The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 00000000000

Barrier methods for minimal submanifolds and the Gibbons–Hawking ansatz

Federico Trinca

University of Oxford

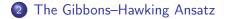
January 21, 2021

The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview



Mean curvature and second fundamental form

Let (M^n, g) be a Riemannian manifold and let Σ^k be a submanifold of M with the induced Riemannian structure.

Definition

Let ∇ be the Levi-Civita connection of (M, g). The second fundamental form of Σ is:

$$A(X, Y) := (\nabla_X Y)^\perp$$

 $II(X, Y) := g(A(X, Y), \nu),$

where X, Y are tangent vectors and ν is a normal vector. The mean curvature H of Σ is the trace of A i.e.

$$H = \sum_{i} A(e_i, e_i), \{e_i\}_i \text{ local orthonormal frame of } \Sigma.$$

Minimal submanifolds

Definition

A submanifold Σ of a Riemannian manifold is minimal if it is a critical point of the volume. By the first variation formula, Σ is minimal if and only if H = 0.

Example

- Geodesics are 1-dimensional minimal submanifolds;
- 2 Plane, catenoid, Enneper surface in \mathbb{R}^3 ;
- The clifford torus in S^3 ;
- Complex submanifolds of Kähler manifolds;
- Calibrated submanifolds are homologically volume minimizing and hence minimal.

The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 00000000000

k-convex functions

Definition

A smooth function $f: M^n \to \mathbb{R}$ is said to be k-convex if

 $\operatorname{Tr}_W \operatorname{Hess} f_x \geq 0 \quad \forall x \in M, \ \forall W \in G(k, T_x M).$

If the inequality is strict, f is strictly k-convex.

We recall the following well-known lemma.

Lemma

Let $f: M^n \to \mathbb{R}$ be a *k*-convex function and let Σ^k be a *k*-dimensional compact minimal submanifold. Then, Σ is contained in the set where *f* is not strict. In particular, $f|_{\Sigma}$ is constant.

Proof: $Tr_{\Sigma} Hess f = \Delta_{\Sigma} f - H(f)$.

The Barrier Method 000●000	The Gibbons–Hawking Ansatz	Barriers in the Gibbons–Hawking Ansatz 00000000000
Examples		

- In \mathbb{R}^n with the Euclidean metric, $f(x) = |x|^2$ is 1-convex.
- In \mathbb{R}^4 with Taub–NUT metric, $f(x) = |x|^2$ is 1-convex.
- (Tsai–Wang 2018) In T^*S^2 with Eguchi–Hanson metric, the square of the distance from the zero section is 1-convex.
- (Tsai-Wang 2018) In T*Sⁿ (T*Cℙⁿ) with Stenzel metric (Calabi metric), the square of the distance from the zero section is 1-convex.
- (Tsai-Wang 2018) In S(S³), Λ²_−(S⁴), Λ²_−(CP²) and S_−(S⁴) with the Bryant-Salamon metrics, the square of the distance from the zero section is 1-convex.

In particular, compact minimal submanifolds are contained in the zero section (minimal).

The Gibbons-Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 00000000000

k-convex boundaries

Let Ω be a domain of M^n .

Definition

We say that $\partial \Omega$ is *k*-convex if

$$\operatorname{Tr}_{W} II_{x} \geq 0 \quad \forall x \in \partial\Omega, \, \forall \, W \in G(k, \, T_{x} \partial\Omega),$$

where *II* is the second fundamental form with respect to the inward pointing normal. If the inequality is strict, $\partial \Omega$ is strictly *k*-convex.

Theorem (Harvey–Lawson 2012)

If $\partial \Omega$ is strictly *k*-convex, there is a k-convex function $f \in C^{\infty}(\overline{\Omega})$ which is strict in a neighbourhood of $\partial \Omega$.

The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz

The barrier method

Corollary

If $\partial \Omega$ is strictly *k*-convex, there are no *k*-dimensional compact minimal submanifolds contained in Ω with a point tangent to $\partial \Omega$.

Remark

n-1 convex \iff inward pointing mean curvature.

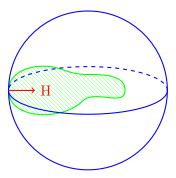
Remark

Let $f: M \to \mathbb{R}$ and let *a* be a regular value. Then, the second fundamental form of $f^{-1}(a)$ is:

$$II = \frac{1}{|\nabla f|} \text{Hess} f$$

Avoidance principle

If k = n - 1, it is just the classical avoidance principle for the mean curvature flow. In higher codimension, we can use the generalized avoidance principle (White '15).



The Gibbons-Hawking ansatz

Let $U \subset \mathbb{R}^3$ open, let $\pi : X \to U$ be a principal S^1 -bundle, let ξ generator of the action and let $\eta \in \Omega^1(X, \mathbb{R})$ connection 1-form i.e. S^1 -invariant and $\eta(\xi) = 1$. Let ϕ be a positive harmonic function on U satisfying:

 $*_{\mathbb{R}^3} d\phi = d\eta$ (Monopole equation).

Then, (X, g) is an hyperkähler manifold constructed via the Gibbons-Hawking ansatz,

$$g := \phi g_{\mathbb{R}^3} + \phi^{-1} \eta^2,$$

$$\omega_i := \mathsf{d} x_i \wedge \eta + \phi \mathsf{d} x_j \wedge \mathsf{d} x_k.$$

The	Barrier	Method

The Gibbons–Hawking Ansatz ○●○ Barriers in the Gibbons–Hawking Ansatz 00000000000

Examples

•
$$\phi = \frac{1}{2|x|} \implies$$
 Euclidean space.

•
$$\phi = m + \frac{1}{2|x|} \implies$$
 Taub-NUT space.

•
$$\phi = \frac{1}{2|x-p|} + \frac{1}{2|x+p|} \implies$$
 Eguchi–Hanson space.

•
$$\phi = \sum_{i=1}^{k} \frac{1}{2|x-p_i|} \implies$$
 Multi-Eguchi–Hanson space.

•
$$\phi = m + \sum_{i=1}^{k} \frac{1}{2|x-p_i|} \implies$$
 Multi-Taub-NUT space.

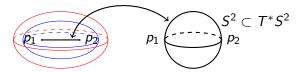


Figure: Equivalence of E-H metric to two center G-H metric.

Circle-invariant minimal submanifolds

Let (X, g) multi-E-H or a multi-T-N space with k singular points denoted by $\{p_i\}_{i=1}^k$.

Using Hsiang and Lawson equivariant argument we have:

- (Lotay–Oliveira 2020) S¹-invariant geodesics in
 (X,g) ⇔ ∇φ = 0. There are k − 1 (unstable) S¹-invariant
 geodesics and are contained in Co({p_i}_i).
- (Lotay-Oliveira 2020) S¹-invariant minimal surfaces in (X, g)
 ⇔ geodesics in Euclidean ℝ³. These are complex curves
 w.r.t a compatible complex structure and contain the class of all compact complex curves (segment connecting singular points).
- (T. 2020) S^1 -invariant minimal hypersurfaces in $(X, g) \iff$ minimal surfaces in $(\mathbb{R}^3, \phi^{1/2}g_{\mathbb{R}^3})$. Only known examples are given by symmetries of the "singular points".

The Gibbons-Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz •0000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Motivation

Question

Are compact minimal submanifolds S^1 -invariant or contained in a S^1 -invariant submanifold?

Remark

- In the Euclidean case and in the Taub-NUT case, it vacously holds.
- Tsai and Wang proved it in the E-H case.
- Compactness is crucial

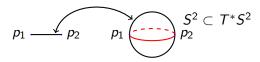


Figure: Karigiannis-Min-Oo construction not circle-invariant.

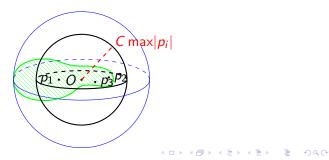
The Gibbons-Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 0000000000

Spherical barriers I

Lemma (T. 2020)

The S^1 -invariant hypersurface in X corresponding to the Euclidean sphere S_r is strictly 3-convex w.r.t the interior of the sphere for all $r > 4/3 \max_i |p_i|_{\mathbb{R}^3}$ and all $r < \min\{|p_i|_{\mathbb{R}^3} : |p_i|_{\mathbb{R}^3} > 0\}$. Moreover, it is strictly 1-convex if $r > C \max_i |p_i|_{\mathbb{R}^3}$, where $C \approx 5.07$ and for r small enough when centered in a p_i .



The Gibbons-Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz

Spherical barriers II

Theorem (T. 2020)

Compact minimal hypersurfaces (submanifolds) need to be contained in $\pi^{-1}(\{|x|_{\mathbb{R}^3} \le 4/3(C) \max_i |p_i|_{\mathbb{R}^3}\})$. Moreover, there are no compact minimal hypersurfaces contained in $\pi^{-1}(\{|x|_{\mathbb{R}^3} < \min\{|p_i|_{\mathbb{R}^3} : |p_i|_{\mathbb{R}^3} > 0\}\})$.

Idea of the proof: Relate IIFF of the hypersurface in X to the IIFF of the projecting surface in \mathbb{R}^3 plus terms involving ϕ and $\nabla_{\mathbb{R}^3}\phi$. Diagonalize the second fundamental form of the surface we obtain a 3 × 3 matrix which is simple enough to study its convexity. Harvey and Lawson barriers let us conclude.

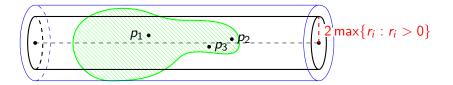
The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 0000000000

Cylindrical barriers I

Lemma (T. 2020)

The S¹-invariant hypersurface in X corresponding to the Euclidean Cylinder $\Sigma_r := \{x_1^2 + x_2^2 = r^2\}$ is strictly 3-convex w.r.t the interior of the cylinder for all $r > 2 \max_i r_i$ and all $r < \min\{r_i : r_i > 0\}$, where $r_i := \sqrt{(p_i)_1^2 + (p_i)_2^2}$.



Cylindrical barriers II

Theorem (T. 2020)

Compact minimal hypersurfaces need to be contained in $\pi^{-1}(\{|x|_{\mathbb{R}^3} \leq 2 \max_i r_i\})$. Moreover, there are no compact minimal hypersurfaces contained in $\pi^{-1}(\{|x|_{\mathbb{R}^3} < \min\{r_i : r_i > 0\}\})$.

Corollary (T. 2020)

There are no compact minimal hypersurfaces in the collinear case.

Idea of the proof: Analogous to the spherical case

Remark

Differently from the spherical case, hypersurfaces corresponding to Euclidean cylinders cannot be 1 or 2 convex.

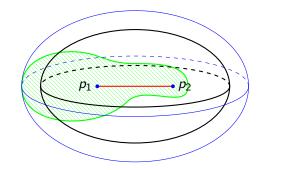
The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 00000000000

Ellipsoidal Barrier I

Lemma (T. 2020)

In the two point case, the S^1 -invariant hypersurface corresponding to the Euclidean ellipsoid Σ_r is strictly 1-convex with respect to the interior of the ellipsoid for all r > 0.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ellipsoidal Barrier II

Theorem (T. 2020)

In the two point case compact minimal submanifolds are contained in the unique S^1 -invariant compact minimal surface.

Corollary

If we have at most two singular points, compact minimal submanifolds are S^1 -invariant, or are contained in one.

Remark

In particular, we can reckon our theorems as extensions to the multi-point case of the classical barrier theorem for the Euclidean (Taub-NUT) space and of Tsai and Wang barrier theorem for the Eguchi-Hanson space.

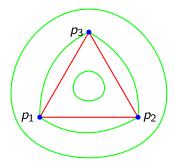
The Gibbons–Hawking Ansatz

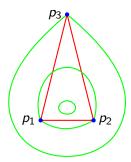
Barriers in the Gibbons–Hawking Ansatz 000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

k-ellipsoidal barriers?

- 1 point \implies spheres are convex
- 2 points \implies ellipsoids are convex
- k points $\stackrel{?}{\Longrightarrow}$ k-ellipsoids are convex





The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz 0000000000000

Local barriers

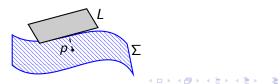
WLOG: we can only consider compact complex surfaces.

Proposition (Tsai and Wang 2018)

Given a compact minimal surface with everywhere positive Gaussian curvature, there exists a neighbourhood in which the square of the distance function is 2-convex.

Proposition (T. 2020)

Given a compact minimal surface with a point of negative Gaussian curvature, every neighborhood of the surface admits a point where the square of the distance function is not 2-convex.

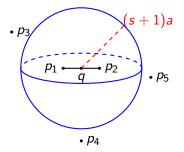


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Existence local barriers

Proposition (Lotay-Oliveira 2020, T. 2020)

If $\{p_i\}_{i=3}^k$ are sufficiently distant, w.r.t the Euclidean metric, from the midpoint of p_1 and p_2 , then the S^1 -invariant minimal surface corresponding to the segment $\overline{p_1p_2}$ has everywhere positive Gaussian curvature.



The Gibbons-Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz ${\tt 0000000000000}$

Non-existence local barriers

Proposition (T. 2020)

If $p_1 = (0, 0, 1)$, $p_2 = (0, 0, -1)$ and $p_3 = (0, \epsilon, 0)$ are the singular points, then there exists an ϵ small enough such that the Gaussian curvature is negative at $\pi^{-1}(0)$.

Conclusion

Hence, we have shown that the natural barriers are not strong enough, not even locally, to prove that compact minimal submanifolds are circle-invariant or contained in one for a generic multi-Eguchi–Hanson or multi-Taub–NUT space.

The Gibbons–Hawking Ansatz

Barriers in the Gibbons–Hawking Ansatz

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Thank You!