
THE GAUGE TRANSFORM

JEFFREY GALKOWSKI

1. Introduction

These notes were prepared for a course in Summer 2023 at the CRM on the Gauge transform and
update for a course in Summer 2024 at the LMS Bath: Advances in Spectral Theory conference.
The goal of the notes is to discuss the gauge transform and analysis in resonant zones as they are
used to produce full asymptotics for periodic Schrodinger operators in dimension ≤ 2 with smooth
potentials. The same ideas, albeit with more complicated notations and assumptions are used to
produce the same result for a wide variety of almost periodic Schrödinger operators by Parnovski–
Shterenberg. A more complicated version of the Gauge transform has been used to prove the full
asymptotic expansion for all uniformly smoothly bounded potentials in one dimension in a recent
paper by G–Parnovski–Shterenberg.

1.1. Some basic notation. Throughout these notes we use the following notation.

(1) Dx := −i∂x
(2) 〈ξ〉 := (1 + |ξ|2)

1
2 .

(3) Let B be a Banach space and f : (0, 1)→ (0,∞). We say that u = Oε(f(h))B if there are
h0 > 0 and C > 0 depending on the parameters ε such that

‖u‖B ≤ Cf(h), 0 < h < h0.

(4) Let B be a Banach space and f : (0, 1)→ (0,∞). We say that u = o(f(h))B if

lim sup
h→0+

‖u‖B
f(h)

= 0.

(5) We say that u = Oε(h
∞)B if there is h0 > 0 depending on the parameters ε and for all

N > 0 there is CN > 0 depending on N and ε such that

‖u‖B ≤ CNhN , 0 < h < h0.

(6) M(m× n) - the set of m× n matrices
(7) S(d× d) - the set of d× d symmetric matrices.

2. The goal of these notes

Consider a Schrödinger operator

H := −∆ + V,

where V ∈ C∞(Rd) such that for any α ∈ Nd,

(1) ‖∂αxV ‖L∞ ≤ Cα.
1
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When V satisfies (1), we write V ∈ C∞b (Rd). In many ways, V is a small perturbation of −∆
and hence may have a small effect on the spectrum of −∆ at high energy. Crucially, however V
need not decay fast toward |x| = ∞ and hence the perturbation is not relatively compact and
may change the nature of the spectrum dramatically, even at high energy. Nevertheless, there are
good reasons to think that these changes are in a sense small.

These notes will discuss one such manifestation of the ‘smallness’ of these changes. For this,
we define the spectral projector for H onto the interval I as

E(H; I) := 1I(H),

and, for λ ∈ R, we define the spectral function for H at λ by

E(H)(λ, x, y) = E(H; (−∞, λ])(x, y),

where E(H; (−∞, λ])(x, y) denotes the integral kernel of E(H; (−∞, λ]). One can check easily
using the fact that −∆ is elliptic and non-negative, that E(H)(λ, x, y) is indeed a smooth function
in (x, y). We will also sometimes write E(H)(λ) as a shortened notation for E(H; (−∞, λ]).

The local density of states at x is then given by E(H)(λ, x, x). One manifestation of the
‘smallness’ of the perturbation V is contained in the next conjecture.

Conjecture 1. Suppose that V ∈ C∞b (Rd). Then, there are aj(x) ∈ C∞b (Rd) such that for any
N and x, there is CN,x such that∣∣∣E(λ, x, x)−

N−1∑
j=0

λ
d
2
−jaj(x)

∣∣∣ ≤ CN,xλ d2−N .
As stated, the Conjecture 1 remains open, but it is known in a number of cases, for example.

(1) d = 1
(2) d ≥ 2 and V almost periodic
(3) d ≥ 2 and V decaying fast enough.
(4) d = 2 and V almost periodic plus decaying
(5) d = 2 and V radial

However, if one replaces V by a pseudodifferential operator of any positive order, this is false.

A slightly stronger version of this conjecture can be stated:

Conjecture 1’. Suppose that V ∈ C∞b (Rd). Then, there are aj(x) ∈ C∞b (Rd) such that for any
N there is CN such that for all x∣∣∣E(λ, x, x)−

N−1∑
j=0

λ
d
2
−jaj(x)

∣∣∣ ≤ CNλ d2−N .
In particular, the local density of states should have a complete asymptotic expansion in powers

of λ, uniformly in x. This conjecture is false in any dimension higher than 1, but is true for
subclasses of potentials:

(1) d = 1
(2) d ≥ 2 and V almost periodic (+ some generic assumptions)
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(3) d = 2 and V almost periodic.

If Conjecture 1’ holds, then one can, of course directly obtain the full asymptotic expansion
of the integrated density of states (when it exists) from a full asymptotic expansion for the local
density of states.

Conjecture 2. Suppose that V ∈ C∞b (Rd). Then, there are aj(x) ∈ C∞b (Rd) such that for any
N

lim sup
R→∞

1

Rd

ˆ
|x|≤R

(
E(λ, x, x)−

N−1∑
j=0

λ
d
2
−jaj(x)

)
dx ≤ CNλ

d
2
−N ,

and

lim inf
R→∞

1

Rd

ˆ
|x|≤R

(
E(λ, x, x)−

N−1∑
j=0

λ
d
2
−jaj(x)

)
dx ≥ −CNλ

d
2
−N ,

In particular, if the integrated density of states exists, then it has a full asymptotic expansion in
powers of λ.

In these notes, we will discuss only the case of V periodic and d ≤ 2. In the case of dimension
1, we will, in fact, prove the full asymptotic expansion of the local density of states, while in
dimension 2, for simplicity, we will only prove the full asymptotic expansion of the integrated
density of states.

It will be convenient throughout these notes to make a semiclassical rescaling of the problem.
That is, put λ = ~−1 and consider the operator

H~ = −~2∆ + ~2V,

and the spectral function

E(H~)(ω, x, x)

for some ω > 0. Observe that

E(H~)(ω, x, x) = E(H, ~−2ω, x, x),

and hence we aim to prove that E(H~)(ω, x, x) (or its integrated version) has a complete asymp-
totic expansion in powers of ~. While this rescaling may seem unnatural, it will allow us to work
in compact subsets of phase space and build the uniform estimates in the spectral parameter into
our microlocal calculus.

From now on, we will actually drop the ~ from our notation for the operator and, abusing
notation somewhat, write H = −~2∆ + ~2V .

3. Basic semiclassical analysis

3.1. Pseudodifferential operators on Rn. Pseudodifferential operators are quantizations of
observables on the phase space, T ∗Rn, i.e. of functions a = a(x, ξ) ∈ C∞(T ∗Rn) where we use
coordinates (x, ξ) with x ∈ Rn and ξ ∈ T ∗xRn. In order to define pseudodifferential operators
carefully, we first need to define symbol classes. In what follows, given (x, ξ) ∈ T ∗Rn we write

〈ξ〉 := (1 + |ξ|2)1/2.
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Remark 3.1. In order to simplify notation, we typically allow functions and operators to implic-
itly depend on the small parameter h, but our constants are uniform in 0 < h < 1.

Definition 3.2 (Symbol class). We say that a ∈ C∞(T ∗Rn) is a symbol of order m ∈ R and class

0 ≤ δ < 1
2 and write a ∈ S̃mδ (T ∗Rn) if for all α, β ∈ Nn, there is Cαβ > 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβh−δ(|α|+|β|)〈ξ〉m−|β|.

We will actually use the slightly smaller class of symbols Smδ (T ∗Rn). Here, we will need an

auxilliary parameter µ(h) with ch ≤ µ−1. We we say a ∈ Smδ (T ∗Rn) if there are aj ∈ µ2δjS̃m−jδ
depending on µ but not on h such that∣∣∣∂αx ∂βξ (a− N−1∑

j=0

hjaj

)∣∣∣ ≤ CαβhN(1−2δ)−δ(|α|+|β|).

We will often write simply a ∈ Sm when the space is clear from context. We also define
S∞ :=

⋃
m S

m, S−∞ :=
⋂
m S

m. We also define Scomp to be the set of a ∈ S−∞ which are
supported in some h-independent compact set. Furthermore, we often write Sm0 = Sm, i.e., omit
the δ = 0 in various spaces of symbol classes below.

It will also be be convenient to have a notion of semiclassical Sobolev spaces. In order to define
these spaces, we first recall some standard definitions.

Definition 3.3 (Shwartz functions and distributions). We define the space of Schwartz functions
on Rn by

S (Rn) := {u ∈ C∞(Rn) : sup
x
|x|β|∂αxu(x)| < Cαβ, for all α, β ∈ Nn}.

The space of Schwartz distributions, S ′(Rn) is then the dual of S (Rn).

We next recall the semiclassical Fourier transform.

Definition 3.4 (Semiclassical Fourier transform). The semiclassical Fourier transform is the map
F : S ′(Rn)→ S ′(Rn) given by

F(u)(ξ) :=

ˆ
Rn
e
i
h
〈x−y,ξ〉u(y)dy.

We can now define the semiclassical Sobolev spaces. The elements of these spaces are the same
as for the standard Sobolev spaces, but the norm is scaled in a way depending on h.

Definition 3.5 (Semiclassical Sobolev norm). For s ∈ R the s-semiclassical Sobolev norm is
defined as

Hs
h(Rn) := {u ∈ S ′(Rn) : 〈ξ〉sF(u) ∈ L2(Rn)}, ‖u‖2Hs

h
:= (2πh)−n‖〈ξ〉sF(u)‖2L2 .

For A : S (Rn)→ S (Rn), we say that A = O(h∞)Ψ−∞ if for all N , there is CN > 0 such that

‖A‖H−Nh →HN
h
≤ CNh

N .

We may now introduce the class of pseudodifferential operators on Rn.
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Definition 3.6 (Pseudodifferential operator on Rn). For m ∈ R, we say that A is a pseudodiffer-
ential operator of order m and write A ∈ Ψm

δ (Rn) if there is a ∈ Smδ (T ∗Rn) such that

A = OpWh (a) +O(h∞)Ψ−∞ , [OpWh (a)u](x) :=
1

(2πh)d

ˆ
e
i
h
〈x−y,ξ〉a

(x+ y

2
, ξ
)
u(y)dydξ.

Here, the integral in OpWh (a)u, can be understood as an iterated integral when u ∈ S (Rn) and
it is not hard to check that operators in Ψm

δ (Rn) are bounded on S (Rn) and S ′(Rn).

Remark 3.7. The W in the notation OpWh stands for the Weyl quantization. There are many
other standard choices of quantization including the left quantization. We refer the reader to [?,
Chapter 4] for more information.

As with symbols, we sometimes omit the space Rn from the notation and define Ψ∞δ :=
⋃
m Ψm

δ ,

Ψ−∞δ :=
⋂
m Ψm

δ . We also define Ψcomp
δ to be those A ∈ Ψ−∞δ such that

A = OpWh (a) +O(h∞)Ψ−∞

for some a ∈ Scomp
δ . Furthermore, we sometimes write Ψm

0 = Ψm i.e. omit the δ = 0 from spaces
of operators below. In what follows we will need the following result of [?, Theorems 4.14,4.17]
that explains the result of composition of two pseudodifferential operators.

3.2. Symbol map. We now recall the most important, basic properties of the pseudodifferential
calculus [?, Appendix E].

Theorem 3.8 (Symbol map). There is a map

σm,δ : Ψm
δ (Rn)→ Smδ (T ∗Rn)

such that the following holds.

(1) Suppose that A ∈ Ψm
δ and σm,δ(A) = 0. Then A ∈ h1−2δΨm−1

δ .

(2) Suppose that A ∈ Ψm
δ . Then, A∗ ∈ Ψm

δ and σm,δ(A
∗) = σm,δ(A).

(3) Let A ∈ Ψm1
δ and B ∈ Ψm2

δ . Then AB ∈ Ψm1+m2
δ and

σm1+m2,δ(AB) = σm1,δ(A)σm2,δσ(B).

(4) Let A ∈ Ψm1
δ and B ∈ Ψm2

δ . Then [A,B] ∈ h1−2δΨm1+m2−1
δ and

σm1+m2−1,δ(h
2δ−1[A,B]) = −ih2δ{σm1,δ(A), σm2,δ(B)},

where {a, b} denotes the Poisson bracket of a and b.

Remark 3.9. Usually, we will write σ for the symbol map, leaving the m, δ implicit.

Finally, we record the boundedness properties of pseudodifferential operators [?, Proof of Tho-
erem 13.13].

Lemma 3.10 (Boundedness properties). Let A ∈ Ψm
δ (Rn). Then for any s ∈ R there is C > 0

such that for 0 < h < 1,

‖A‖Hs
h→H

s−m
h
≤ C.
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3.3. Wavefront set. Before proceeding to properties of pseudodifferential operators such as el-
lipticity, we introduce the wavefront set of a pseudodifferential operator.

We can now define the essential support of a symbol and the wavefront set of a pseudodifferential
operator. These notions codify the idea of the ‘support’ in phase space of a pseudodifferential
operator.

Definition 3.11 (Essential support). Let a ∈ Smδ . For (x0, ξ0) ∈ T ∗Rn, we say that (x0, ξ0) /∈
ess supp(a) if there is an h-independent neighborhood, U of (x0, ξ0) such that for all α, β ∈ Nn,
and N ∈ R, there is CαβN > 0 such that for 0 < h < 1,

|∂αx ∂
β
ξ a(x, ξ)| ≤ CαβNhN , (x, ξ) ∈ U.

Definition 3.12 (Wavefront set). Let A ∈ Ψm
δ . For (x0, ξ0) ∈ T ∗Rn, we say that (x0, ξ0) /∈

WFh(A) if there is a ∈ Smδ such that (x0, ξ0) /∈ ess supp(a) and

A = Oph(a) +O(h∞)Ψ−∞ .

It is easy to see from the definition that for any A ∈ Ψm, WFh(A) ⊂ T ∗Rn is closed.

The crucial feature of the wavefront set is contained in the following lemma [?, (E.2.5)].

Lemma 3.13. Suppose that A ∈ Ψm1
δ , B ∈ Ψm2

δ . Then,

WFh(AB) ⊂WFh(A) ∩WFh(B).

Remark 3.14. Let A ∈ Ψm. Because of Lemma 3.13, one may think of WFh(A) as the set on
which A ‘lives’; i.e. Au contains no information about the parts of u which are not in WFh(A). We
will see in the next section (see Lemma 3.17) that when |σ(A)(x, ξ)| > c〈ξ〉m for (x, ξ) ∈ U ⊂ T ∗M ,
then Au encodes all the information about the function u on U .

Lemma 3.15. Suppose that A ∈ Ψcomp
δ and WFh(A) = ∅. Then A = O(h∞)Ψ−∞.

The wavefront set, by definition, is an h-independent subset of TRn.

3.4. Ellipticity and inverses. We now define the notion of ellipticity for pseudodifferential
operators.

Definition 3.16 (Ellipticity). Let A ∈ Ψm(M). For (x0, ξ0) ∈ T ∗M , we say that A is elliptic at

(x0, ξ0), and write (x0, ξ0) ∈ Ell(A), if there is a neighborhood, U ⊂ T
∗
M of (x0, ξ0) and c > 0

such that

|σ(A)(x, ξ)| ≥ c〈ξ〉m, (x, ξ) ∈ U ∩ T ∗M

It is easy to see from the definition that for any A ∈ Ψm(M), Ell(A) ⊂ T ∗M is open.

Ellipticity gives an appropriate conditions which guarantee that A is invertible on a subset of
T
∗
M in the following sense.

Lemma 3.17 (Elliptic parametrix). Suppose that A ∈ Ψm1
δ and B ∈ Ψm2

δ with WFh(B) ⊂ Ell(A).

Then there are EL , ER ∈ Ψm2−m1
δ such that

B = ELA+O(h∞)Ψ−∞ , B = AER +O(h∞)Ψ−∞ .



THE GAUGE TRANSFORM 7

As with many constructions in semiclassical analysis, this lemma is proved by an iterative
construction. The nonlinear part of the construction is done by solving a top order equation,
and then each successive iteration involves only the solution of a linear equation. In the case of
the elliptic parametrix construction, this is particularly simple since the equations involved are
algebraic.

Proof. Let e = σ(B)/σ(A). Then, since WFh(B) ⊂ Ell(A), |σ(A)| > c > 0 on suppσ(B), and
hence, e ∈ Sm2−m1

δ . Putting EL,0 := Oph(e), we have

σm2,δ(EL,0A−B) = 0,

and therefore,

EL,0A = B + h1−2δR1,

with R1 ∈ Ψm1−1
δ .

Suppose we have found ej , i = 0, 1, . . . , N − 1, ej ∈ Sm2−m1−j
δ such that supp ej ⊂ WFh(B),

and, with EL,N−1 :=
∑N−1

j=0 hj(1−2δ)Oph(ej), we have

(2) EL,N−1A = B + hN(1−2δ)RN ,

for some RN ∈ Ψm2−N
δ . Now, since supp ei ⊂WFh(B), WFh(EL,N−1) ⊂WFh(B) and hence,

WFh(RN ) = WFh(h−N(1−2δ)(B − EL,N−1A)) ⊂WFh(B).

Therefore WFh(RN ) ⊂ Ell(A) and hence eN := −σ(RN )/σ(A) ∈ Sm2−N−m1
δ and

(EL,N−1 + hN(1−2δ)Oph(eN ))A−B = hN(1−2δ)(RN +Oph(eN )A) ∈ hN(1−2δ)Ψm2−N ,

and

σm2−N,δ(RN +Oph(eN )A) = 0.

Therefore,

(EL,N−1 + hN(1−2δ)Oph(eN ))A−B = h(N+1)(1−2δ)RN+1 ,

for some RN+1 ∈ Ψm2−N−1. In particular, putting EL,N =
∑N

j=0 h
jOph(ej), we have (2) with

N − 1 replaced by N . In particular, there are ej ∈ Ψm2−m2−j
δ for j = 0, 1, . . . such that (2) holds

for any N . Setting EL ∼
∑

j h
j(1−2δ)Oph(ej), completes the proof of the first equality.

The proof of the second equality is nearly identical and we leave the details to the reader. �

3.5. Auxilliary facts.

Lemma 3.18. Suppose that P ∈ Ψm is self-adjoint such that

|σ(P )(x, ξ)| ≥ c|ξ|m − C, (x, ξ) ∈ T ∗Rn.
Then, for all χ ∈ C∞c , χ(P ) ∈ Ψcomp and

WFh(χ(P )) ⊂ {(x, ξ) : p(x, ξ) ∈ suppχ}, WFh(I − χ(P )) ⊂ {(x, ξ) : p(x, ξ) ∈ supp(1− χ)}.

Proof. TODO? �

Lemma 3.19. Let A ∈ Ψ0. Then eiA ∈ Ψ0.
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Proof. We will construct an asymptotic series bj ∈ S−j such that, with

B ∼
∑
j

~jbj ,

we have eitA = Oph(Beitσ(A)) +O(~∞)Ψ−∞ . Set b0 = 1. Then,

Dt(e
−itAOph(b0e

itσ(A)) = e−itA(−AOph(eitσ(A)) +Oph(σ(A)eitσ(A)))

= e−itA~R1(t)Oph(eitσ(A))

for some R1(t) ∈ Ψ−1. Now, suppose that we have bj(t) ∈ S−j such that, with BN−1(t) :=∑N−1
j=0 ~jbj(t), we have

Dt(e
−itAOph(BN−1(t)eitσ(A))) = e−itA~NRN (t)Oph(eitσ(A)),

for some RN ∈ Ψ−N . Then, let bN (t) solve

b′N (t)− iσ(A)bN (t) = −σ(RN ), bN (0) = 0,

i.e.

bN = −
ˆ t

0
ei(t−s)σ(A)σ(RN )(s)ds ∈ Ψ−N .

We have

Dt(e
−itAOph([BN−1(t) + hNbN (t)]eitσ(A)))

= e−itAhNRNOph(eitσ(A)) + hNe−itA(Oph((−ibN (t)σ(A) + b′N (t))etitσ(A)))

= e−itAhNRNOph(eitσ(A)) + hNe−itA(Oph((−ibN (t)σ(A) + b′N (t)) + hRN+1)Oph(etitσ(A)))

= hN+1e−itARN+1Oph(eitσ(A)),

where RN+1 ∈ Ψ−N−1. Then, by induction, setting B(t) ∼
∑

j h
jbj(t), we have

Dt(e
−itAOph(B(t)eitσ(A))) = eitAO(~∞)Ψ−∞ .

So that
e−iAOph(B(1)eiσ(A)) = I +O(~∞)H−s~ →L2 .

Hence,

eitA −Oph(B(t)eitσ(A)) = O(~∞)H−s~ →L2

and, in particular eitA : H−s~ → H−s~ is bounded uniformly in h.

Repeating the construction, we also find B̃(t) such that

Dt(Oph(B̃(t)eitσ(A))e−itA) = O(~∞)Ψ−∞e
−itA,

and hence, since eitA : H−s~ → H−s~ is uniformly bounded,

O(~∞)Ψ−∞e
−itA = O(~∞)Ψ−∞ .

In particular,

eitA −Oph(B̃(t)eitσ(A)) = O(~∞)Ψ−∞ .

�
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Lemma 3.20. For B ∈ Ψm
δ , Aδ ∈ ~`Ψ0, and any N

eiABe−iA −
N−1∑
j=0

ij

j!
adjAB ∈ ~N(1−2δ+`)Ψm−N

δ .

In particular,

eiABe−iA −B − i[A,B] ∈ ~2(1−2δ+`)Ψm−N
δ .

Proof. Observe that
Dk
t e
itABe−itA = eitA adkABe

−itA.

Thus,

eiABe−iA =
N−1∑
j=0

ij

j!
adjAB +

ˆ 1

0

iN

(N − 1)!
(1− t)N−1eitA adNA Be

−itAdt.

Now, eitA ∈ Ψ0, and adNA B ∈ hN(1−2δ+`)Ψm−N
δ . Therefore,ˆ 1

0

iN

(N − 1)!
(1− t)N−1eitA adNA Be

−itAdt ∈ ~N(1+`)Ψm−N ,

and hence the lemma follows.

Remark 3.21. Really all we need here is that eiA : Hs
~ → Hs

~ for any s.

eiAB −BeiA = (eiABe−iA −B)eiA

�

4. Basic reductions

We start by discussing the natural requirements for the spectral function of two operators to
be close. First, notice that closeness of two operators, H1 and H2 in any norm does not suffice
for the spectral projectors, E(Hj)(λ) to be close to each other. For example, consider

H1 =

(
1 0
0 2

)
, H2 =

(
1 0
0 2 + ε

)
,

Then,

E(H1)(2) =

(
1 0
0 1

)
, E(H2)(2) =

(
1 0
0 1(−∞,0](ε)

)
.

Indeed, an eigenvalue of H1 may be perturbed out of (−∞, λ] and hence, a small perturbation
may cause a large change in the spectral projector in any topology. If, however, we consider
E(H1)(λ) for λ /∈ Spec(H1) the spectral projectors will always be close. This assumption is too
much for our purposes since we typically expect the spectrum of our operators to include most of
[0,∞) e.g. for periodic Schrödinger operators. Therefore, we need something a little weaker.

Notice that

E(H)(λ, x, y) = 〈E(H)(λ)δx, δy〉 = 〈E(H)(λ)δx, E(H)(λ)δy〉,
so we can work in the strong topology.



10 JEFFREY GALKOWSKI

In particular, an important ingredient in the proof is the smallness of

(3) E(H2; (λ− ι, λ+ ι])δx = E(H2)(λ+ ι, x, x)− E(H2)(λ− ι, x, x)

for small ι.

Our next Lemma will be used to show that if two operators are close near a particular energy
level, then their spectral projectors are close in the strong topology near that energy level (see
Lemma 4.2). First, we prove the following lemma.

Lemma 4.1. Let H be a Hilbert space, a ∈ R, s ≥ 0, J ⊂ R an interval and H1, H2 be self-adjoint
operators on H with Hj ≥ a for j = 1, 2. Define J− := Jc∩(−∞, inf J ] and J+ := Jc∩ [sup J,∞),
and

(4)

ε1 := ‖E(H1; J−)(H1 −H2)E(H2; J+)(H2 + (1− a)I)s‖,
ε2 := ‖(H1 −H2)E(H2; J)(H2 + (1− a)I)s‖,
ε3 := ‖E(H1; J)(H1 −H2)(H2 + (1− a)I)s‖.

Suppose that λ− a ≥ 1 and [λ− ι, λ+ ι] ⊂ J . Then,

‖E(H1; (−∞, λ− ι])E(H2; [λ+ ι;∞))(H2 − a+ 1)s‖ ≤ π(ε1 + ε2 + ε3)

ι
.

Proof. Assume that

(5) φ = E(H1; (−∞, λ− ι])φ, (H2 − a+ 1)sψ = E(H2; [λ+ ι,∞))(H2 − a+ 1)sψ,

with ‖φ‖ = ‖ψ‖ = 1. Then we need to establish |(φ, (H2 − a+ 1)sψ)| ≤ π(ε1+ε2+ε3)
ι . We have

(φ, (Hs − a+ 1)sψ) =

ˆ
γ
〈(H1 − z)−1φ, (H2 − a+ 1)sψ〉dz

=

ˆ
γ
〈φ, (H1 − z̄)−1(H2 − a+ 1)sψ〉dz

=

ˆ
γ
〈φ, (H2 − z̄)−1 + (H1 − z̄)−1(H1 −H2)(H2 − z̄)−1(H2 − a+ 1)sψ〉dz

=

ˆ
γ
〈φ, (H1 − z̄)−1(H1 −H2)(H2 − z̄)−1(H2 − a+ 1)sψ〉dz

=

ˆ
γ
((H1 − z)−1φ, (H1 −H2)(H2 − a+ 1)s(H2 − z̄)−1ψ〉dz

where γ = γN is the closed square contour in the complex plane symmetric about R and inter-
secting R at λ and −N where N > −a is large. Note that in the next to last line we have used
that with γ̄ the contour conjugate to γ,

ˆ
γ̄
(H2 − z̄)−1E((λ+ ι,∞];H2)dz̄ = 0.
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Now,

(H1 −H2)(H2 − a+ 1)s

= E(H1; J)(H1 −H2)(H2 + (1− a)I)s + E(H1; Jc)(H1 −H2)E(H2; Jc)(H2 + (1− a)I)s

+ E(H1; Jc)(H1 −H2)E(H2; J)(H2 + (1− a)I)s.

Therefore, we need only to estimate the three terms

I :=
∣∣∣ ˆ

γ
((H1 − z)−1φ,E(H1; Jc)(H1 −H2)E(H2; Jc)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣∣∣,
II :=

∣∣∣ ˆ
γ
((H1 − z)−1φ,E(H1; J)(H1 −H2)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣∣∣,
III :=

∣∣∣ˆ
γ
((H1 − z)−1φ,E(H1; Jc)(H1 −H2)E(H2; J)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣∣∣.
For I, we observe using (5) that

lim
N→∞

I = lim
N→∞

∣∣∣ˆ
γ
((H1 − z)−1φ,E(H1; J−)(H1 −H2)E(H2; J+)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣∣∣
≤ ε1 lim

N→∞

( ˆ
γ
‖(H1 − z)−1φ‖2|dz|

)1/2( ˆ
γ
‖(H2 − z)−1ψ‖2|dz|

)1/2
≤ πε1

ι
.

Similarly, we estimate

lim
N→∞

II + III ≤ π(ε2 + ε3)

ι
to finish the proof. �

We then use Lemma 4.1 to estimate the difference between spectral projectors in the strong
operator topology.

Lemma 4.2. Let H be a Hilbert space, a ∈ R, s ≥ 0, and H1, H2 be self-adjoint operators on H
with Hj ≥ a for j = 1, 2. Define ε1, ε2, ε3 as in (4). Then, if ε1 +ε2 +ε3 < 1, and [λ−ι, λ+ι] ⊂ J ,
for any f ∈ H, λ ≥ a+ 1, and ι > 0,

(6) ‖[E(H1)(
√
λ)− E(H2)(

√
λ)]f‖H ≤ 2‖E(H2; [λ− ι, λ+ ι])f‖H

+
2π(ε1 + ε2 + ε3)

ι

(
‖E(H2)(

√
λ)f‖H + ‖(H2 + (1− a)I)−sf‖H

)
.

Proof. Consider

E(H2)(
√
λ)f = E(H2; (−∞, λ− ι))f + E(H2; [λ− ι, λ])f

= [E(H1; (−∞, λ]) + E(H1; (λ,∞))]E(H2; (−∞, λ− ι))f + E(H2; [λ− ι, λ])f.

Now, using Lemma 4.1 with s = 0, λ replaced by λ+ ι
2 and ι replace by ι

2 , we have

‖E(H1; (λ,∞))E(H2; (−∞, λ− ι))f‖ = ‖E(H1; (λ,∞))E(H2; (−∞, λ− ι))E(H2)(
√
λ)f‖

≤ 2π
ε1 + ε2 + ε3

ι
‖E(H2)(

√
λ)f‖.
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Now,

E(H1; (−∞, λ])E(H2; (−∞, λ− ι))f = E(H1)(
√
λ)f − E(H1; (−∞, λ]))E(H2; [λ− ι,∞))f,

and, using Lemma 4.1 again on the second term

‖E(H1; (−∞, λ]))E(H2; [λ− ι,∞))f‖
≤ ‖E(H1; (−∞, λ]))E(H2; [λ− ι, λ+ ι))f‖

+ ‖E(H1; (−∞, λ]))E(H2; [λ+ ι,∞))(H2 − a+ 1)s(H2 − a+ 1)−sf‖

≤ ‖E(H2; [λ− ι, λ+ ι))f‖+
2π(ε1 + ε2 + ε2)

ι
‖(H2 − a+ 1)−sf‖,

which completes the proof. �

Corollary 4.3. Let H be a Hilbert space, a ∈ R, s ≥ 0, and H1, H2 be self-adjoint operators on
H with Hj ≥ a for j = 1, 2. Define

(7) ε := ‖(H1 −H2)(H2 + (1− a)I)s‖,
Suppose that λ− a ≥ 1. Then, Then, if ε < 1 for any f ∈ H, λ ≥ a+ 1, and ι > 0,

(8) ‖[E(H1)(
√
λ)− E(H2)(

√
λ)]f‖H ≤ 2‖E(H2; [λ− ι, λ+ ι])f‖H

+
3πε

ι

(
‖E(H2)(

√
λ)f‖H + ‖(H2 + (1− a)I)−sf‖H

)
.

Proof. Observe that ε1, ε2, ε3 in (4) all satisfy εi ≤ ε. �

4.1. Application to Schrödinger operators.

Lemma 4.4. Let δ > 0, V ∈ Ψ2−δ, and put

H := −~2∆ + ~δV.
Then, for any ω ∈ R,

‖E(H)(ω)f‖L2 ≤ C〈ω〉s‖f‖H−s~
.

Proof. Observe that H ≥ −1 for ~ small enough. Therefore,

‖E(H)(ω)f‖L2 = ‖E(H)(ω)(H + 1)s(H + 1)−sf‖L2

≤ (ω2 + 1)s‖E(H)(ω)(H + 1)−sf‖L2 ≤ (ω2 + 1)s‖(H + 1)−sf‖L2 .

Next, since (H + 1)−s ∈ Ψ−2s, the lemma follows. �

Lemma 4.5. Let δ1, δ2 > 0, V1, V2 ∈ Ψ2−δ1, and put

H1 := −~2∆ + ~δ2V1, H2 := −~2∆ + ~δ2V2.

Let 0 < ε < min(1
2 , δ2) and a(~) < b(~)− 5~ε and V1(x, ξ) = V2(x, ξ) for a ≤ |ξ|2 ≤ b. Then, with

J = [a+ ~ε, b− ~ε], for any s, we have

(9)

‖E(H1; J−)(H1 −H2)E(H2; J+)(H2 + 1)s‖ = O(~∞),

‖(H1 −H2)E(H2; J)(H2 + 1)s‖ = O(~∞),

‖E(H1; J)(H1 −H2)(H2 + 1)s‖ = O(~∞).
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Proof. Observe that J− = a + ~ε, J+ = b − ~ε. Let χ± ∈ Sε with χ− ≡ 1 on (−∞, J− + ~ε),
suppχ− ⊂ (−∞, b− 2~ε), and χ+ ≡ 1 on (J+ − ~ε,∞) with suppχ+ ⊂ (a+ 2~ε,∞). Then,

E(H1; J−)(H1 −H2)E(H2; J+)(H2 + 1)s

= E(H1; J−)χ−(H1)hδ2(V1 − V2)χ+(H2)E(H2; J+)(H2 + 1)s = O(~∞)Ψ−∞

since χ−(H1), χ+(H2) ∈ Ψ0
ε with MSh(χ−(H1)) ∩MSh(χ+(H2)) = ∅.

Remark 4.6. If ε = 0, use wavefront set.

Now, let χ ∈ Sε with χ ≡ 1 on [a + ~ε, b − ~ε] with suppχ ⊂ [a + 1
2~

ε, b − 1
2~

ε]. Then,

χ(H1), χ(H2) ∈ Ψε and MSh(χ(Hi)) ⊂ {a ≤ |ξ|2 ≤ b}, hence

(H1 −H2)E(H2; J) = ~δ2(V1 − V2)χ(H2)E(H2; J) = O(~∞)Ψ−∞ ,

and

E(H1; J)(H1 −H2) = E(H1; J)χ(H1)~δ2(V1 − V2) = O(~∞)Ψ−∞ .

�

Corollary 4.7. Let δ1, δ2 > 0, V1, V2 ∈ Ψ2−δ1, and put

H1 := −~2∆ + ~δ2V1, H2 := −~2∆ + ~δ2V2.

Let 0 < ε < min(1
2 , δ2) and a(~) < b(~)− 5~ε and V1(x, ξ) = V2(x, ξ) for a ≤ |ξ|2 ≤ b. Then, for

ω2 ∈ [a+ ~ε + ι, b− ~ε − ι, we have

‖E(H1)(ω)f − E(H2)(ω)f‖ ≤ ‖E(H2; [λ− ι, λ+ ι])f‖L2 +O(~∞ι−1)‖f‖H−s~

Proof. The corollary follows from combining Lemma 4.2 with Lemmas 4.4 and 4.5. �

Remark 4.8. Given V1, we can replace V1 by V2 which agrees with V1 near |ξ|2 ∈ [a, b] and is
zero outside a small neighborhood thereof provided that we have

‖E(H2; [λ− ι, λ+ ι])f‖L2 � 1.

For the spectral function, observe that

E(H1)(
√
λ, x, x) = 〈E(H1)(λ)δx, E(H1)(λ)δx〉.

Hence, it is enough to have that

‖E(H2; [λ−ι, λ+ι])f‖L2 = 〈E(H2; [λ−ι, λ+ι])δx, δx〉 ≤ E(H2)(
√
λ+ 2ι)(x, x)−E(H2)(

√
λ− 2ι)(x, x)� 1.

To see that the spectral function for H2 and H1 are close. For instance, it is enough to have a
complete asymptotic expansion for the spectral function of H2. The upshot of all of this so far
is that we can work with an operator which is equal to the Laplacian away from some particular
energy surface.
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5. Gauge transforms

Let χ ∈ C∞c ((−1
2 ,

1
2)) with χ ≡ 1 near 0. We now start with the operator

H2 := −~2∆ + ~2χ(|~D| − 1)V χ(|~D| − 1).

Our goal is to construct a unitary operator, U such that

UH2U
∗ = H3 +O(~∞)H−s~ →H

s
~
, H3 := −~2∆ + ~2m(~D) + ~2Xres

where Xres is sufficiently structured so that one can compute the spectral function for H3. Observe
that, using Corollary 4.3, it will be enough to understand the spectral projector of H̃3 := U∗H3U ,
(and hence that of H3) provided that we have

E(H̃3)(
√
λ+ 2ι, x, x)− E(H̃3)(

√
λ− 2ι, x, x)� 1

In particular, if we can show that E(H̃3)(ρ)(x, x) has a full asymptotic expansion in powers of ρ,
then we will obtain the same for H2 and hence H1.

Ideally, we would like to have Xres = 0 since the spectral function of a Fourier multiplier is
easy to compute. However, we will see that it is not possible to do this in dimension larger than
1.

Lemma 5.1. Let m ∈ C∞(Rd). Then,

E(m(~D); (−∞, ω])(x, y) =
1

(2π~)d

ˆ
m(ξ)≤ω

e
i
h
〈x−y,ξ〉dξ.

Proof. Since the semiclassical Fourier transform diagonalizes m(~D); i.e. Fhm(~D)F−1
h = m(ξ),

we have

E(m(ξ); (−∞, ω]) = 1m(ξ)≤ω

Therefore

E(m(~D); (−∞, ω]) = F−1
h 1m(ξ)≤ωFh,

and the claim follows. �

Remark 5.2. In fact, it is possible to compute the spectral function for operators more general
than Fourier multiplier. e.g. −~2∆ + ~2V , where V ∈ C∞c . We, however, will not discuss this
here.

5.1. Basic Examples of Gauges transforms.

5.1.1. An operator on S1. Consider first

H := hDx1 + hV : L2(S1)→ L2(S1).

Our goal is to compute e.g. the spectrum of H and, to this end, we want to ‘remove’ V via a
unitary conjugation. In this case, we consider

H1 := eifHe−if = hDx1 − hf ′ + hV.
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Ideally, we would like to solve f ′ = V , but this may not be possible since f should be a periodic
function and hence ˆ 2π

0
f ′(x)dx = 0.

We can, however, set

f(x) =

ˆ x

0
V (t)− V̄ dt, V̄ :=

1

2π

ˆ 2

0
πV (s)ds.

so that
H1 = hDx + hV̄ .

Notice that V̄ is a constant and, in particular, commutes with hDx. Hence it is easy to see that

σ(H1) = σ(H) = {n+ hV̄ : n ∈ Z}.

5.1.2. A 2× 2 matrix. Consider the matrix

H :=

(
1 ε
ε 0

)
It is, of course, possible to diagonalize the matrix explicitly, but we want to emulate the procedure
below. Hence, assume A = O(ε) and write

eiAHe−iA = H + i[A,H] +O(ε2)

Hence, we solve(
0 ε
ε 0

)
= −i[A,H] +O(ε2) = −i[A,H0] +O(ε2), H0 :=

(
1 0
0 0

)
Doing this, we arrive at

A :=

(
0 −iε
iε 0

)
,

and

eiAHe−iA =

(
1 +O(ε2) O(ε2)
O(ε2) O(ε2)

)
.

We can then repeat the procedure to diagonalize modulo O(ε∞).

5.2. Discussion around the Gauge transform. Consider

Dt(e
itAH2e

−itA) = eitA[A,H2]e−itA,

so that

eiAH2e
−iA = i

ˆ 1

0
[A, eitAH2e

−itA]dt+H2

Since we want eiAH2e
−iA = H2 − ~2V + ~2B, where B is pseudodiffferential, it is natural to look

for [A,H2] = O(~2)Ψcomp , and hence A ∈ ~Ψcomp. Thus, we are in the situation of Lemma 3.20
and we have

eiAH2e
−iA −H2 + i[A,H2] ∈ ~4Ψcomp

Now,
[A,H2]− [A,−~2∆] ∈ ~4Ψcomp,
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So, we aim to find

i~−2[A, ~2∆] = V + l.o.t.

In particular, A = ~Oph(a), where

−H|ξ|2a = −2〈ξ, ∂x〉a = V.

So the question is: when is there a symbolic solution to this equation. Obvious problem– growth
as x→∞ e.g. V = 1.

Next, question: What is ‘safe’ to leave behind? Obvious answer: Fourier multipliers – spectral
function for Fourier multipliers.

So, we aim to solve

−H|ξ|2a = −2〈ξ, ∂x〉a = V + S,

where S is safe. In the case of periodic operators, this is more natural on the Fourier transform
side

−2i〈ξ, θ〉â(ξ, θ) = V̂ (θ), θ 6= 0

In particular,

â(ξ, θ) =
iV̂ (θ)

2〈ξ, θ〉
, 〈ξ, θ〉 6= 0.

So, we have some more obvious problems when 〈ξ, θ〉 = 0, e.g.

∂x1a(x, ξ) = cos(x2) ⇔ a(x, ξ) = x1 cos(x2) + f(x2).

We need to avoid this situations– resonant zones

5.3. Gauge transform in dimension 1. Suppose that V ∈ C∞(R;R) is periodic; i.e.

V =
∑
n

vne
inθ, vn = v−n,

∑
n

|n|2k|vn|2 <∞

Consider

H2 := −~2∂2
x + ~2χ(|~D| − 1)V χ(|~D| − 1)

Lemma 5.3. There is Φ ∈ ~Ψcomp self-adjoint such that

eiΦH2e
−iΦ = −~2∆ + ~2m(~D) +O(~∞)Ψ−∞ .

Proof. Let V̄ = v0 and

φ0(x, ξ) =
1

2ξ
χ(|ξ| − 1)2

ˆ x

0
(V − V̄ )(s)ds.

Then,

2〈ξ, ∂x〉φ0 = χ(|ξ| − 1)2V (x),

and, since V − V̄ has zero average, φ0 ∈ Scomp is periodic in x. Hence,

i[Oph(~φ0), ~2∆] = ~2χ(|~D| − 1)V χ(|~D| − 1) + ~3R̃1,
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where R̃1 ∈ Ψcomp periodic in x and WFh(R̃1) ⊂ {ξ : |ξ| − 1 ∈ suppχ} In particular, with
Φ0 = Oph(~φ0),

eiΦ0H2e
−iΦ0 = −~2∆ + ~2m1(~D) + ~3R1,

where m1 ∈ Scomp, R1 ∈ Ψcomp is periodic in x with zero average and WFh(R1) ⊂ {ξ : |ξ| − 1 ∈
suppχ}. Suppose that we have found φj such that with ΦN−1 = ~

∑N−1
j=0 hj+1Oph(φj), we have

eiΦN−1H2e
−iΦN−1 = −~2∆ + ~2mN (~D) + ~2+NRN ,

where mN ∈ Scomp, RN ∈ Ψcomp is periodic in x with zero average and WFh(RN ) ⊂ {ξ : |ξ|−1 ∈
suppχ}.

Now, put

φN (x, ξ) =
1

2ξ

ˆ x

0
σ(RN )(s, ξ)ds.

Then,
2〈ξ, ∂x〉φN = σ(RN ),

and, since σ(RN ) has zero average, φN ∈ Scomp is periodic in x. Hence,

i[Oph(~N+1φN ), ~2∆] = ~N+2RN + ~N+3R̃N+1,

for some R̃N+1 ∈ Ψcomp periodic in x with WFh(R̃N+1) ⊂ {ξ : |ξ| − 1 ∈ suppχ}. In particular,

eiΦNH2e
−iΦN = −~2∆ + ~2mN+1(~D) + ~3+NRN+1,

for some mN+1 ∈ Scomp, RN+1 ∈ Ψcomp is periodic in x with zero average and WFh(RN+1) ⊂
{ξ : |ξ| − 1 ∈ suppχ}.

Setting Φ ∼
∑

j ~1+jOph(φj), then completes the proof. �

Theorem 5.4. Let V ∈ C∞(R;R) be 2π periodic. Then, with

H := −~2∆ + ~2V,

for ω near 1, we have

E(H; (−∞, ω])(x, y) =
1

2π~

ˆ ξ+h (ω)

ξ−h (ω)
e
i
~ 〈x−y,ξ〉a(x, y, ξ)dξ,

where
ξ±h (ω) =

∑
j

~jξ±j (ω), ξ±0 (ω) = ±
√
ω,

and a ∈ S0.

Proof. First, observe that by Corollary 4.7, it is enough to find an asymptotic expansion for the
spectral projector of

H2 := −~2∆ + ~2χ(|~D| − 1)V χ(|~D| − 1).

Then, by Lemma 5.3, there are Φ ∈ ~Ψcomp, m ∈ Scomp such that

eiΦH2e
−iΦ = −~2∆ + ~2m(~D) +O(~∞)Ψ−∞ .

Let
H3 := e−iΦ

(
− ~2∆ + ~2m(~D)

)
eiΦ, H̃3 := −~2∆ + ~2m(~D).
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Then,

H3 −H2 = O(~∞)Ψ−∞

and hence, by Corollary 4.3, it is enough to find a complete asymptotic expansion for the spectral
projector of H3. Since, H̃3 is a Fourier multiplier, we have by Lemma

E(H̃3; (−∞, ω])(x, y) =
1

2π~

ˆ
|ξ|2+~2m(ξ)≤ω

e
i
~ 〈x−y,ξ〉dξ.

Now, let ξ±h (ω) solve

|ξ±h (ω)|2 + ~2m(ξ±h (ω)) = ω,

with | ±
√
ω − ξ±h | <

ω
2 . Then, by the implicit function theorem,

ξ±h =
∑
j

hjξ±j (ω), ξ±0 = ±
√
ω,

and

E(H̃3; (−∞, ω])(x, y) =
1

2π~

ˆ ξ+h (ω)

ξ−h (ω)
e
i
~ 〈x−y,ξ〉dξ.

Next, observe that

E(H3; (−∞, ω]) = e−iΦE(H̃3; (−∞, ω])eiΦ,

and, since e±iΦ ∈ Ψ0,

e±iΦ(x, y) =
1

2π~

ˆ
e
i
~ 〈x−y,ξ〉a±(x, ξ)dξ,

for some a± ∈ S0. In particular,

E(H3; (−∞, ω])(x, y) =
1

(2π~)3

ˆ ξ+h (ω)

ξ−h (ω)

ˆ
e
i
~ (〈x−t,ξ〉+〈t−z,τ〉+〈z−y,ζ〉a−(x, ξ)a+(z, ζ)dzdtdξdζdτ.

Performing stationary phase in (t, z, ξ, ζ) then completes the proof. �

5.4. Gauge transform in dimension ≥ 2. We will focus on the gauge transform as it applies
to a two dimensional periodic operator. That is, let

H = −~2∆ + ~2V,

where V is periodic with respect to the lattice Γ, with dual lattice Γ′ i.e.

V =
∑
θ∈Γ′

aθe
i〈θ,x〉, aθ = ā−θ.

We first replace V by χ(|~D|− 1)V χ(|~D|− 1) using Corollary 4.7 as in the 1 dimensional case
and claim that it is sufficient to find an asymptotic expansion for

H1 := −~2∆ + ~2χ(|~D| − 1)V χ(|~D| − 1),

As before, our goal is to find a unitary operator, U so that

UH1U
∗ = H2 +O(~∞)H−s~ →H

s
~
, H2 := ~2∆ + ~2m(~D) + ~2Xres
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where Xres is sufficiently structured so that one can compute the spectral function for H2. As we
have seen, in higher dimensions, one cannot avoid resonant zones and so the procedure will be
substantially more complicated than in 1-dimension.

One extra complication is that, in practice, one uses a discrete parameter

10−3~ ≤ ~n ≤ 103~,
which is locally constant in ~. We will then compare the results of our computation with two
different choices of ~n in order to obtain the final asymptotics. However, this extra complication
is technical rather than conceptual, so we will work with only the small parameter ~.

Lemma 5.5. Suppose that u, v ∈ Γ \ {0} with u /∈ Rv. Then, | sin θ| ≥ c〈‖u‖‖v‖〉−1, where θ is
the angle between u and v.

Proof. The volume of the parallelogram spanned by u, v is given by

det
(
u v

)
= detFA,

where A has integer coefficients and F is invertible.

|det
(
u v

)
| ≥ c.

Now,
det
(
u v

)
= ‖u‖‖v‖ sin θ,

where θ is the angle between u and v. Therefore

| sin θ| ≥ c

‖u‖‖v‖
≥ c

〈‖u‖‖v‖〉
.

�

Lemma 5.6. Let 0 < δ < 1
3 , 2δ < ε < min(1

2 , 1− δ). Then there is Φ ∈ h1−εΨcomp
ε such that

eiΦH1e
−iΦ = −~2∆ + ~2m(~D) +

∑
|θ|≤~−δ

~2Oph(eθ(ξ)e
iθx) +O(~∞)Ψ−∞ ,

where m, eθ ∈ Scomp
ε ,

supp eθ ⊂ {(x, ξ) : |h−ε〈ξ, θ〉| ≤ 3, |ξ| − 1 ∈ suppχ},
and,

eθ,m are analytic in 〈ξ, θ⊥〉 for |ξ| ∼ 1 and |h−ε〈ξ, θ〉| ≤ 3.

Proof. Fix δ > 0 and let

Vh =
∑
θ∈Γ
|θ|<~−δ

vθe
i〈θ,x〉.

Then,
‖V − Vh‖CN ≤ CN~N .

Let ψ ∈ C∞c (−3, 3) with ψ ≡ 1 on [−2, 2]. Then, let ψj ∈ C∞c (−2, 2), j = 1, 2, . . . with ψ1 ≡ 1 on
[−1, 1] and suppψj ∩ supp(1−ψj+1) = ∅. Now, let ε > 0, with ε+ δ < 1, and set V̄ = v0 and put

φ0 =
∑
|θ|≤~−δ

φ0,θ(x, ξ),
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with

φ0,θ(x, ξ) = χ2(|ξ| − 1)(1− ψ1(h−δ〈ξ, θ〉))
ˆ ∞

0
vθe

i〈θ,x−2tξ〉dt

= χ2(|ξ| − 1)(1− ψ1(h−δ〈ξ, θ〉))vθ
ei〈θ,x〉

2i〈ξ, θ〉
,

so that

2〈ξ, ∂xφ0,θ〉 = χ2(|ξ| − 1)(1− ψ1(h−δ〈ξ, θ〉))vθeiθx.
In particular, φ0 ∈ ~−εScomp

ε and, with Φ0 = ~Oph(φ0),

eiΦ0He−iΦ0 = −~2∆+~2χ2(|~D|−1)v0 +
∑
|θ|≤~−δ

~2χ(|~D|−1)ψ1(~−ε〈θ, ~D〉)vθei〈θ,x〉χ(|~D|−1)

+ ~3−εR1 +O(~∞)Ψ−∞ ,

where R1 ∈ Ψε is Γ periodic and WFh(R1) ⊂ {ξ : |ξ| − 1 ∈ suppχ}.
Now, suppose φj ∈ Scomp

ε such that, with ΦN−1 =
∑N−1

j=0 ~~j(1−ε)φj , such that

eiΦN−1He−iΦN−1 = −~2∆+~2mN (~D)+
∑
|θ|≤~−δ

~2Oph(eθ,N (ξ)eiθx)+~2+N(1−ε)RN+O(~∞)Ψ−∞ ,

where

supp eθ,N ⊂ {ξ : h−ε〈ξ, θ〉 ∈ suppψN , |ξ| − 1 ∈ suppχ},
and, with RN = Oph(rN ), rN =

∑
θ rθ,N (ξ)ei〈θx〉, we have

eθ,N ,mN , , rθ,N are analytic 〈ξ, θ⊥〉 for |ξ| ∼ 1, |h−ε〈ξ, θ〉| ≤ 3

and

supp rθ,N ⊂ {ξ : |ξ| − 1 ∈ suppχ}

Now, put

φN =
∑

0<|θ|≤~−δ
φN,θ(x, ξ),

with

φN,θ(x, ξ) = (1− ψN+1(h−δ〈ξ, θ〉))
ˆ ∞

0
rN,θ(ξ)e

i〈θ,x−2tξ〉dt

= (1− ψN (h−δ〈ξ, θ〉))rN,θ(ξ)
ei〈θ,x〉

2i〈ξ, θ〉
,

we obtain

eiΦNHe−iΦN = −~2∆+~2mN+1(~D)+
∑
|θ|≤~−δ

~2Oph(eθ,N+1e
iθx)+~2+(N+1)(1−ε)RN+1+O(~∞)Ψ−∞ ,

where mN+1 ∈ Scomp
ε , eθ,N+1 ∈ Scomp

ε , RN+1 ∈ Scomp
ε ,

supp eθ,N1 ⊂ {(x, ξ) : h−ε〈ξ, θ〉 ∈ suppψN+1},
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and, with RN+1 = Oph(rN+1), rN+1(x, ξ) =
∑

θ rθ,N+1(ξ)ei〈θx〉, we have

eθ,N+1, rθ,N+1,mN+1 are analytic 〈ξ, θ⊥〉 for |ξ| ∼ 1, |h−ε〈ξ, θ〉| ≤ 3

and
supp rθ,N+1 ⊂ {ξ : |ξ| − 1 ∈ suppχ}

Putting Φ ∼ ~
∑

j ~j(1−ε)φj completes the proof. �

6. Computation of the integrated density of states

For simplicity, we now restrict our attention to the integrated density of states:

N(H,λ) :=
1

(2π)d

ˆ
k∈Γ∗

N(H,λ, k)dk,

where N(H,λ, k) is the eigenvalue counting function for

eikxHe−ikx, u(x+ γ) = eikγu(x).

In particular, this quantity is clearly unitarily invariant (provided the unitary operators also
commute with translation by Γ). Therefore, it is enough to compute N(H2, λ), where

H2 := −h2∆ + h2m(hD) +
∑
|θ|≤h−δ

h2Oph(eθ(ξ)e
iθx),

and we will focus on this from now on. To simplify things further, we will assume there is exactly
one resonant zone corresponding to θ = (1, 0). In particular,

H2 := −h2∆ + h2m(hD) +

h−δ∑
n=1

h2Oph(en(ξ)einx1),

where en ∈ Scomp
ε is supported near |ξ| = 1 and in |ξ1| < hε and is analytic in ξ2 in a neighborhood

of |ξ| = 1. We then define

D := {|ξ1| ≥Mhε}, R := {|ξ1| ≤Mhε},
and put

ΠD := F−1
h 1DFh

and
ΠR := F−1

h 1RFh,

It will also be conventient to use the fact that

N(H,ω) = lim
R→∞

1

πR2

ˆ
|x0|≤R

E(H,ω, x0, x0)dx0

Observe that
H2ΠD = ΠDH2,

and
H2ΠR = ΠRH2.

Therefore,

e(H2, ω, x0, x0) = 〈E(H2, ω)δx0 , δx0〉 = 〈E(H2, ω)ΠRδx0 ,ΠRδx0〉+ 〈E(H2, ω)ΠDδx0 ,ΠDδx0〉.
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Define

ND(H2, ω) = lim
R→∞

1

πR2

ˆ
|x0|≤R

〈E(H2, ω)ΠDδx0 ,ΠDδx0〉dx0,

NR(H2, ω) := lim
R→∞

1

πR2

ˆ
|x0|≤R

〈E(H2, ω)ΠRδx0 ,ΠRδx0〉dx0.

We first understand the contribution of the non-resonant zones to the integrated density of
states

Lemma 6.1. We have

ND(H2, ω) =

ˆ
|η|2+h2m(η)≤ω

η∈D

dη.

Proof. Observe that

E(H2, ω)ΠD = E(ΠDH2ΠD , ω)

and hence the kernel of E(H2, ω)ΠD is given by

1

(2πh)2

ˆ
1D(η)(|η|2+h2m(η))≤ω

e
i
h
〈x−y,η〉.

Now, we compute

ΠDδx0 =
1

(2πh)2

ˆ
D
e
i
h
〈x−x0,ξ〉dξ.

So that

〈E(H2, ω)ΠDδx0 ,ΠDδx0〉

=
1

(2πh)6

ˆ
1D(η)(|η|2+h2m(η))≤ω

ˆ
ξ∈D

ˆ
ζ∈D

ˆ
e
i
h

(〈x−y,η〉+〈y−x0,ξ〉−〈x−x0,ζ〉)dxdydζdξdη

=
1

(2πh)4

ˆ
1D(η)(|η|2+h2m(η))≤ω

η∈D

ˆ
ζ∈D

ˆ
e
i
h

(〈x−x0,η〉−〈x−x0,ζ〉)dxdζdη

=
1

(2πh)2

ˆ
|η|2+h2m(η)≤ω

η∈D

dη,

and the claim follows since
´
|x0|≤R 1dx0 = πR2. �

Now, to understand NR(H2, ω), we conjugate by the Fourier transform. In particular,

H̃2 := FH2F−1 = |ξ|2 + h2m(ξ) + F
∑
n

Oph(en(η)einx1)F−1.

We next show that the last operator on the right hand side nearly acts as a shift.

Lemma 6.2. The kernel, K(ξ, η) of FOph(ene
inx1)F is given by

en(ξ − nh e12 )δ(η − ξ + nhe1).
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Proof. We have

K(ξ, η) =
1

(2πh)4

ˆ
e
i
h

(−〈ξ,x〉+〈x−y,ζ〉+〈η,y〉)en(ζ)e
ni
2

(x1+y1)dxdydζ

=
1

(2πh)4

ˆ
e
i
h

(〈ζ−ξ+hn
2
e1,x〉+〈y,η−ζ+hn2 e1〉en(ζ)dxdydζ

=
1

(2πh)2

ˆ
e
i
h

(〈y,η−ξ+hne1〉)en(ξ − hn2 e1)dy

= en(ξ − hn2 e1)δ(η − ξ + hne1).

�

Now, we write 1RH̃21R as a direct integral

ˆ h

0
H̃2(k)dk

To realize this, we let I := {|ξ1| ≤ Mhε} and U : L2(R × I) → L2(R;L2([0, h])N ), where
N = dMhε−1e with

[U(k, ξ2)f ]j = f(k + jh, ξ2)

and adjoint

[U∗g](ξ1, ξ2) = g(ξ1 − j(ξ1), j(ξ1), ξ2),

where

j(ξ1) := {j : ξ1 ∈ jh+ [0, h)}.

One can then check that U is unitary and

U(k, ξ2)1RH̃21Ru = H̃R(k, ξ2)U(k, ξ2)u,

where H̃R(k, ξ2) is the 2N × 2N matrix

ξ2
2I + diag(k + jh)2 + h2ei−j(k + i−j

2 h, ξ2)

Lemma 6.3. We have

NR(H2, ω) =
1

(2πh)2

ˆ ˆ h

0
tr(E(H̃R(k, ξ2), ω))dkdξ2
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Proof. Now, let x0 ∈ R2, put xs := x0 + se1

1

2πh

ˆ 2πh

0
〈E(H2, ω)ΠRδxs ,ΠRδxs〉

=
1

(2πh)3

ˆ 2πh

0
〈E(1RH̃21R , ω)1R(ξ)e−

i
h
〈ξ,xs〉, 1R(ξ)e−

i
h
〈ξ,xs〉〉

=
1

(2πh)3

ˆ 2πh

0
〈E(H̃R(k, ξ2), ω)U1R(ξ)e−

i
h
〈ξ,xs〉, U1R(ξ)e−

i
h
〈ξ,xs〉〉ξ2,kds

=
1

(2πh)3

ˆ 2πh

0

ˆ ˆ h

0

∑
`j

(E(H̃R(k, ξ2), ω))`j1R(k + jh, ξ2)e−
i
h

((k+jh)((x0)1+s)

1R(k + `h, ξ2)e
i
h

((k+`h)((x0)1+s)dkdξ2ds

=
1

(2πh)2

ˆ ˆ h

0

∑
j

(E(H̃R(k, ξ2), ω))jj1R(k + jh, ξ2)dkdξ2

=
1

(2πh)2

ˆ ˆ h

0
tr(E(H̃R(k, ξ2), ω))dkdξ2.

�

Now, we crucially use monotonicity of H̃R(k, ξ2) as a function of ξ2 for ξ2 near 1. Indeed,
observe that

tr(E(H̃R(k, ξ2), ω)) = #{λ ∈ Spec(H̃R(k, ξ2)) : λ ≤ ω}.
But, since H̃R(k, ξ2) is monotone, all of its eigenvalues are and hence, letting ±τ±j (k) be the

unique solution near ξ2 = ±
√
ω such that

λj(H̃R(k,±τ±j (k))) = ω,

we have
1

(2πh)2

ˆ ˆ h

0
tr(E(H̃R(k, ξ2), ω))dkdξ2 =

∑
j,±

1

(2πh)2

ˆ h

0
τ±j (k)dk.

Now, let γ± := {|z ∓
√
ω| < r0} with r0 � 1 and counter-clockwise orientation observe that

the number of zeros of f(z, k, ω) := (det H̃R(k, z)− ω) inside γ is given by

#(f, γ±) =
1

2πi

ˆ
γ±

f ′(z)

f(z)
dz

=
1

2πi

ˆ
γ±

tr(H̃R(k, z))′(H̃R(k, z)− ω)−1dz

=
1

2πi

ˆ
γ±

tr(2zI +O(h2−ε))(z2I +O(h2−2ε)− ω)−1dz

=
1

2πi

ˆ
γ±

tr 2zI(z2 − ω)−1dz +O(h2−2ε) = 2N,
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since the integral is integer valued. In particular, the only zeros of f inside γ± are the 2N zeros
on the real axis. Let ER(k, z) := H̃R(k, z)− z2I. Then we have∑

j

τ±j (k) =
1

2πi

ˆ
γ±

±z(det H̃R(k, z)− ω)′(det H̃R(k, z)− ω)−1dz

=
1

2πi

ˆ
γ±

± tr(2z2I + zE′R(k, z))(z2I + ER(k, z)− ω)−1dz

=
1

2πi

ˆ
γ±

± tr(2z2I + zE′R(k, z))(z2 − ω)−1(I + (z2 − ω)−1ER(k, z))−1dz

=
1

2πi

ˆ
γ±

± tr(2z2I + zE′R(k, z))
∑
`

(−1)`(z −
√
ω)−`−1(z +

√
ω)−`−1ER(k, z)`dz

= ±
∑
`

1

`!

d`

dξ`2
tr(2ξ2

2I + ξ2E
′
R(k, ξ2))(−1)`(ξ2 ±

√
ω)−`−1ER(k, ξ2)`

∣∣∣
ξ2=±

√
ω
.

Hence, since the right-hand side has a complete asymptotic expansion in h with coefficients that
are smooth functions of k, the proof is complete.
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