

Figure 3: Chi square distributions with different degrees of freedom

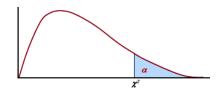


Figure 4: χ^2 distribution with ν degrees of freedom

2 Lecture 2

2.1 The chi square distribution

In particular, when $\alpha = \nu/2$ and $\beta = 2$, we have the **chi square distribution** (χ^2) with ν degrees of freedom.

We use $\chi^2(\nu)$ to denote a random variable having a chi square distribution with ν degrees of freedom, Figure 3. Note that random variables $\chi^2(\nu)$ can only take on non-negative values. So their probability density function is **not** symmetric.

Example 7 Show that the probability density function of a chi square distribution with ν degrees of freedom is

$$f(x) = \begin{cases} \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\frac{\nu}{2}-1} e^{-x/2}, & x > 0\\ 0 & x \le 0, \end{cases}$$
(23)

where the gamma function Γ is given by Eq. (18).

Solution. Eq. (23) is an immediate consequence of Eq. (17).

-															Å
0.995		0.98	0.975	0.95	0.90	0.80	0.20	0.10	0.05	0.025	0.00	100	0.005	X di v	·
0.0000393	193 0.000157	0.000628	0.000982	0.00393			1.642	2 706	1 0.41	100		10-10	con:n	100.0	β =
		0.0404	0.0506	0.103		-	3.219	4.605	100 5	975 L	2.412	6.635	7.879	10.827	>
207		0.420	0.216	0.352			4.642	6.251	7.815	9.348	470.1	11 245	10.597	13.815	•••
0.412		0.752	0.231	0.711	1.064	1.649	5.989	917.7	9.488	11.143	11.668	172.51	14 860	10.268	- j -
		70170	100.0	C+1.1		•••	7.289	9.236	11.070	12.832	13.388	15.086	14.000	20,517	4 4
0.676	0.872	1.134	1.237	1.635	2.204	1 070	9 550	10.245							
.989		1.564	1.690	2.167	2 812	2.0.0	800.0	10.645	12.592	14.449	15.033	16.812	18.548	22.457	
34		2.032	2.180	2.733	100	770.C	CU0.4	12.017	14.067	16.013	16.622	18.475	20.278	24.322	
56.1		2.532	2.700	3.325	4.168	5 380	CFC C1	205.01	102.61	17.535	18.168	20.090	21.955	26.125	
961.3		3.059	3.247	3.940	4.865	6.179	13.442	15.987	18.307	20.483	19.679	21.666	23.589	27.877	0
.603	3.053	3 600	2 0 1 6		į						101112	607.07	201.07	880.62	2
3.074	3.571	4,178	4404	2/0.4	8/5.5	6.989	14.631	17.275	19.675	21.920	22.618	24.725	757 36	31 764	:
.565	4.107	4.765	000 4	077.0		7.807	15.812	18.549	21.026	23.337	24.054	26.217	28 300	32 000	=:
075	4.660	5.368	5 670	72017		8.034 271 0	16.985	19.812	22.362	24.736	25.472	27.688	20 810	002.70	2 :
109	5.229	5.985	6.262	196.5	06/./	9.467	18.151	21.064	23.685	26.119	26.873	29.141	11.110	121 22	23
				102-1	110	/00.01	115.61	22.307	24.996	27.488	28.259	30.578	32.801	37.697	<u>t</u> <u>x</u>
5.142	5.812	6.614	6.908	7.962	9.312	11.152	20465	73 647	200.20						3
160	6.408	7.255	7.564	8.672	10.085	12.002	21.615	24 740	067-07	28.845	29.633	32.000	34.267	39.252	16
83	207	7.906	8.231	9.390	10.865	12.857	22.760	25.989	100.12	161.05	30.995	33.409	35.718	40.790	17
12	030.0	/00.8	8.907	10.117	11.651	13.716	23.900	27.204	144	070710	040.70	34.805	37.156	42.312	8
Į	007-0	157.6	166.6	10.851	12.443	14.578	25.038	28.412	31.410	34.170	35.020	30.191 37 \$66	38.582	43.820	6
034	8.897	9.915	10 283	11 601	(1,1,1)						070-00		166.60	45.51	20
8.643	9.542	10.600	10.982	12 238	14041	C 44.C1	26.171	29.615	32.671	35.479	36.343	38.932	41.401	46.797	5
20	10.196	11.293	11.688	100 11	14.041	10.01	105.12	30.813	33.924	36.781	37.659	40.289	42.796	48.268	3 5
886	10.856	11.992	12.401	13.848	15,650	10.051	674-07	22.007	35.172	38.076	38.968	41.638	44.181	49.728	12
0.520	11.524	12.697	13.120	14.611	16.473	18.940	20.675	33.196	36.415	39.364	40.270	42.980	45.558	51.179	21
-								700.00	700.10	40.046	41.566	44.314	46.928	52.620	25
11.100	12.198	13.409	13.844	15.379	17.292	19.820	31.795	15 562	20 005	11 000					
2000	6/971	14.125	14.573	16.151	18.114	20.703	32.912	36.741	40111	121.14	42.850	45.642	48.290	54.052	58
į		14.84/	15.308	16.928	18.939	21.588	34.027	37.916	41.337	44.461		40.703	49.045	55.476	27
102	007-11	12274	16.047	17.708	19.768	22.475	35.139	39.087	42 557	101.11	40.419	48.278	50.993	56.893	28
	CCC+1	005.03	167.01	18.493	20.599	23.364	36.250	40.256	43.773	46 979	17 067	80C.44	055.25	58.302	53
706	22 164	21 010									702.14	760.00	7/0.60	50/.60	Ŕ
27.991	201.07	21.65	24.435	20.509	29.051	32.345 4	47.269	51.805		59.342					
535	37.485	009 01	100.40					63.167	Ċ	71.420				204.61	9 8
275	45,442	47 893	101-04			-		74.397		83.298				100,00	2
171	015 15	26 213	121 120					85.527		95.023				100.66	88
				-	-	•		96.578	101.880	106.629	108.069	112.329	116.321	124.839	Ś
59.196	61.754	64.634	65.646	69.126 7	71 201 7	70 660									;
								222 555	112 1AF					-	

8

 $^{
m C}$ The Hong Kong Polytechnic University

Figure 5: Chi square distribution table

Let χ^2_{α} be such that the area under the chi square distribution to its right is equal to α , see the tail in Figure 4. That is

$$P(\chi^2(\nu) \ge \chi^2_{\alpha}) = \alpha. \tag{24}$$

Example 8 Let a random variable χ^2 have a chi square distribution with 19 degree of freedom, find $\chi^2_{0.05}$ and $\chi^2_{0.01}$.

Solution. $\nu = 19$. By the chi square table (Figure 5),

$$\chi^2_{0.05} = 30.14, \quad \chi^2_{0.01} = 36.19.$$

Example 9 Let $\alpha = 0.05$. Evaluate $P(\chi^2_{1-\alpha/2} < \chi^2(\nu) < \chi^2_{\alpha/2})$.

Solution. Since

$$P(\chi^{2}(\nu) \ge \chi^{2}_{\alpha/2}) = \frac{\alpha}{2}, \quad P(\chi^{2}(\nu) \ge \chi^{2}_{1-\alpha/2}) = 1 - \frac{\alpha}{2},$$
$$P(\chi^{2}_{1-\alpha/2} < \chi^{2}(\nu) < \chi^{2}_{\alpha/2}) = 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - 0.05 = 0.95$$

(draw a plot for the example)

2.2 Representation of Chi Square Random Variable

Theorem 3 Let $Z_1, Z_2, \ldots, Z_{\nu}$ be independent standard normal random variables, where ν is a positive integer. Then the random variable

$$\chi^{2}(\nu) = \sum_{i=1}^{\nu} Z_{i}^{2}$$
(25)

has a chi square distribution with ν degrees of freedom.

The sum of two independent chi square variables, $\chi^2(\nu_1) + \chi^2(\nu_2)$, has chi square distribution with degrees of freedom of $\nu_1 + \nu_2$.

Example 10 If Z has a standard normal distribution, find the probability $P(Z^2 > 7.879)$.

Solution. By Theorem 3, Z^2 has a chi square distribution with one degree of freedom. Therefore, by the chi square distribution table, we find $P(Z^2 > 7.879) = 0.005$.

Example 11 Let X_1, X_2, \ldots, X_n be independent normal random variables all having the same mean μ and variance σ^2 . Define

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{26}$$

and

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Show that

(a) Z has a standard normal distribution.

- (b) Z^2 has a chi square distribution with one degree of freedom.
- (c) Find $P(Z^2 > 5.024)$. Does this value depend on n, μ , or σ^2 ? Why?

Solution.

- (a). By Theorem 2, Z is a standard normal random variable.
- (c). by Theorem 3, Z^2 has a chi square distribution with one degree of freedom.
- (c). $\nu = 1$. By the chi square distribution table, $P(Z^2 > 5.024) = 0.025$.

Example 12 Let Z_1, Z_2, \ldots, Z_n be independent standard normal distribution. Show that

(a)

$$\sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} (Z_i - \bar{Z})^2 + n\bar{Z}^2.$$
(27)

(b) $\sqrt{n}\overline{Z}$ is a standard normal random variable;

(c) $n\bar{Z}^2$ has a chi square distribution with one degree of freedom;

(d) assume that the two terms on the right-hand side of (27) are independent, so $\sum_{i=1}^{n} (Z_i - \bar{Z})^2$ has a chi square distribution with n-1 degrees of freedom.

Solution.

(a)

$$\sum_{i=1}^{n} Z_i^2 = \sum_{i=1}^{n} (Z_i - \bar{Z} + \bar{Z})^2 = \sum_{i=1}^{n} (Z_i - \bar{Z})^2 + 2\sum_{i=1}^{n} (Z_i - \bar{Z})\bar{Z} + n\bar{Z}^2 = \sum_{i=1}^{n} (Z_i - \bar{Z})^2 + n\bar{Z}^2.$$

(b). According to Theorem 2, \overline{Z} is a normal random variable with mean 0 and variance $\frac{1}{n}$. Standardization gives

$$\sqrt{n}\bar{Z} = \frac{\bar{Z} - 0}{\sqrt{1/n}}.$$

Hence $\sqrt{n}\overline{Z}$ is a standard normal random variable.

(c). By Theorem 3, $n\bar{Z}^2$ has a chi square distribution with one degree of freedom.

(d). According to Theorem 3, $\sum_{i=1}^{n} Z_i^2$ has a chi square distribution with n degree of freedom. From part (c) above we have also known that $n\bar{Z}^2$ has a chi square distribution with one degree of freedom. Therefore, $\sum_{i=1}^{n} (Z_i - \bar{Z})^2$ has a chi square distribution with n-1 degrees of freedom.

Finally, if we define

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Z_{i} - \bar{Z})^{2}, \qquad (28)$$

we conclude from the previous example that $(n-1)S^2$ has a chi square distribution with n-1 degrees of freedom. That is, the scaling $\frac{1}{n-1}$ does not change the nature of the distribution, although it changes the specific form of the probability density function.

The above discussions can be generalized to the following result.

Theorem 4 Let X_1, X_2, \ldots, X_n be independent normal random variables all having the same mean μ and variance σ^2 . Then

$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2$$
(29)

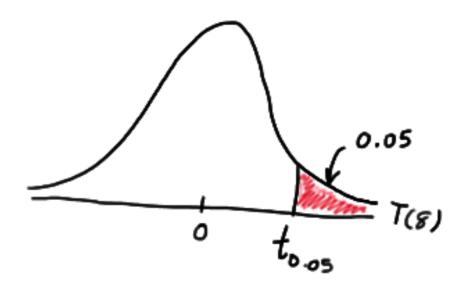


Figure 6: t-distribution with ν degrees of freedom, bell-shaped and symmetric

has a χ^2 distribution with n-1 degrees of freedom. Also, \bar{X} and S^2 are independent random variables.

Interpretation of Theorem 4. Note that

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} - \frac{\bar{X} - \mu}{\sigma} \right)^2.$$

Moreover,

$$\frac{X_i - \mu}{\sigma} \sim N(0, 1), \quad \frac{\bar{X} - \mu}{\sigma} \sim N(0, \frac{1}{n}).$$

Consequently, $\frac{X_i - \mu}{\sigma}$ is like Z_i and $\frac{\bar{X} - \mu}{\sigma}$ is like \bar{Z} in Example 12. So, by Eq. (28), $\frac{(n-1)S^2}{\sigma^2}$ has a χ^2 distribution with n-1 degrees of freedom.

2.3 Representation of t random variable

Definition 1 Let the standard normal variable Z and chi square variable χ^2 defined in Eq. (25) be independent. Then

$$t = \frac{\text{standard normal}}{\sqrt{\frac{\text{chi square}}{\text{degrees of freedom}}}} = \frac{Z}{\sqrt{\frac{\chi^2(\nu)}{\nu}}} = \frac{Z}{\sqrt{\frac{\sum_{i=1}^{\mu} Z_i^2}{\nu}}}$$
(30)

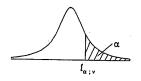
is said to have a t-distribution with v degrees of freedom.

© The Hong Kong Polytechnic University

Table of the Student's t-distribution

7

The table gives the values of $t_{\alpha;\nu}$ where $\Pr(T_{\nu} > t_{\alpha;\nu}) = \alpha$, with ν degrees of freedom



	0.1	0.05					
α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
V							
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2 3	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
						0.000	0.003
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2,998	3.499	4,785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.787
		11012	2.220	2.104	0.103	4.144	4.007
11	1.363	1.796	2.201	2.718	3.106	4.025	4,437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2,947	3.733	4.073
				21002	2.0-17	0.100	4.075
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2,898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3,579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
						0,002	0.000
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3,505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3,467	3.745
25	1.316	1.708	2.060	2.485	2,787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
æ	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Figure 7: t-distribution

We use t to denote a random variable having a t-distribution.

Let t_{α} be such that the area under the t-distribution curve to its right is equal to α , see the tail in Figure 6. That is

$$P(t \ge t_{\alpha}) = \alpha.$$

Example 13 Let a random variable t have a t distribution with 19 degree of freedom, find $t_{0.05}$.

Solution. $\nu = 19$. By the t-distribution table (Figure 7),

$$t_{0.05} = 1.729.$$

Example 14 Let a random variable t have a t distribution with 19 degree of freedom, find F(-1.729).

Solution. Because t-distribution is **symmetric** (Figure 6),

$$F(-1.729) = P(t \le -1.729) = P(t \ge 1.729).$$

By the previous example, for $\nu = 19$, $P(t \ge 1.729) = 0.05$. Therefore, F(-1.729) = 0.05.

Example 15 Let Z_1, \ldots, Z_6 be independent each having a standard normal distribution. What is the distribution of the random variable

$$\frac{Z_1 - Z_2}{\sqrt{\frac{Z_3^3 + Z_4^2 + Z_5^2 + Z_6^2}{2}}}?$$

Solution. Firstly, since Z_1 and Z_2 are independent standard normal random variables, by the property

$$Var(a_1X_1 + a_2X_2) = a_1^2\sigma_{X_1}^2 + a_2^2\sigma_{X_2}^2,$$
(31)

(see Eq. (11)) we find that the random variable

$$\frac{Z_1 - Z_2}{\sqrt{2}}$$

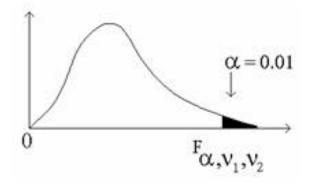


Figure 8: F distribution with ν_1 and ν_2 degrees of freedom

is a standard norm variable. Secondly, note that

$$\frac{Z_1 - Z_2}{\sqrt{\frac{Z_3^3 + Z_4^2 + Z_5^2 + Z_6^2}{2}}} = \frac{\frac{Z_1 - Z_2}{\sqrt{2}}}{\sqrt{\frac{Z_3^3 + Z_4^2 + Z_5^2 + Z_6^2}{4}}}$$

Therefore by Eq. (30), $\frac{Z_1-Z_2}{\sqrt{\frac{Z_3^3+Z_4^2+Z_5^2+Z_6^2}{2}}}$ has t distribution with 4 degrees of freedom.

2.4 Representation of F random variables

Definition 2 Let the chi square variables $\chi^2(\nu_1)$, with ν_1 degrees of freedom, and $\chi^2(\nu_2)$, with ν_2 degrees of freedom, be independent. Then

$$F(\nu_1, \nu_2) = \frac{\frac{\text{chi square}}{\text{degrees of freedom}}}{\frac{\text{chi square}}{\text{degrees of freedom}}} = \frac{\frac{\chi^2(\nu_1)}{\nu_1}}{\frac{\chi^2(\nu_2)}{\nu_2}} = \frac{\frac{\sum_{i=1}^{\nu_1} Z_i^2}{\nu_1}}{\frac{\sum_{i=\nu_1+1}^{\nu_1+\nu_2} Z_i^2}{\frac{\sum_{i=\nu_1+1}^{\nu_1+\nu_2} Z_i^2}{\frac{\nu_1}{\nu_1}}}$$
(32)

is said to have an F distribution with (ν_1, ν_2) degrees of freedom.

We use $F(\nu_1, \nu_2)$ to denote a random variable having an F-distribution with (ν_1, ν_2) degrees of freedom .

An important identity. Given $0 \le \alpha \le 1$, Let $F_{\alpha}(\nu_1, \nu_2)$ be such that the area under the F-distribution (with degrees of freedom (ν_1, ν_2)) curve to its right is equal to α , see the tail in Figure 8. Then

$$F_{1-\alpha}(\nu_1,\nu_2) = \frac{1}{F_{\alpha}(\nu_2,\nu_1)}.$$
(33)

Example 16 *Find the value of* $F_{0.95}(10, 20)$ *.*

120 60	21 22 23 24 25	16 17 18 20	11 112 113 114	10 9 8 7 6		of Freedom for Denominator	Table 6(b) Value	8 120 8 120 8 120	21 22 24 25	16 17 19 20	11 12 14	0 0 8 7 6	54 W D H	of Freedom for Denominator
7.56 7.31 7.08 6.85	8.02 7.95 7.88 7.82 7.77	8.53 8.40 8.18 8.18	9.65 9.33 8.86 8.86	13.75 12.25 11.26 10.56	4,052 98.50 34,12 21,20 16,26	-		4.17 4.08 4.00 3.92 3.84	4.32 4.30 4.28 4.24 4.24	4.49 4.41 4.38 4.35	4.84 4.75 4.67 4.60 4.54	5.99 5.32 5.12 4.96	161 18.51 10.13 7.71 6.61	-
6 5.39 1 5.18 8 4.98 5 4.79					5,000 999.00 30.82 18.00 13.27	2	of F _{0.01}	3.32 3.23 3.15 3.07 3.00	3.47 3.42 3.39 3.39	3.63 3.59 3.55 3.52 3.49	3.98 3.89 3.81 3.74 3.68	5.14 4.74 4.46 4.10	200 19.00 9.55 6.94 5.79	2
	4.87 4.82 4.76 4.76 1 4.72 4.68			9.78 8.45 7.59 6.55		ω		2.92 2.84 2.76 2.68 2.60	3.07 3.05 3.03 3.01 2.99	3.24 3.16 3.13 3.10	3.59 3.49 3.34 3.34 3.29	4.76 4.35 4.07 3.86 3.71		ω
1 4.02 3 3.65 3 3.48 3 3.48				9.15 7.85 7.01 6.42 5.99		4		2.69 2.61 2.53 2.45 2.37	2.84 2.82 2.80 2.78 2.76	3.01 2.96 2.93 2.90 2.87	3.36 3.26 3.18 3.11 3.06	4.53 4.12 3.84 3.63 3.48	225 19.25 9.12 6.39 5.19	4
3.70 3.3.51 3.3.4 3.3.4 3.17 3.02 3.02				8.75 7.46 6.63 5.64	5,764 99.30 28.24 15.52 10.97			2.53 2.45 2.37 2.29 2.21	2.68 2.66 2.64 2.62 2.60	2.85 2.81 2.77 2.74 2.71	3.20 3.11 3.03 2.96 2.90	4.39 3.97 3.48 3.33	230 19.30 9.01 6.26 5.05	UN .
) 3.47 3.12 4 3.12 7 2.96 2 2.80				8.47 7.19 6.37 5.80 5.39	5,859 99,33 27,91 15,21 10,67			2.42 2.34 2.25 2.18 2.10	2.57 2.55 2.53 2.51 2.49	2.74 2.70 2.66 2.63 2.60	3.09 3.00 2.92 2.85 2.79	4.28 3.87 3.37 3.22	234 19.33 8.94 6.16 4.95	6
7 3.30 3.12 2 2.95 2 2.79 2 2.79 2 2.64				8.26 6.99 6.18 5.61 5.20				2.33 2.25 2.17 2.09 2.01	2249 2246 2244 2242 2240	2.66 2.61 2.58 2.54 2.51	3.01 2.91 2.83 2.76 2.71	4.21 3.79 3.20 3.14	237 19.35 8.89 6.09 4.88	7
3.17 2.299 2.82 2.82 2.66 2.66				8.10 6.84 6.03 5.47 5.06	5,982 99,37 27,49 14,80 10,29			2.27 2.18 2.10 2.02 1.94	2.42 2.40 2.37 2.36 2.34	2.59 2.55 2.51 2.48 2.45	2.95 2.85 2.77 2.70 2.64	4.15 3.73 3.44 3.23 3.07	239 19.37 8.85 6.04 4.82	8
3.07 2.89 2.72 2.56 2.41				7.98 6.72 5.91 5.35 4.94				2.21 2.12 2.04 1.96 1.88		2.54 2.49 2.46 2.42 2.39	2.90 2.80 2.71 2.65 2.59	4.10 3.68 3.18 3.02		9
2.98 2.80 2.63 2.47 2.32		3.69 3.51 3.43 3.37	4.54 4.10 3.94 3.80	7.87 6.62 5.81 5.26 4.85	6,056 99,40 27.23 14.55 10.05			2.16 2.08 1.99 1.91 1.83		2.49 2.45 2.41 2.38 2.35	2.85 2.75 2.67 2.60 2.54	4.06 3.64 3.35 3.14 2.98	242 19.40 8.79 5.96 4.74	5
	3.17 3.12 3.03 2.99		4.40 4.16 3.96 3.67	5.11 4.71				2.09 2.00 1.92 1.83 1.75		2.42 2.38 2.34 2.31 2.28	2279 2269 2260 2253 2248	4.00 3.57 3.28 3.07 2.91		12
2.35 2.35 2.19 2.04			4.25 3.82 3.56 3.52	6.31 5.52 4.96 4.56	6,137 99,43 26,87 14,20 9,72			2.01 1.92 1.84 1.75 1.67	2.18 2.15 2.13 2.11 2.09	2.35 2.31 2.27 2.23 2.23 2.20		3.94 3.51 3.22 3.01 2.85		5
2.37 2.27 2.20 2.03 1.88			4.10 3.86 3.51 3.37	5.36 4.41 4.41				1.93 1.84 1.75 1.66 1.57	2.10 2.07 2.05 2.03 2.01	2.28 2.23 2.19 2.16 2.12	2.65 2.54 2.39 2.33	3.87 3.44 3.15 2.94 2.77		20
2.27 2.27 2.10 1.93 1.77			4.01 3.76 3.41 3.28	6.06 5.26 4.71 4.31	0,240 99,46 26.58 13.91 9,45			1.88 1.78 1.69 1.60 1.51	2.05 2.02 2.00 1.97 1.96	2.23 2.18 2.14 2.11 2.07	2.60 2.50 2.41 2.34 2.28	3.83 3.40 3.11 2.89 2.73	249 19.46 8.63 5.77 4.52	25
2.20 2.23 2.03 1.86 1.70		3.00 3.00 2.92 2.84 2.78	3.94 3.70 3.51 3.21 3.21	5.20 5.20 4.65 4.25	99.57 26.50 13.84 9.38	30		1.84 1.74 1.65 1.55 1.46	2.01 1.98 1.96 1.94 1.92	2.19 2.15 2.11 2.07 2.04	2.57 2.47 2.38 2.31 2.25	3.81 3.38 3.08 2.86 2.70		30
2.11 1.94 1.59		3.02 2.92 2.84 2.69 2.69	3.43 3.13	5.91 5.12 4.17 4.17				1.79 1.69 1.59 1.39 1.39	1.96 1.94 1.91 1.89 1.87		2.53 2.38 2.34 2.27 2.27 2.20			40
2.02 1.84 1.47		2.83 2.83 2.75 2.61 2.61	3.54 3.54 3.34 3.18 3.05	5.03 4.48 4.08	999.48 26.32 13.65 9.20			1.74 1.64 1.53 1.43 1.32	1.92 1.89 1.86 1.84 1.82	2.11 2.06 2.02 1.98 1.95	2.49 2.38 2.30 2.22 2.16	3.74 3.30 3.01 2.79 2.62	252 19.48 8.57 5.69 4.43	60
1.92 1.73 1.53 1.32	2.40 2.31 2.27 2.21	2.01 2.75 2.58 2.52 2.52	3.05 3.45 3.09 2.96 2.96	5.74 4.95 4.00	999.49 26.22 13.56 9.11	120		1.68 1.58 1.47 1.35 1.22		2.06 2.01 1.97 1.93 1.90	2.45 2.34 2.25 2.18 2.11		253 19.49 8.55 5.66 4.40	120
1.80 1.60 1.38 1.38			3.36 3.17 3.00 2.87	5.65 4.86 4.31 3.91	99.50 26.13 13.46 9.02	8366		1.62 1.51 1.39 1.25 1.00	1.81 1.78 1.76 1.73 1.71	2.01 1.96 1.92 1.88 1.84	2.40 2.30 2.21 2.13 2.07	3.67 3.23 2.93 2.71 2.54	254 19.50 8.53 5.63 4.37	8

Appendix B Scatistical Tables 519

518 Appendix B Statistical Tables

Figure 9: F distribution

Solution. By Eq. (33)

$$F_{0.95}(10,20) = \frac{1}{F_{0.05}(20,10)}.$$

Using the F table (Figure 9) to get

$$\frac{1}{F_{0.05}(20,10)} = \frac{1}{2.77} = 0.3610.$$

Therefore, $F_{0.95}(10, 20) = 0.3610$.

Example 17 Let t be distributed as a t-distribution with ν degrees of freedom.

- (a) Use the representation of t to show that t² has an F distribution with (1, ν) degrees of freedom.
- (b) Use part (a) to show that $t_{\alpha/2}^2 = F_{\alpha}(1,\nu)$.

Solution.

(a). By Eq. (30), assume t is in the form of

$$t = \frac{Z}{\sqrt{\frac{\chi^2(\nu)}{\nu}}},$$

where $Z \sim N(0, 1)$ and $\chi^2(\nu)$ has a chi square distribution of ν degrees of freedom. So Z^2 has a chi square distribution of one degree of freedom. Consequently by Definition 2, t^2 has an F distribution with $(1, \nu)$ degrees of freedom.

(b). Since

$$P(t > t_{\alpha/2}) = \frac{\alpha}{2},$$

we have (note that t-distribution is symmetric)

$$P(t^2 \le t_{\alpha/2}^2) = 1 - \alpha.$$

On the other hand, by part (a), t^2 has an F distribution with $(1, \nu)$ degrees of freedom. Therefore

$$P(t^2 \le F_{\alpha}(1,\nu)) = 1 - P(t^2 \ge F_{\alpha}(1,\nu)) = 1 - \alpha.$$

Therefore, $t_{\alpha/2}^2 = F_{\alpha}(1,\nu)$.