(R) = (C, A, E), Type(R) = F, Nodes(R) = CUA, and
Arcs(R) = E.

The ASP code for a recipe graph

1 % C contains only comestible nodes:

2 :- in(c_nodes(RG),X), not is_c_node(X), recipe_graph(RG).
3 % A contains only action nodes:

4 :- in(a_nodes(RG),X), not is_a_node(X), recipe_graph(RG).
5 % E contains only arcs:

6 :- in(arcs(RG),X), not is_arc(X), recipe_graph(RG).

7

8 % Recipe graphs must have non empty comestible, action and arc sets
9 :- empty(c_nodes(RG)), recipe_graph(RG).

10 :- empty(a_nodes(RG)), recipe_graph(RG).

11 :- empty(arcs(RG)), recipe_graph(RG).

12

13 % Recipe graphs must not be cyclic

14 :- cyclic(RG), recipe_graph(RG).

15 % Recipe graphs must be connected

16 :- -connected(RG), recipe_graph(RG).

17 % Action nodes in recipe graphs must be properly connected
18 % (in and out going edges to comestible nodes)
19 :- -a_node_properly_connected(RG,a(N)), recipe_graph(RG).

21 % for each comestible node in a recipe graph, there is at

22 % most one incoming arc:

23 :- in(arcs(RG),arc(a(N1),c(N))), in(arcs(RG),arc(a(N2),c(N))),
24 Ni != N2, recipe_graph(RG).

The ASP code for a recipe

1 % the 3rd argument of type_of is a function of the first two arguments:
2 % range of function is the c_nodes and a_nodes of corresponding graph
3 1 { type_of (TF,c(N),Ctype) : comestible_type(Ctype) } 1 :-

4 recipe (RG,TF), in(c_nodes(RG),c(N)).

5 1 { type_of (TF,a(N),Atype) : action_type(Atype) } 1 :-

6 recipe (RG,TF), in(a_nodes(RG),a(N)).

7

8 for each recipe, type_of is restricted to its nodes only:

9 :- type_of (TF,N,T), recipe(RG,TF), not in(nodes(RG),N).

10

11 % all the comestible node types in a recipe must be in different type paths:
12 :- recipe(RG,TF), in(c_nodes(RG),N1), in(c_nodes(RG),N2), N1 != N2,

13 type_of (TF,N1,T1), type_of (TF,N2,T2), same_type_path(T1,T2).

Type substitution

(c0: boiling salted water)(cl: uncooked fusilli)

a0: boil for 10 min

c2: undrained c3: cold po-
cooked fusilli modoro sauce

(c7: drained cooked fusilli) (cS: heated pasata sauce)

a3: pour
into bowl

c8: fusilli in bowl

a4: mix in bowl

(9: fusilli pomodoro)

Structural substitution

(c0: boiling salted water) (cl: uncooked spaghetti)
! .
10: jar of
[a0: boil for 10 min | I S e
' bolognese sauce
cooked spaghetti 1 m
1
7 . '
" 5: heated f
'
o bolognese sauce "
c6: pasta c7: cooked
water drained spaghetti

a3: pour in bowl

What the ASP implementation can do

The

v

code currently allows us to:

define type hierarchies of actions and comestibles
represent a corpus of given recipes

extract a collection of acceptability tuples from the given
recipes

test the validity of candidate recipes with respect to the
acceptability tuples

suggest type substitutions for recipes, using information in
the type hierarchies
given a primary substitution within a recipe, find a

corresponding set of secondary substitutions that will
re-validate the recipe at minimal cost

Other Ongoing Work Within The Project

» PizzaCommonSense - a crowdsourcing annotated corpus of
recipes for implicit intermediate commestibles

» Step by-step reasoning framework and associated prompt
engineering for improved LLM output

» Commonsense reasoning framework for substitution, with
improved recipe similarity measures, and mitigation capability

» Crowdsourcing crisis management responses to interrogate
reasoning capabilities of LLMs

> RecipeAnalysis python library and database - extracting
knowledge from recipe datasets to build structured
representations at large scale

> recipe2graph unsupervised graph extraction from text recipes

Crowdsourcing crisis management responses

@ N\
Context: This situation depicts a roadway with vehicles
driving by a significant fire. The fire appears to be burning
intensely, emitting bright flames and a lot of smoke. The
scene looks like it might be taking place near a wooded or
residential area, as trees and structures are visible in the
\vicinity.)

~N

Missing resource:
clean air

(Problem: heat and smoke causing
an inhalation hazard to people in the

area
- J

s A
Question: If a wildfire occurs near a highway, what
immediate action is necessary to protect people from

inhaling smoke?
. J

s)
Answer: close roads going into the area to prevent access
and mobilize firefighters
(.

(Explanation: this reduces the number of people impacted\
by smoke inhalation by removing them from the hazard
\and removes hazard itself.

