
MATHEMATICS 3103 (Functional Analysis)
YEAR 2012–2013, TERM 2

PROBLEM SET #7

This problem set is due at the beginning of class on Thursday 21 March. Only
Problem 1 will be formally assessed; but I think you will find the other problems (especially
#3 and #5) useful in clarifying the meaning and applications of the uniform boundedness
and closed graph theorems.

Topics: The Baire category theorem and its applications. The uniform boundedness theo-
rem, the open mapping theorem, the closed graph theorem.

Readings:

• Handout #7: The Baire category theorem and its consequences.

1. A positive application of the uniform boundedness theorem. Fix p ∈ [1,∞],
and define q as usual by 1/p+ 1/q = 1. Now let (ak)

∞
k=1

be a sequence of real numbers

with the property that
∞∑

k=1

akxk = lim
n→∞

n∑
k=1

akxk exists (and is finite) for all x ∈ ℓp.

Prove that a ∈ ℓq (so that the sum is in fact absolutely convergent). [Hint: Consider

the linear functionals ϕn(x) =
n∑

k=1

akxk on ℓp and apply the uniform boundedness

theorem. In the case p = ∞ you can even restrict to x ∈ c0.]

2. A negative application of the uniform boundedness theorem. It follows from
our Hilbert-space theory combined with Theorem 5.15 that the Fourier series of any
function f ∈ C[−π, π] (or even f ∈ L2[−π, π]) is convergent in L2 norm to f . But
must it converge pointwise? The answer is no: in 1876 du Bois-Reymond constructed
an example of a continuous function whose Fourier series is divergent at 0. Using the
uniform boundedness theorem you can give an easy (albeit nonconstructive) proof of
the existence of such a function.

Recall that the Fourier series for a function f on [−π, π] is
∞∑

n=−∞

an einx, where the

Fourier coefficients are given by

an =
1

2π

∫ π

−π

e−inx f(x) dx for n ∈ Z .
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(I am using here the complex form of the Fourier series, which in my opinion is more
convenient. But if you prefer to use instead the real form involving sines and cosines,
that is fine too.) So the Nth partial sum of the Fourier series is, by definition,

(SNf)(x) =

N∑

n=−N

an einx

where the {an} are as above.

(a) Prove that

(SNf)(x) =
1

2π

∫ π

−π

KN (x − x′) f(x′) dx′

where

KN(t) =
sin(N + 1

2
)t

sin 1

2
t

.

[In doing this calculation, be careful not to confuse the point x where SNf is
being evaluated with the integration variable arising in the definition of an: call
the latter x′.]

(b) Define a linear functional ϕN on C[−π, π] by ϕN(f) = (SNf)(0). Prove that ϕN

is a bounded linear functional, of norm

‖ϕN‖ =
1

2π

∫ π

−π

|KN(t)| dt .

[Hint: The proof that ‖ϕN‖ is bounded above by this quantity is quite easy. To
show that ‖ϕN‖ is bounded below by this quantity, consider a continuous f that
approximates sgn KN(t). You can do this either “by your bare hands”, or by using
Urysohn’s lemma with the sets A = {t: KN(t) ≥ ǫ} and B = {t: KN(t) ≤ −ǫ}.]

(c) Show that

1

2π

∫ π

−π

|KN(t)| dt ≥
4

π2

2N∑

j=0

1

j + 1
≥

4

π2
log(2N + 2) .

(d) Invoke the uniform boundedness theorem to conclude that the family (ϕN) of
linear functionals cannot be pointwise bounded on C[−π, π] — or in other words,
that there exists f ∈ C[−π, π] such that the sequence ((SNf)(0)) is unbounded.

3. Strong, weak and weak-* boundedness. As you know, a subset A of a normed
linear space X is called bounded (or norm-bounded or strongly bounded) if
sup
x∈A

‖x‖ < ∞. Let us now say that a subset A ⊆ X is weakly bounded if sup
x∈A

|ℓ(x)| <

∞ for all ℓ ∈ X∗. Finally, let us say that a subset B ⊆ X∗ is weak-* bounded if
sup
ℓ∈B

|ℓ(x)| < ∞ for all x ∈ X.
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(a) Prove that a set A in a normed linear space X is bounded if and only if it is
weakly bounded.

(b) Prove that if X is complete, then a set B in X∗ is bounded if and only if it is
weak-* bounded.

(c) Give an example of an incomplete normed linear space X and a subset B ⊆ X∗

that is weak-* bounded but not bounded.

[Hint: For (a), use the uniform boundedness theorem together with the natural em-
bedding of X into X∗∗. For (b), use the uniform boundedness theorem. For (c), use
an example showing that the conclusion of the uniform boundedness theorem can fail
if X is incomplete.]

4. An extension of the uniform boundedness theorem. Let X and Y be normed
linear spaces, and let F ⊆ B(X, Y ) be a family of bounded linear maps from X to Y .
We say that the family F is

• bounded (or uniformly bounded) if sup
T∈F

‖T‖X→Y < ∞;

• pointwise bounded if sup
T∈F

‖Tx‖Y < ∞ for all x ∈ X;

• weakly pointwise bounded if sup
T∈F

|ℓ(Tx)| < ∞ for all x ∈ X and ℓ ∈ Y ∗.

The uniform boundedness theorem, as proven in class, states that if X is a Banach
space, then the family F is bounded if and only if it is pointwise bounded. I would
like you to prove now that these conditions are also equivalent to weak pointwise
boundedness. [Hint: For each x ∈ X, consider the family {T̂ x: T ∈ F} in Y ∗∗,
where y 7→ ŷ denotes the natural embedding of Y into Y ∗∗, and apply the uniform
boundedness theorem. Alternatively, apply part (a) of the preceding problem.]

5. Let X and Y be Banach spaces, and let T : X → Y be an injective bounded linear
map. Prove that the inverse map T−1: T [X] → X is bounded if and only if T [X] is
closed in Y .
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