
B3D Handout 16: Fourier series

If we have a periodic function f(x) with period 2L, that is,

f(x+ 2L) = f(x) for all x,

then the Fourier series for f(x) is given by
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Because of the orthogonality relations:
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if we multiply the f(x) equation by one of the cos or sin functions and integrate we can show that the
constants are given by
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Even functions

If f(x) is even, that is, f(−x) = f(x), then the coefficients are
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Odd functions

If f(x) is odd, that is, f(−x) = −f(x), then the coefficients are
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