
Repurposing of Resources: from Everyday
Problem Solving to Crisis Management

A Leverhulme-funded research project in the Dept. of
Computer Science and the Dept. of Information Studies at UCL

Anthony Hunter, Antonis Bikakis, Aissatou Diallo, Luke
Dickens and Rob Miller

Duration: March 2022 - March 2025



Motivation: repurposing is everywhere

The human ability to repurpose objects and processes is universal:

▶ in everyday situations, e.g. finding substitutes for missing
cooking ingredients, or for unavailable tools for DIY.

▶ in professional life, e.g. clinicians often repurpose medicines
off-license

▶ in addressing societal challenges, e.g. finding new roles for
waste products

▶ in critical, unprecedented situations needing crisis
management, e.g. to make shelter, distribute food, etc after
natural disasters

Despite the importance of repurposing, the topic has received little
academic attention.



Project aims

Develop a general theory or model of repurposing

▶ A classification scheme of types of repurposing

▶ A set of properties for characterising each type

▶ Methods for modelling underlying mechanisms for each type

Develop computational AI-based tools for repurposing

▶ Combination of methods and techniques from statistical and
symbolic AI

▶ Machine Learning, Natural Language Processing, Word
Embeddings, Ontologies, Knowledge Graphs, Commonsense
Reasoning, Argumentation

Undertake case studies to evaluate theory and tools

▶ Cooking, DIY, Recycling, Crisis management, Helping
disadvantage people



Graphical formalism for human processes and substitution
within them

For human processes, such as cooking recipes, that combine and
transform resources into products and by-products:

▶ Represent as a bipartite directed graph with two node types:
comestibles and actions

▶ Comestibles are input ingredients, intermediate items,
products and by-products.

▶ Actions take one or more input comestibles, and output one
or more transformed comestibles

▶ Both comestibles and actions might need to be subtituted for
various reasons or situations



Example recipe graph

c0: boiling salted water
c1: uncooked
spaghetti

a0: boil for 10 min

c2: undrained
cooked spaghetti

c3: cold po-
modoro sauce

c4: fried onion

a1: mix and heat

c5: heated pasata sauce

a2: drain

c6: pasta
water

c7: drained
cooked spaghetti

a3: pour
into bowl

c8: spaghetti in bowl

a4: mix in bowl

c9: spaghetti pomodoro



Some Formal Definitions

Definition
A recipe graph is a tuple (C ,A,E ) where: (1) ∅ ⊂ C ⊆ C and
∅ ⊂ A ⊆ A; (2) E is a set of arcs that is a subset of
(C × A) ∪ (A× C ); (3) (C ∪ A,E ) is a weakly connected directed
acyclic graph; (4) for all na ∈ A, there are arcs (nc , na) and (na, n

′
c)

in E ; and (5) for all nc ∈ C , if (na, nc), (n
′
a, nc) ∈ E , then na = n′a.

Definition
A recipe R is a tuple (C ,A,E ,F ) where (C ,A,E ) is a recipe
graph and F : C ∪A → TC ∪ TA is a typing function that assigns a
comestible (respectively action) type to each comestible
(respectively action) node in C (respectively A) s.t. for all
n, n′ ∈ C , if F (n) ≃ F (n′), then n = n′. For a recipe
R = (C ,A,E ,F ), we also define the following notation:
Graph(R) = (C ,A,E ), Type(R) = F , Nodes(R) = C ∪ A, and
Arcs(R) = E .



The ASP code for a recipe graph

1 % C contains only comestible nodes:

2 :- in(c_nodes(RG),X), not is_c_node(X), recipe_graph(RG).

3 % A contains only action nodes:

4 :- in(a_nodes(RG),X), not is_a_node(X), recipe_graph(RG).

5 % E contains only arcs:

6 :- in(arcs(RG),X), not is_arc(X), recipe_graph(RG).

7
8 % Recipe graphs must have non empty comestible , action and arc sets

9 :- empty(c_nodes(RG)), recipe_graph(RG).

10 :- empty(a_nodes(RG)), recipe_graph(RG).

11 :- empty(arcs(RG)), recipe_graph(RG).

12
13 % Recipe graphs must not be cyclic

14 :- cyclic(RG), recipe_graph(RG).

15 % Recipe graphs must be connected

16 :- -connected(RG), recipe_graph(RG).

17 % Action nodes in recipe graphs must be properly connected

18 % (in and out going edges to comestible nodes)

19 :- -a_node_properly_connected(RG,a(N)), recipe_graph(RG).

20
21 % for each comestible node in a recipe graph , there is at

22 % most one incoming arc:

23 :- in(arcs(RG),arc(a(N1),c(N))), in(arcs(RG),arc(a(N2),c(N))),

24 N1 != N2 , recipe_graph(RG).



The ASP code for a recipe

1 % the 3rd argument of type_of is a function of the first two arguments:

2 % range of function is the c_nodes and a_nodes of corresponding graph

3 1 { type_of(TF ,c(N),Ctype) : comestible_type(Ctype) } 1 :-

4 recipe(RG,TF), in(c_nodes(RG),c(N)).

5 1 { type_of(TF ,a(N),Atype) : action_type(Atype) } 1 :-

6 recipe(RG,TF), in(a_nodes(RG),a(N)).

7
8 % for each recipe , type_of is restricted to its nodes only:

9 :- type_of(TF,N,T), recipe(RG ,TF), not in(nodes(RG),N).

10
11 % all the comestible node types in a recipe must be in different type paths:

12 :- recipe(RG ,TF), in(c_nodes(RG),N1), in(c_nodes(RG),N2), N1 != N2 ,

13 type_of(TF,N1,T1), type_of(TF ,N2,T2), same_type_path(T1 ,T2).



Type substitution
c0: boiling salted water c1: uncooked fusilli

a0: boil for 10 min

c2: undrained
cooked fusilli

c3: cold po-
modoro sauce

c4: fried onion

a1: mix and heat

c5: heated pasata sauce

a2: drain

c6: pasta
water

c7: drained cooked fusilli

a3: pour
into bowl

c8: fusilli in bowl

a4: mix in bowl

c9: fusilli pomodoro



Structural substitution

c0: boiling salted water c1: uncooked spaghetti

a0: boil for 10 min

c2: undrained
cooked spaghetti

c10: jar of
bolognese sauce

a1: heat

c5: heated
bolognese sauce

a2: drain

c6: pasta
water

c7: cooked
drained spaghetti

a3: pour in bowl

c8: spaghetti in bowl

a5: mix in bowl

c11: spaghetti bolognese



What the ASP implementation can do

The code currently allows us to:

▶ define type hierarchies of actions and comestibles

▶ represent a corpus of given recipes

▶ extract a collection of acceptability tuples from the given
recipes

▶ test the validity of candidate recipes with respect to the
acceptability tuples

▶ suggest type substitutions for recipes, using information in
the type hierarchies

▶ given a primary substitution within a recipe, find a
corresponding set of secondary substitutions that will
re-validate the recipe at minimal cost



Other Ongoing Work Within The Project

▶ PizzaCommonSense - a crowdsourcing annotated corpus of
recipes for implicit intermediate commestibles

▶ Step by-step reasoning framework and associated prompt
engineering for improved LLM output

▶ Commonsense reasoning framework for substitution, with
improved recipe similarity measures, and mitigation capability

▶ Crowdsourcing crisis management responses to interrogate
reasoning capabilities of LLMs

▶ RecipeAnalysis python library and database - extracting
knowledge from recipe datasets to build structured
representations at large scale

▶ recipe2graph unsupervised graph extraction from text recipes



Crowdsourcing crisis management responses


