Equivariant Cohomology of GKM Manifolds

Teresa Lüdenbach

December 3rd 2020

Teresa Lüdenbach

Equivariant Cohomology of GKM Manifolds

December 3rd 2020 1 / 24

< 1 k

э

Outline

- Hamiltonian actions on symplectic manifolds
- GKM manifolds
- GKM graphs/one-skeleta and why they're interesting
- Equivariant cohomology
- Equivariant cohomology of GKM manifolds/graphs/one-skeleta
- Running example: \mathbb{P}^3
- (Tolman's manifold)

Symplectic Manifolds

Definition

A symplectic manifold is a pair (M, ω) where

- *M* is a smooth manifold with $\dim_{\mathbb{R}}(M) = 2d$
- The symplectic form, ω , is a closed, non-degenerate 2-form.

Theorem (Darboux)

For every point x in (M, ω) , there exists a system of local coordinates $(p_1, \ldots, p_d, q_1, \ldots, q_d)$ centred at x such that $\omega = \omega_0 = \sum dp_i \wedge dq_i$.

Theorem ('Equivariant Darboux')

Let G be a compact Lie group acting on (M, ω) where ω is G-invariant. If $p \in M^G$ is a fixed point of the action then, with respect to a linear action of G on \mathbb{R}^{2d} , there exists a system of G-equivariant local coordinates centred at p in which $\omega = \omega_0$.

Hamiltonian Actions

Definition

Let G be a Lie group and (M, ω) a symplectic manifold. We say the action $\tau : G \times M \to M$ is *Hamiltonian* if there exists a map $\mu : M \to \mathfrak{g}^*$ which satisfies:

1 For each $\xi \in \mathfrak{g}$, writing

$$\iota(\xi_M)\omega=-d\mu^{\xi}.$$

2 The map μ is *G*-equivariant with respect to the action τ on *M* and the coadjoint action Ad^* on \mathfrak{g}^* .

We say μ is a moment map and (M, ω, G, μ) is a Hamiltonian G-space.

< 回 > < 三 > < 三 >

Set-up

Unless otherwise stated

- G will be a commutative, compact, connected, n-dimensional Lie group (i.e. (S¹)ⁿ) with corresponding Lie algebra g.
- *M* is a compact 2*d*-dimensional manifold with a faithful *G*-action $\tau : G \times M \rightarrow M$.

Given $p \in M$, for each element of the isotropy group $g \in G_p$ we restrict the action, $\tau_g : M \to M$, and take the derivative at p to define

$$\rho: G_p \to GL(T_pM), \ \rho(g) = (\mathrm{d}\tau_g)_p$$

called the *isotropy representation*.

Note that if $p \in M^G$ then ρ is an action of the whole group G on T_pM .

We are interested in the weights of this representation.

GKM manifolds

Definition

The manifold *M* is a *GKM manifold* if it satisfies the following:

- The fixed point set M^G is finite.
- **2** There is a G-invariant almost-complex structure on M.
- For each fixed point $p \in M^G$, the weights of the isotropy representation of G on T_pM ,

$$\alpha_{j,p} \in \mathfrak{g}^*, \ j = 1, \dots d$$

are pairwise linearly independent.

What do they look like?

Let $p \in M^G$ be a fixed point. For each weight of the isotropy representation at p,

$$\alpha_{j,p} \in \mathfrak{g}^*, \ j = 1, \dots d$$

let \mathfrak{h}_j denote the annihilator of $\alpha_{j,p}$ in \mathfrak{g} .

Let H_j be the (n-1)-dimensional subtorus of G which has \mathfrak{h}_j as its Lie algebra and X_j the connected component of M^{H_j} containing p.

Proposition

For each j, X_j is diffeomorphic to S^2 and the the action of G on X_j is equivalent to the standard action of the circle G/H_j on S^2 by rotation. In particular X_j has exactly two G-fixed points.

What do they look like?

- The fixed point *p* is the intersection point of *d* embedded *G*-invariant 2-spheres.
- Since the standard action of S¹ on S² has two fixed points, each sphere connects p to another fixed point q_i ∈ M^G, i = 1,...,d.
- Similarly q_i is the intersection point of d embedded G-invariant 2-spheres, one of which will be X_i , the sphere connecting p and q_i .

We use a graph to express this.

The fixed points and spheres are described by the vertices and edges respectively.

It follows that each vertex has degree d - the graph is d-valent.

GKM one-skeleta

Such a graph is called the *GKM graph* of *M* and denoted by Γ . We write E_{Γ} for the set of directed edges.

Definition

The axial function of a GKM graph Γ is a map

$$\alpha: E_{\Gamma} \to \mathfrak{g}^*, \ e \mapsto \alpha_e$$

where α_e is the weight of the isotropy representation of G on $T_{i(e)}X_e$.

We will often use the axial function as a labelling of the directed edges to keep note of the *G* action. Definition We call the pair (Γ, α) the *GKM* manifold *M*. Figure: GKM graph of \mathbb{P}^2

Intuition

Let M be a GKM manifold.

By definition we have a G-invariant almost-complex structure on M, say J. Let g be a compatible G-invariant metric. Using these we define

 $\omega(u,v) = g(Ju,v)$

a G-invariant almost-symplectic structure (a non-degenerate 2-form).

Additionally if we suppose that ω is closed, then (M, ω) is a Hamiltonian *G*-space with moment map μ .

Theorem

 $\mu(M)$ is a convex polytope. The vertices are the images of the fixed points $p \in M^G$ and the primitive vectors along the edges emanating from $\mu(p)$ are the vectors $\alpha_{j,p}$.

The moment graph of M is the one-skeleton of $\mu(M)$ and coincides with the GKM graph of M.

Example

t

Consider ($\mathbb{P}^3, 2\omega_{FS}$) with the standard \mathbb{T}^3 -action

 $(e^{i\theta_1}, e^{i\theta_2}, e^{i\theta_3}) \cdot [z_0 : z_1 : z_2 : z_3] = [z_0 : e^{i\theta_1}z_1 : e^{i\theta_2}z_2 : e^{i\theta_3}z_3].$

The moment map is given by

$$\mu : \mathbb{P}^{3} \to \mathbb{R}^{3}, \ \mu[z_{0} : z_{1} : z_{2} : z_{3}] = \left(\frac{|z_{1}|^{2}}{\sum_{j=0}^{3} |z_{j}|^{2}}, \frac{|z_{2}|^{2}}{\sum_{j=0}^{3} |z_{j}|^{2}}, \frac{|z_{3}|^{2}}{\sum_{j=0}^{3} |z_{j}|^{2}}\right)$$

The four fixed points are mapped to he vertices of the moment polytope:
$$[1:0:0:0] \mapsto (0,0,0)$$
$$[0:0:1:0] \mapsto (0,1,0)$$
$$[0:1:0:0] \mapsto (1,0,0)$$
$$[0:0:0:1] \mapsto (0,0,1)$$

- 34

Example

The closures of the six one-dimensional orbits along with their corresponding isotropy groups:

$$\begin{array}{ll} [*:*:0:0] & \{(1,t,t) \mid t \in S^1\} \\ [*:0:*:0] & \{(t,1,t) \mid t \in S^1\} \\ [*:0:0:*] & \{(t,t,1) \mid t \in S^1\} \\ [0:*:*:0] & \{1\} \times \{1\} \times S^1 \\ [0:*:0:*] & \{1\} \times S^1 \times \{1\} \\ [0:0:*:*] & S^1 \times \{1\} \times \{1\} \end{array}$$

Figure: GKM one-skeleton of \mathbb{P}^3

Properties of one-skeleta: we can define connections, holonomy, geodesic subgraphs, \ldots

Betti numbers

Definition

 $\xi \in \mathfrak{g}$ is a *polarising vector* if $\langle \alpha_e, \xi \rangle \neq 0$ for all directed edges $e \in E_{\Gamma}$.

Directing of each edge e of Γ so that $\langle \alpha_e, \xi \rangle > 0$ gives the ξ -orientation o_{ξ} .

Definition

Let $\xi \in \mathfrak{g}$ be a polarising vector. The *index* σ_p of a vertex p is the number of edges e of the directed graph (Γ, o_{ξ}) which terminate at p.

Definition

The *(combinatorial)* 2*i*-th Betti number of (Γ, o_{ξ}) is the number of vertices of Γ with exactly *i* negative weights;

$$b_{2i}(\Gamma) = \#\{p \in V_{\Gamma} \mid \sigma_p = i\}.$$

Betti numbers

Proposition

The Betti numbers $b_{2i}(\Gamma)$ are combinatorial invariants of the GKM one-skeleton (Γ, α) .

Proposition

If the G-action on (M, ω) is Hamiltonian then $b_{2i}(\Gamma) = b_{2i}(M)$.

Idea of proof.

Use the equivariant Darboux theorem to show that the projection of the moment map

$$\langle \mu, \xi \rangle : M \to \mathbb{R}$$

is perfect Morse function.

Can we also read off the structure of the cohomology ring? What about equivariant cohomology?

Teresa Lüdenbach

Equivariant Cohomology of GKM Manifolds

3

Equivariant Cohomology

Let G be a Lie group and recall the coadjoint representation of G on \mathfrak{g}^* ; for $\alpha \in \mathfrak{g}^*$, $\xi \in \mathfrak{g}$

$$\langle \operatorname{Ad}_{g}^{*} \alpha, \xi \rangle = \langle \alpha, \operatorname{Ad}_{g^{-1}}(\xi) \rangle.$$

The symmetric algebra on \mathfrak{g}^* , $\mathbb{S}(\mathfrak{g}^*)$, may be thought of as the algebra of polynomials on \mathfrak{g} and there is a natural extension of Ad_{g}^* to $\mathbb{S}(\mathfrak{g}^*)$.

We denote by $\mathbb{S}(\mathfrak{g}^*)^G$ the subspace of *G*-invariant polynomials, that is polynomials constant along adjoint orbits in the Lie algebra.

Remark

If G is compact and connected then $\mathbb{S}(\mathfrak{g})^*$ is also a polynomial ring.

Let *G* be compact and act on a manifold *M*, with $(\Omega(M), d)$ the usual de Rham complex of differential forms on *M*. Consider $\mathbb{S}(\mathfrak{g}^*) \otimes \Omega(M)$ with the tensor product representation; *G* acts on $\mathbb{S}(\mathfrak{g}^*)$ by the coadjoint representation and on $\Omega(M)$ by the pullback of forms; $g \cdot \eta = (g^{-1})^* \eta$.

Equivariant Cohomology

Definition

The space of *equivariant differential forms on* M is the subspace of G-invariant objects

 $\Omega_G(M) = (\mathbb{S}(\mathfrak{g}^*) \otimes \Omega(M))^G.$

From an equivariant form

$$\omega = \sum f_i \otimes \eta_i \in \Omega_G(M), \text{ with } f_i \in \mathbb{S}(\mathfrak{g}^*), \ \eta_i \in \Omega(M)$$

we build an associated polynomial map $\omega : \mathfrak{g} \to \Omega(M), \ \xi \mapsto \sum f_i(\xi)\eta_i$. This map is *G*-equivariant, and allows us to think of $\Omega_G(M)$ as the space of *G*-equivariant polynomial maps $\mathfrak{g} \to \Omega(M)$.

Remark

For GKM spaces $G = (S^1)^n$ so the (co)adjoint action is trivial giving

$$\Omega_G(M) = \mathbb{S}(\mathfrak{g}^*) \otimes \Omega(M)^G.$$

The *G*-equivariant forms are polynomials $\omega : \mathfrak{g} \to \Omega(M)^{G}$.

Equivariant Cohomology

Note that $\Omega_G(M)$ is a ring with respect to the wedge product with grading

$$\Omega^m_G(M) = \bigoplus_{2k+l=m} (\mathbb{S}^k(\mathfrak{g}^*) \otimes \Omega^l(M))^G$$

Definition

Let $\{\xi_i\}$ denote a basis of \mathfrak{g} and $\{\mu_i\}$ the dual basis of \mathfrak{g}^* . The *Cartan differential* $d_G : \Omega^m_G(M) \to \Omega^{m+1}_G(M)$ is given by

$$d_{G} = 1 \otimes d - \sum \mu_{i} \otimes \iota_{(\xi_{i})_{M}}$$

or from the point of view of polynomial maps: $d_G \omega(\xi) = d\omega(\xi) - \iota_{\xi_M} \omega(\xi)$.

Definition

The equivariant cohomology of M is given by $H^*_G(M) = H^*_{dR}(\Omega^*_G(M), d_G)$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Equivariant Formality

We may consider $\Omega_G(M)$ as a double complex with grading

$$\Omega^{p,q}_G(M) = (\mathbb{S}^p(\mathfrak{g}^*) \otimes \Omega^{q-p}(M))^G$$

where the respective vertical and horizontal operators are the first and second summands of the Cartan differential d_G .

Definition

We say M is equivariantly formal with respect to the action of G if the spectral sequence of the Cartan complex collapses at the E_1 term.

Equivariant Formality

Proposition

If $H^{2k+1}(M) = 0$ for all k, then the G-action on M is equivariantly formal.

Recall: a 'nice' projection of the moment map is a perfect Morse function.

Corollary

A Hamiltonian G-action on M is equivariantly formal.

Theorem

If M is equivariantly formal we have an isomorphism of \mathbb{R} -algebras

$$H^*(M) \cong rac{H^*_G(M)}{J \cdot H^*_G(M)}$$

where J denotes the augmentation ideal in $\mathbb{S}(\mathfrak{g}^*)$.

3

< ロ > < 同 > < 回 > < 回 >

Graph Cohomology

Definition

Let $V_{\Gamma} = \{p_1, \dots, p_N\}$ then the *cohomology ring of* (Γ, α) is

$$H^*(\Gamma,\alpha) = \left\{ \left(f(p_1), \ldots, f(p_N) \right) \in \bigoplus \mathbb{S}(\mathfrak{g}^*) \mid \begin{array}{c} f(p_i) - f(p_j) \in \langle \alpha_e \rangle \\ \forall e = p_i p_j \in E_{\Gamma} \end{array} \right\}$$

where $\langle \alpha \rangle$ denotes the principal ideal generated by α .

Theorem (GKM)

Let M be an equivariantly formal GKM manifold with one-skeleton (Γ, α), then

$$H^*_G(M) \cong H^*(\Gamma, \alpha).$$

Computing Generators

Definition

Let $\xi \in \mathcal{P}$ be a polarising vector and $p \in V_{\Gamma}$ a vertex. The *flow-out of p*, F_p , is the set of vertices q of (Γ, o_{ξ}) such that there exists a directed path from p to q compatible with the ξ -orientation o_{ξ} .

Proposition (Guillemin–Zara)

Let $p \in V_{\Gamma}$ be a vertex of (Γ, o_{ξ}) of index k. Then there exists an element $\tau_p \in H^{2k}(\Gamma, \alpha)$ satisfying

•
$$\tau_p$$
 is supported on the flow-out of p, F_p ,

2 $\tau_p(p) = \prod \alpha_e$, with the product over directed edges terminating at p.

If $\{\tau_p\}_{p \in V_{\Gamma}}$ satisfy these conditions then $H^*(\Gamma, \alpha)$ is a free $\mathbb{S}(\mathfrak{g}^*)$ -module generated by $\{\tau_p\}_{p \in V_{\Gamma}}$.

If $\sigma_q > \sigma_p$ for every $q \in F_p \setminus \{p\}$ then τ_p is unique.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Algorithm for Computing Generators

For $\xi \in \mathcal{P}$ a polarising vector, take the partial ordering on the vertices induced by the index; p < q if $\sigma_p < \sigma_q$. Then we compute τ_p inductively:

- First set $au_p(p') = 0$ for all p' < p.
- Next take the product

$$\tau_p(p) = \prod \alpha_e,$$

over all edges terminating at p, or set $\tau_p(p) = 1$ if $\sigma_p = 0$.

• Finally if q is a vertex such that we have defined $\tau_p(p')$ for every neighbouring vertex p' < q, then we take $\tau_p(q) \in \mathbb{S}(\mathfrak{g}^*)$ to be an element of minimal degree which satisfies the following for each neighbouring p' < q;

$$au_{p}(q) - au_{p}(p') \in \langle \alpha_{e} \rangle, \text{ where } e = p'q.$$

We write a generator τ_p as a labelling of the vertices of Γ , or as follows; if p_1, \ldots, p_N is vertex ordering compatible with the partial ordering above, then $\tau_p = (\tau_p(p_1), \ldots, \tau_p(p_N)) \in H^{2k}(\Gamma, \alpha).$

Example

In the other notation, our generators are: $\tau_1 = (1, 1, 1, 1) \in H^0_{\mathbb{T}^3}(\mathbb{P}^3)$ $\tau_2 = (0, t_1, t_2, t_3) \in H^2_{\mathbb{T}^3}(\mathbb{P}^3)$ $\tau_3 = (0, 0, t_2(t_2 - t_1), t_3(t_3 - t_1)) \in H^4_{\mathbb{T}^3}(\mathbb{P}^3)$ $\tau_4 = (0, 0, 0, t_3(t_3 - t_1)(t_3 - t_2)) \in H^6_{\mathbb{T}^3}(\mathbb{P}^3)$

Figure: One-skeleton of \mathbb{P}^3

Following the algorithm we obtain the set of generators:

Example

We have component-wise multiplication, so for example

 $\tau_2^2 = (0, t_1^2, t_2^2, t_3^2) = t_1(0, t_1, t_2, t_3) + (0, 0, t_2(t_2 - t_1), t_3(t_3 - t_1)) = t_1\tau_2 + \tau_3.$

In this way we obtain the multiplication table:

	τ_1	$ au_2$	$ au_3$	$ au_4$
τ_1	τ_1	$ au_2$	τ ₃	$ au_4$
τ_2	τ_2	$t_1\tau_2 + \tau_3$	$t_2 au_3 + au_4$	$t_3 au_4$
τ_3	τ_3	$t_2 \tau_3 + \tau_4$	$t_2(t_2-t_1) au_3+(t_3+t_2-t_1) au_4$	$t_3(t_3 - t_1)\tau_4$
τ_4	τ_4	$t_3 \tau_4$	$t_3(t_3-t_1)\tau_4$	$t_3(t_3-t_1)(t_3-t_2)\tau_4$

The multiplication table for the usual cohomology ring is as expected; $H^*(\mathbb{P}^3)$ is generated by an element τ_2 of degree 2 such that $\tau_2^4 = 0$:

	τ_1	τ_2	$ au_3$	$ au_4$
τ_1	τ_1	$ au_2$	$ au_3$	$ au_4$
$ au_2$	$ au_2$	$ au_3$	$ au_4$	0
$ au_3$	$ au_3$	$ au_4$	0	0
$ au_4$	$ au_4$	0	0	0

24 / 24

Tolman's manifold

A minimal Hamiltonian \mathbb{T}^k -manifold with no compatible \mathbb{T}^k -invariant Kähler metric: a six-dimensional Hamiltonian \mathbb{T}^2 -manifold, $M_{\mathcal{T}}$, with a family of symplectic forms for which there does not exist any compatible \mathbb{T}^2 -invariant Kähler metric.

 \hat{M} : take a suitable \mathbb{T}^2 -action on $\mathbb{C}P^1 \times \mathbb{C}P^2$ and a \mathbb{T}^3 -invariant symplectic form such that the moment map $\hat{\mu} : \hat{M} \to \mathbb{R}^2$ has image:

 \tilde{M} : take the projectivisation of the bundle $\mathcal{O} \oplus \mathcal{O}(-3)$ over \mathbb{P}^2 . It has a natural \mathbb{T}^3 -action so we choose a suitable \mathbb{T}^3 -invariant symplectic form and subtorus $\mathbb{T}^2 \subset \mathbb{T}^3$ such that the moment map $\tilde{\mu} : \hat{M} \to \mathbb{R}^3$ has image:

Tolman's manifold

	$ \tau_1$	τ_2	$ au_3$	$ au_4$	$ au_5$	$ au_6$			
τ_1	τ_1	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$			
τ_2	τ_2	$ au_5$	$ au_4 - au_5$	$ au_6$	0	0			
$ au_3$	τ_3	$\tau_4 - \tau_5$	$-3\tau_4 + 2\tau_5$	$-2\tau_{6}$	$ au_6$	0			
$ au_4$	τ_4	$ au_6$	$-2\tau_{6}$	0	0	0			
$ au_5$	τ_5	0	$ au_6$	0	0	0			
$ au_6$	τ_6	0	0	0	0	0			
$H^*(M_{\mathcal{T}})\cong \mathbb{Z}[u,v]/(u^2+3uv+v^2,\ u^3)$									

$$\begin{aligned} \tau_1 &= (1, 1, 1, 1, 1, 1) \in H^0_{\mathbb{T}^2}(M_{\mathcal{T}}) & \text{where } u = \tau_2, \ v = \tau_3 \\ \tau_2 &= (0, t_1, 0, t_1, t_2, t_2) \in H^2_{\mathbb{T}^2}(M_{\mathcal{T}}) \\ \tau_3 &= (0, 0, t_2 + t_1, t_2 - 2t_1, -t_2, -(t_2 - t_1)) \in H^2_{\mathbb{T}^2}(M_{\mathcal{T}}) \\ \tau_4 &= (0, 0, 0, t_1(t_2 - 2t_1), -t_2t_1, 0) \in H^4_{\mathbb{T}^2}(M_{\mathcal{T}}) \\ \tau_5 &= (0, 0, 0, 0, t_2(t_2 - t_1), t_2(t_2 - t_1)) \in H^6_{\mathbb{T}^2}(M_{\mathcal{T}}) \\ \tau_6 &= (0, 0, 0, 0, 0, t_2t_1(t_2 - t_1)) \in H^6_{\mathbb{T}^2}(M_{\mathcal{T}}) \end{aligned}$$

э

Tolman's manifold

Figure: Generators for the equivariant cohomology ring of Tolman's manifold

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

э